用户名: 密码: 验证码:
Ag,N掺杂对TiO_2纳米管电极光催化降解有机染料的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了阳极氧化法制备TiO_2纳米管的工艺及TiO_2纳米管在紫外光下的光催化性能,进而研究了Ag光催化还原、N掺杂对TiO_2纳米管紫外光及可见光下的光电催化性能的影响。
     本论文首先研究了氧化电压、溶液组成及pH值、反应时间和退火温度对TiO_2纳米管形貌的影响。通过SEM、XRD、BET等测试对所制备的纳米管的结构、形貌进行了表征。研究表明:阳极氧化电压是影响TiO_2纳米管出现和尺寸的最重要因素,当电压为20V时,纳米管排列最有规则;电解液的组成不同,溶液pH值不同,因此不同体系中TiO_2纳米管的长度与氧化时间的关系不同,在HF体系中,20min之后,TiO_2纳米管的长度随时间的变化不显著,只有500nm,在HF+NH_4H_2PO_4溶液中纳米管长到2.2μm需要15小时,NaF+Na_2SO_4溶液中TiO_2纳米管长到2.2μm只需要4-6小时:阳极氧化法制备的TiO_2纳米管是无定型结构,250℃退火出现锐钛矿结构,500℃退火是锐钛矿为主的锐钛矿和金红石矿的混晶,600℃退火是金红石矿为主的金红石与锐钛矿的混晶。
     通过研究不同条件下酸性红G紫外光下光催化降解效率,确定了具有最佳光催化性能TiO_2纳米管的阳极氧化制备工艺,即:0.5(wt)%NaF+1mol/LNa_2SO_4体系中,阳极氧化的电压为20V,反应时间为6h,在500℃的空气气氛下退火1h;同时该方法制备的TiO_2纳米管最佳偏压值为0.45V(vs.SCE)。以该工艺制备的TiO_2纳米管为阳极,施加0.45V(vs.SCE)偏压下,pH=3,初始浓度为20×10~(-6)的酸性红G,经过5个小时的紫外光照射后,光电催化降解率约为92.4%。
     在以上实验基础上,首次采用光催化还原法在AgNO_3溶液中将纳米尺度的Ag单质沉积在阳极氧化制备TiO_2纳米管表面。通过SEM、XRD、XPS等测试对所制备纳米管的结构、形貌进行了表征。结果显示:Ag是以单质的形式,尺寸从10-100nm不等,不均匀地分布在纳米管表面,并具有很好地化学稳定性。TiO_2纳米管紫外光的光降解效率随Ag含量的增加而增加,但是当Ag含量超过最佳值后,光降解效率反而下降,实验结果表明Ag含量在1.15(wt)%时光催化效率最高。Ag含量为1.15(wt)%的Ag/TiO_2纳米管电极的光催化降解亚甲基蓝的效率比TiO_2纳米管电极的光催化效率提高了约22.98%,降解三小时后,初始浓度为10×10~(-6)的亚甲基蓝溶液COD降解率达到95%。
     将阳极氧化制备的TiO_2纳米管浸泡在氨水中再退火进行N掺杂,XPS测试显示N是以置换的形式进入到纳米管晶格的,成功地制备了TiO_(2-x)N_x纳米管,UV-vis测试显示N掺杂后TiO_2纳米管的吸收带边发生明显红移。首次对该法制备的TiO_(2-x)N_x纳米管施加偏压,提高其在可见光下光电催化性能;N含量为0.53(wt)%的TiO_(2-x)N_x纳米管为阳极,施加0.45V(vs.SCE)偏压,在可见光下光电催化降解初始浓度为10×10~(-6)的亚甲基蓝16小时效率为55.3%。
     采用光催化还原的方法,在AgNO_3溶液中将Ag沉积到上述方法制备的TiO_(2-x)N_x纳米管表面,首次实现N掺杂、Ag沉积共同对阳极氧化制备的TiO_2纳米管进行改性,成功制备出不仅能显著提高紫外光光催化效率,而且在可见光下具有光电催化性能的Ag/TiO_(2-x)N_x纳米管。Ag/TiO_(2-x)N_x纳米管可见光下16小时光电催化降解10×10~(-6)的亚甲基蓝和20×10~(-6)的酸性红G效率分别为63.5%和25.2%。表明该法制备的Ag/TiO_(2-x)N_x纳米管对有机物溶液的光催化降解具有普遍适用性。
The technics of preparion TiO_2 nanotube by anodizing and photocatalytic performance under UV-light of TiO_2 nanotube have been studied in detail in this dissertation.Modification of TiO_2 nanotube by doping Ag,N and influence on its photocatalytic property under both UV-light and visible light were also discussed.
     The influence of preparation parameters including oxidation voltage,the composition of electrolyte,pH value,oxidation time and annealing temperature on stmction,morphology of TiO_2 nanotube were systematically evaluated.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and specific area were measured by BET test instrument.The results show:oxidation voltage is the most important factor to control the appearance and sizes of TiO_2 nanotube,at voltage of 20V,array of TiO_2 nanotube with well ordered morphology can be produced.In different electrolyte,the pH value is different,so relationship between length of nanotube and time is not the same.In electrolyte of HF,after 20min,the length of nanotube is not grow as reaction continue and only reaches to 500nm.In electrolyte of HF+NH_4H_2PO_4 and NaF+Na_2SO_4,it needs 15h and 4-6h respectively to reach 2.2μm.TiO_2 nanotube prepared by anodizing is amorphous phase,after annealed at 250℃,anatase phase appears,the anatase phase is the predominant phase at 500℃annealing,and further heating of 600℃,the mixed crystal with the rutile phase is the predominant phase can be get.
     By study photo-degradation behavior of acid red G under UV-light with the prepared TiO_2 nanotube electrode in different experiment condition,shows that the best prepare condition for the growth of TiO_2 nanotube is:in electrolyte of 0.5(wt) %NaF +1mol/L Na_2SO_4,at 20V,reaction time is 6h,then annealed in air at 500℃for lh.The applied bias TiO_2 nanotube prepared by this process is 0.45V(vs.SCE). After 5 h of UV irradiation(pH=3,using TiO_2 nanotube electrode),the degradation rate of acid red G about 20×10~(-6)mol/L was 92.4%.
     Basing on these work,in electrolyte of AgNO_3,Ag nanoparticles were deposited photocatalytically on the TiO_2 nanotube surface,for the first time.The samples were characterized by XRD,SEM and X-ray Photoelectron Spectroscopy(XPS).The results show:Ag particles(from 10nm-100nm) are deposited on TiO_2 nanotube surface un-uniformly,exist as Ag~0,and Ag particles show good chemical stability.The photo-degradation rate of mathylene bule solution increases as content of Ag loaded on nanotube surface increases,if content greater then the most optimum content,photo-degradation rate will decrease.Experiment shows that the optimum content of Ag is about 1.15(wt)%.The Ag loaded nanotubes have much higher photo-degradation rate than un-loaded nanotubes,increases about 22.98%,After 3 h of UV irradiation of mathylene bule 10×10~(-6)mol/L,the degradation rate of chemical oxygen demand(COD) is about 95%.
     Nitrogen-doped TiO_2 nanotube array was fabricated by anodizing followed imme -rsed into liquid ammonia and anneal process.XPS result indicates that the nitrogen atoms were doped into lattice of TiO_2 nanotubes.The UV-ViS spectra shows that the photo-absorption of N-doped TiO_2 nanotube is enhanced in the visible light region. The bias was applied to improve photocatalytic property of N-doped TiO_2 nanotube under visible light for the first time.Using N-doped TiO_2 nanotube(Nitrogen content is 0.53(wt)%) as anode,after 16h of irradiation under visible light,the degradation rate of mathylene bule about 10×10~(-6)mol/L is 55.3%with 0.45V(vs.SC E) bias.
     Ag nanoparticles were deposited photocatalyticaUy on the N-doped TiO_2 nano -tube surface,modification of TiO_2 nanotube by Ag,N co-dope was made for the first time.Results show Ag/TiO_(2-x)N_x nanotube not only can improve photodegradation performance under UV-light,but also has photodegradation performance under visible light.After 16h of irradiation under visible light,the photoeleccatalytic degradation rate of mathylene bule(10×10~(-6)mol/L) and acid red G(20×10~(-6)mol/L) is 63.5%and 25.2%respectively with 0.45V(vs.SC E) bias.
     The result shows Ag/TiO_(2-x)N_x nanotube made in this dissertation is applicable for organic solution universally.
引文
[1]Fujishima.A,Honda K,Electrochemical Photolysis of Water at a Semiconductor Electrode Nature.1972.238:37
    [2]lijima.S,Helical microtubules of graphitic carbon Nature,1991,354:56-58
    [3]Obuchi eiko,et al.Titania photocatalytic.[J].Journal of the Electrochemical Society,1996,143(9):L191-193.
    [4]C.J.Howard,T.M..Sabine,F.Dickson.Structural and Thermal Parameters for Rutil and Anatase,[J].Acta Crystallogr.B47(1991):462-468
    [5]C.D.Jaeger and A.J.Bard,Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO_2 Particulate Systems,[J].Phys.Chem.,1979,83(12):3146-3152.
    [6]Okamoto K J,Yamamoto Y,Tanaka H,Tanaka M,Itaya A.Heterogeneous PhotocatalysisDecomposition of Phenolover TiO_2 Powder.[J].Bull.Chem.Soc.Jpn.,1985,58(7):2015-2022.
    [7]Hoffmann M.R.,Martin S.T.,Choi W.,et al.Enviromental Applications of Semiconductor Photocatalysis,[J].Chem.Rev.,1995,1:69-96.
    [8]BahanemannD,BockelmannD,GoslichR,Mechanistic Studiesof Water Detoxi ficationin llluminatedTiO_2 Suspension,[J].Solar Ener.Mat.,1991,24:564-583.
    [9]Okamoto K J,Yamamoto Y,Tanaka H,Tanaka M,Itaya A.Heterogeneous Photocatalysis Decomposition of Phenol over Anatase TiO_2 Powder,[J].Bull.Chem.Soc.Jpn.,1985,58(7):2027-2023.
    [10]J.C.olivera,GhassanA.S.,PierrePichat.Photodegradationof2-and3-Cholorophenol in TiO_2 Aqueous Suspensions,[J].Environ.Sci.Technol.,1990,24(7):990-996.
    [11]David F.Ollis,Ezio Pelizzetti,Nick Serpone.Photocatalytic Destruction of Water Contaminants,[J].Environ.Sci.Techno.,1991,25(9):1523-1528.
    [12]Matthews R W,A Comparison of 254nm and 350nm Excitation of TiO_2 in Simple Photocatalytic Reactors.JPPAC,1992,66:355-366.
    [13]Richard C,A.M.Martre,P.Boule,Photocatalytic Transformation of 2.5-furandimethanol in Aqueous ZnO Suspension,[J].Photochem.Photobiol.A:Chem.,1992,66(2):225-234.
    [14]Cummingham J,Srijaranai S,Sensitized Photo-Oxidation of Dissolved Alcohols in Homogeneous and Heterogeneous System(Part 2):TiO_2 Sensitized Photodehydrogenations of Benzyl Alcohol,[J].Photochem.Photobiol.A:Chem,1991,58(3 ):361-371.
    [15]Pruden A.L,David F.Ollis,Degradation of Chloroform by Photoassised Heterogeneous Catalysis in Dilute Aqueous Suspensions of TiO_2,[J].Environ.Sci.Technol.1983,17(1):628-631.
    [16]Harada H,Ueda T.,Sakata T.,Semiconductor Effect on the Selective Photocatalytic Reaction of a-Hydroxycarboxylic Acids,[J].Phys.Chem.,1989,93:1542-1548.
    [17]Abdullah M,Gary K.-C.Low,Ralph W.Matthews.Effects on Common Inorganic Anions on rates of Photocatalytic Oxidation of Organic Carbon over Illuminated Titanium Dioxide,[J].Phys.Chem.,1990,94:6820-6825.
    [18]Blake D M,Webb J,Turchi C,Magrini K,Kinetic and Mechanistic Overview of TiO_2PhotocatalyticOxidationReactionsinAqueousSolution,[J].SolarEner.Mat.,1991,24:584-593.
    [19]BahanemannD,BockelmannD,GoslichR,MechanisticStudiesofWaterDetoxi ficationin IlluminatedTio_2 Suspension,[J].Solar Ener.Mat.,1991,24:564-583.
    [20]Borgarello E,Kiwi J,Gratzel M,et al.Visible Light induced Water Cleavage in Colloidal Solutions of Chromium-Doped titanium Dioxide Particles.[J].Am Chem Soc,1982,104(11):2992-3002
    [21]Wilke K,Breuer HD.The influence of transition metal doping on the physical and photocatalytic properties of titania.[J].Photochem Photobiol A:Chem 1999,1219(1):49-53
    [22]Asahi R,Morikawa T,Ohwaki T,et al.Visible-Light photocatalysis in Nitrogen -Doped Titanium Oxides.Science,2001,29(13):269-271
    [23]Yu J C,Yu J G,Ho W K,et al.Effects ofF-Doping on the Photocatalytic Activity and Microstructures ofNanocrystalline TiO_2 Powers.[J].Chem Mater,2002,14(9):3808-3816
    [24]Khan S U M,A1 Shahry M,Ingler W B.Response to Comment on Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2.Science,2003,301(5640):1673
    [25]Khan S U M,AI-Shahry M,Ingler W B.Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2.Science,2002,297(5 590):2243-2245
    [26]Linsebigler A L,Lu G-Q,Yates J t.Photocatalysis on TiO_2 Surfaces,principles,Mechanisms,and Selected Results.[J].Chem Rev,1995,95(3):735-738
    [27]JL.Delplancke,M.Degrez,A.Fontana,R.Winand.Self-colour anodizing of titanium.[J].Surf.Technol,1982,16:153-162.
    [28]DangHongxin,MaoLiqun,LiQinglin etal.Effect of treating temperature on microstructure and photo activit of nanocrystalline TiO_2[J].ChemicalResearch,2004,15(2):1-5.
    [29]Carey J H,Lawrence J,TosineHM.Photodechlorination of PCBcs In the Presence of Titanium Dioxidein Aqueous Suspension.[J].Bull Environ Contam Toxicol,1976,16:697-701
    [30]王芹,陶杰,翁履谦.氧化钛纳米管的合成机理与表征[J].材料开发与应用,2004,19(5):9.12.
    [31]YAO B-D,CHAN Y-F,ZHANG X-Y.Formation mechanism of TiO_2nanotubes[J].Appl Phys Lett,2003,82(2):2812-2813.
    [32]YANG Jian-jun,JIN Zhen-sheng,WANG Xiao-dong.Study on composition process ofnanotube Na_2Ti_2O_4(OH)_2[J].Daltom Trans,2003,3898-3901.
    [33]TIAN Z-R,VOIGT J A,LIU Jun,et al.Large oriented arrays and continuous films of TiO_2-based nanotubes[J].Am Chem Soc
    [34]Du G-H,Chen Q,Peng L-M,et al.Preparation and structure analysis of titanium oxide nanotubes[J].Appl Phys Lett,2001,79(22):3702-3704.
    [35]Yao B-D,Chan Y-F,Zhang X-Y,et al.Formation mechanism of TiO_2nanotubes[J].Appl Phys Lett,2003,82(2):281-283
    [36]Chen Q,Du G-H,Peng L-M,et al.Nanotube madefrom layered H_2Ti_3O_7 tri titanate[J].Journal of Chinese Electron Microscopy Society,2002,21(3):265-268.
    [37]Lin C-H,Chien S-H,Chao J-H,et al.The synthesis ofsulphated titanium oxide nanotube[J].Catal Lett,2002,80(3-4):153-159.
    [38]Chen Q,Zhou W-Z,Du G-H,et al.Tritanate nanotubes made via a single alkali treatment[J].AdvMater,2002,14(17):1208-1211.
    [39]张青红,高濂,郑珊.制备均一形貌的长二氧化钛纳米管[J].化学学报,2002,60(8):1439-1444
    [40]D.Gong,C.A.Grimes,O.K.Varghese,W.Hu,R.S.Singh,Z.Chen,E.C.Dickey,Titanium oxide nanotube arrays prepared by anodic oxidation[J].Mater.Res.16(2001)3331.
    [41]Pang M,Bahr DF.Thin-film fi'acture during nanoindentation of a titanium oxide film-titanium system.[J].Mater Res 2001;16:2634-43
    [42]Yang B,Uchida M,Kim HM,Zhang X,Kokubo T.Preparation ofbioactive titanium metal via anodic oxidation treatment.[J].Biomaterials 2004;25:1003-10.
    [43]Raja KS,Misra M,Paramguru K.Formation of self-ordered nanotubular structure of anodic oxide layer on titanium.[J]Electrochim Acta 2005;51:154-65.
    [44]Macak JM,Tsuchiya H,Schmuki P.High-aspect-ratio TiO_2 nanotubes by anodization of titanium.[J].Angew Chem Int Ed 2005;44:2100-2105
    [45]Beranek R,Hildebrand H,Schmuki P.Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes.[J].Electrochem Solid State Lett 2003;6:12-14.
    [46]Mor GK,Varghese OK,Paulose M,Mukherjee N,Grimes CA.Fabrication of tapered,conical-shaped titania nanotubes.J Mater Res 2003;18:2588-2593.
    [47]Macak JM,Tsuchiya H,Taveira L,Aldabergerova S,Schmuki P.Smooth anodic TiO_2 nanotubes[J].Angew Chern Int Ed 2005;44:7463-7465.
    [48]Cai Q,Paulose M,Varghese OK,Grimes CA.The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation.[J].Mater Res 2005;20:230-6
    [49]Rice RW.Mierostructure dependence of mechanical behavior of ceramics.In:MacCrone RK,editor.Treatise on materials science and technology,vol.11.New York:Academic Press;1977.203-31.
    [50]Chawla KK.Composite materials science and engineering.New York:Springer;1998:303-46.
    [51]Rice RW.Mechanical properties of ceramics and composites.New York:Marcel Dekker;2000:458-61.
    [52]Hashin Z,Rosen BW.The elastic moduli of fiber-reinforced materials.[J].Appl Mech 1964;31:223-32.
    [53]Gopal K.Mor,Oomman K.Varghese,Maggie Paulose.A review on highly ordered,vertically oriented TiCh nanotube arrays:Fabrication,material properties,and solar energy applications[J].Solar Energy Materials & Solar Cells 90(2006) 2011-2075
    [54]Jan M.Macak,Patrik Schmuld Anodic growth of self-organized anodic TiO_2nanotubes in viscous electrolytes[J].Electrochimica Acta 52(2006) 1258-1264
    [55]Hiroaki Tsuchiya,Jan M.Macak,Andrei Ghicov Characterization of electronic properties ofTiO_2 nanotube films[J].Corrosion Science 49(2007) 203-210
    [56]Jan M.Maca'K,Hiroaki Tsuchiya,Andrej Ghicov,Patrik Schmuki Dye-sensitized anodic TiO_2 nanotubes[J].Electrochemistry Communications 7(2005):1133-1137
    [57]Chuanmin Ruan,Maggie Paulose,Oomman K.Varghese,Craig A.Grimes Enhanced photoelectrochemical-response in highly ordered TiO_2 nanotubearrays anodized in boric acid containing electrolyte[J].Solar Energy Materials & Solar Cells 90(2006):1283-1295
    [58]Xiaobo Chert,Maria Schriver,Timothy Suen,Samuel S.Mao.Fabrication of 10nm diameter TiO_2 nanotube arrays by titanium anodization[J].Thin Solid Films 515(2007):8511-8514
    [59]Soon Hyung Kang,Jae-Yup Kim,Hyun Sik Kim,Yung-Eun Sung.Formation and mechanistic study of self-ordered TiO_2 nanotubes on Ti substrate[J].Journal of Industrial and Engineering Chemistry 14(2008):52-59
    [60]G.A.Crawford,N.Chawl,K.Das,S.Bose,A.Bandyopadhyay Microstructure and deformation behavior of biocompatible TiO_2 nanotubes on titanium substrate [J].Acta Biomaterialia 3(2007):359-367
    [61]Y.K.Lai,L.Sun,C.Chen,C.G.Nie,J.Zuo,C.J.Lin.Optical and electrical characterization ofTiO_2 nanotube arrays on titanium substrate[J].Applied Surface Science 252(2005):1101-1106
    [62]Hiroaki Tsuchiya,Jan M.Macak,Luciano Taveira,Eugeniu Balaur,Self-organized TiO_2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J].Electrochemistry Communications 7(2005):576-580
    [63]Peng Xiao,Betzaida Batalla Garcia,Qing Guo,Dawei Liu,Guozhong Cao TiO_2 nanotube arrays fabricated by anodization in different electrolytes for biosensing[J].Electrochemistry Communications 9(2007):2441-2447
    [64]Sebastian Bauer,Sebastian Kleber,Patrik Schmuki.TiO_2 nanotubes:Tailoring the geometry in H_3PO_4/HF electrolytes[J].Electrochemistry Communications 8(2006) 1321-1325
    [65]G.K.Mor and Oomman K.Varghese Fabrication of tapered,conical-shaped titania nanotubes[J].Mater.Res 11(2003):2588-2593
    [66]赖跃坤,孙岚,左娟.氧化钛纳米管阵列制备及形成机理[J].物理化学学,2004,20(9):1063-1066
    [67]I.Sieber,B.Kannan,P.Schmuki,Self-Organized Porous Tantalum Oxide Prepared in H2SO4/HF Electrolytes,[J].Electrochemical and Solid-State Letters, 8(2005):10-15
    [68]L.V.Taveira,J.M.Macak,K.Sirotna,L.F.P.Dick,P.Schmuld,Initiation and Growth of Self-Organized TiO_2 Nanotubes Anodically Formed in NH_4F/(NH_4)_2SO_(4-) Electrolytes,[J].Electrochem.Soc,152(2005):B405
    [69]J.M.Macak,K.Simtna,P.Schmuld,Self--Organized Porous Titanium Oxide Prepared in Na_2SO_4 / NaF Electrolytes,[J].El.Chim.Acta,50(2005):3679-3686
    [70]H.Tsuchiya,J.M.Macak,L.Taveira,E.Balaur,A.Ghicov,K.Sirotna,P.Schmuki,Self-organized TiO_2 Nanotubes Prepared in Ammonium Fluoride Containing Acetic Acid Electrolytes,[J].Electrochem.Commun.7(2005):567-573
    [71]A.Ghicov,H.Tsuchiya,J.M.Macak,P.Schmuki,Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes,[J].Electrochem.Commun.7(2005):505-511
    [72]Sergiu P.Albu,Andrei Ghicov,Jan M.Macak,Patrik Schmuki.250 μm long anodic TiO_2 nanotubes with hexagonal self-ordering[J].phys.stat.sol.(RRL)2(2007):65-67
    [73]黄淑梅.光催化二氧化钛。[J]金属学报,1999,35卷(增1):722-725
    [74]沈伟韧,赵文宽,贺飞,方佑龄.TiO_2光催化反应及其在废水处理中的应用.[J].化学进展,1998,10(4):349-361。
    [75]MA Dong-ling,LINDA S S,RICHARD W S.Preparation and structure investtigation of nanoparticle-assembled titanium dioxide microtubes[J].Appl Phys Lett,2003,83(9):1839-1841
    [76]O'Regan B,Gratzel M.A Low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2 film.Nature,1991,353:737-739
    [77]Adachi M,Okada I,'Ngamsinlapasathian S,et al.Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes.Electrochemistry,2002,70(6):449-452
    [78]Adachi M,Murata Y,Okada I.Yoshikawa S.Formation of titania nanotubes and applications for dye-sensitized solar cells.[J].Journal of Electrochemical Society 2003,150(8):G499-G493
    [79]Uchida S,Chiba R,Tomiha M,et al.Application of titania nanotubes to a dye-sensitized solar cell.[J].Electrochemistry,2002,70(6):418-420
    [80]Varghese O K,Gong D W,Paulose M,et al.Hydrogen Sensing Using Titania Nanotubes.[J].Sensors and Actuators BChemical,2003,93:338-344
    [81]Grimes C A,Ong K G.Varghese O K,et al.A Sentinel Sensor Network for Hydrogen Sensing.[J].Sensors 2003,3,69-82
    [82]G.K.Mor,M.A.Carvalho,O.K.Varghese,M.V Pishko,C.A.Grimes,A room temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination.[J].Mater.Res.19(2004):628-634
    [83]TAO Hai-jun,TAO Jie,WANG Tao,WANG Ling,QIN Liang,XU Lu-lu.Fabrication of self-organized TiO_2 nanotubes by anodic oxidation and their photocatalysis[J].Trans Nonferrous Met Soc China,2005,15(S3):462-466.
    [84]Chuanmin Ruan,Maggie Paulose,Oomman K.Varghese,Craig A.Grimes.Enhanced photoelectrochemical-response in highly ordered TiO_2 nanotube-arrays anodized in boric acid containing electrolyte[J].Solar Energy Materials & Solar Cells 90(2006) 1283-1295
    [85]Varghese,O.K,Gong,D,Paulose,M,Ong,K.G,Dickey,E.C,Grimes,C.A.Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure.[J].Advanced Materials,2003,15(17):1194-1201
    [86]MOR G K,SHANKAR K,PAULOSE M,et al.Enhanced photocleavage of water using titania nanotube arrys[J].Nano Let t,2005,5(1):191-195
    [87]Paulose M,Shankar K,Varghese O K,Mor G K,Grimes C A.Application of highly-ordered TiO_2 nanotube-arrays in heterojunction dye-sensitized solar cells [J].Phys D:Appl Phys,2006,39:2498-2503
    [88]刘艳彪,周保学,熊必涛,白晶,李龙海.TiO_2纳米管阵列太阳能电池薄膜材料及电池性能研究[J].科学通报2007,52(10):1102-1106
    [89]Mor G K,Shankar K,Paulose M,Varghese O K,Grimes C A.Use of highlyordered TiO_2 nanotube arrays in dye-sensitized solar cells[J].Nano Letters,2005,6(2):215-218
    [90]Suzuki Y,Yoshikawa S.Synthesis and thermal analyses of TiO_2-derived nanotub -es prepared by the hydrothermal method[J].Mater Res,2004,19(4):982-985
    [91]KASUGA T,HIRAMATSU M,HOSON A.Titania nanotubes prepared by chemical processing[J].Advanced Materials,1999,11(15):1307-131
    [92]李伟,王晓冬,杨建军.高比面积TiO_2纳米管的制备与表征[J].化学研究,2002,13(3):12-14
    [93]李晓红,张校刚,力虎林.TiO_2纳米管的模板法制备及表征[J].高等学校化学学报,2001,22(1):130-132
    [94]ZHAO Jian-ling,WANG Xiao-hui,CHEN Ren-zheng,LI Long-tu.Fabrication of titanium oxide nanotube arrays by anodic oxidation[J].Solid State Communications,2005,134(10):705-710
    [95]Macak JM,Tsuchiya H,Schmuki P.High-aspect-ratio TiO_2 nanotubes by anodization of titanium.Angew Chem Int Ed 2005;44:2100-2102
    [96]G.A.Crawford,N.Chawl,K.Das,S.Bose,A.Bandyopadhyay.Microstructure and deformation behavior of biocompatible TiO_2 nanotubes on titanium substrate Acta Biomatefialia 3(2007):359-367
    [97]张青红,高濂,郑珊.金红石相二氧化钛纳米晶的光催化活性[J].化学学报,2001,59(10):1909
    [98]沈嘉年,宋江江.钛上阳极氧化生成TiO_2光催化薄膜的结构与性能.[J].稀有金属材料与工程.2004 33(10):1076-1079
    [99]梅燕,贾振斌,邱丽.负载型TiO_2纳米薄膜电极光催化扬花甲醇的研究[J].稀有金属材料与工程.2003 32(8):662-665
    [100]肖美群,沈嘉年,李谋成.添加Fe~(3+)对二氧化钛薄膜吸收光谱及光催化活性的影响.[J].上海金属.2004.4:13-16
    [101]Linsebigler A L,Lu G,Yates J T.Photocatalysis on TiO_2 Surfaces:Principles,Mechanics and Selected Results,[J].Chem.Rev.1995,95(3):735-758.
    [102]Ekoko G.B,S.Jianian,S.XianRong,L.Dong,L.Moucheng,S.Juan,Y. Shudian, Photocatalytic activity of manganese, chromium and cobalt doped- anatase TiO_2 nanoporous electrodes produced by re-anodization method. [J].Thin Solid Films, 2007, 515 (13):5287-5297
    
    [103] Han-Jun O, L. Jong-Ho, Y. Jeong, K. Beom-Su et al. Influnence of electrolytic mediums on the microstructures of anodic titania.[J]. Solid State Phenomena, 2007,124-126:1773-1776.
    
    [104] Yu J .C, H .Y. Tang, J.G.Yu et al., "Bactericidal and photocatalytic activities of TiO_2 thin films prepared by sol-gel and reverse micelle methods", J Photochem. Photobiol. A, 2002,153:211-219.
    
    [105] Fujishima A, N. T. Rao, D.A.Tryk. Titanium dioxide photocatalysis.[J]. Photochem. Photobiol. C, 2000,1:1-21.
    
    [106] Zhao L, Y. Yu, L. Song, X. Hu, A.Larbot, Synthesis and characterization of nanostructured titania film for photocatalysis.[J]. Appl Surf Sci. 2005,239 (3-4) :285-291
    
    [107] Ma H, L.F. Liu, F-L Yang, X-W Zhang, et al. Immobilized TiO_2 and Its Photocatalytic Application in Removing Nitrogen from Water.[J].Photogr. Sci. Photochem., 2006,24:17-27
    
    [108] Ragoisha G.A, A. S. Bondarenko. Electrochemistry: New research potentiody namic electrochemical impedance spectroscopy. Chapter 3, M. Nunez (Ed.), Nova Science Publ, New York, 2005.
    
    [109] Palombari R, M.Ranchella, C.Rol, G.V.Sebastiani.Oxidative photoelectrochem ical technology with Ti /TiO_2 anodes. [J].Sol. Energ. Mat. Sol. Cell. 2002,71:359-368
    [110] Iwasaki M., Y. Iwasaki, H. Tada S. Ito. One-Pot Process for anodic oxide films of titanium with high photocatalytic activity. [J].Mater. Trans. 2004,45:1607-1612.
    [111] V. Zwilling, M. Aucouturier, E. Darque-Ceretti. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. [J].Electrochimica Acta,1999,45(6):921-929
    [112]J.M.Macak,H.Tsuchiya and P.Schmuki.High-Aspect-Ratio TiO_2 Nanotubes by Anodization of Titanium.Angew.Chem.Int.Ed.44(2005) 2100
    [113]Wong M.T.,W.T.Liu.Microbial succession of glycogen accumulating organisms in an anaerobic-aerobic membrane bioreactor with no phosphorus removal.[J].Water Sci.Technol.2006,54(1):29-37.
    [114]Okawa K.,T.Y.Tsai,Y.Nakano,W.Nishijima,M.Okada.Effects of metal iota on decomposition of chlorinated organic substances by ozonation in acetic acid.[J].Chemosphere,2005,58(4):523-527.
    [115]Lee K.M.,P.E.Lira.Bioregeneration of powdered activated carbon in the treatment of alkyl-substituted phenolic compounds in simultaneous adsorption and biodegradation processes.[J].Chemosphere,2005,58(4):407-416.
    [116]Zhang S.J.,H.Q.Yu,Q.R.Li.Radiolytic degradation of acid orange 7:a mechanistic study.[J].Chemosphere,2005,61(7):1003-1011.
    [117]Von Zharen,W.M.Positioning Your Organization for Environmental Success.Rowman & Littlefield Pub Inc,2001.
    [118]Teekateerawej S.,J.Nishino,Y.Nosaka.Design and evaluation of photocatalytic micro-channel reactors using TiO_2-coated porous ceramics.[J].Photochem.Photobiol.A,2006,179(3):263-268.
    [119]Fabbri D.,L.S.Villata,A.B.Prevot,A.L.Capparelli,E.Pramauro.Photocatalytic degradation of DNOC in aqueous TiO_2 dispersions:Investigation of the initial reaction steps.[J].Photochem.Photobiol.A,2006,180(1-2):157-164.
    [120]Chen C.C.,C.S.Lu,Y.C.Chung.Photocatalytic degradation of ethyl violet in aqueous solution mediated by TiO_2 suspensions.[J].Photochem.Photobiol.A,2006,181(1):120-125.
    [121]曾谨言.量子力学,北京,科学出版社 1990:97-101
    [122]Guettai N.,H.Ait Amar.Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension.Pat Ⅰ:Parametric study.[J].Desalination,2005,185:427-437.
    [123]A.Kudo,M.Sekizawa.Photocatalytic H_2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst.[J].Chem.Commun.(2000):1371-1373.
    [124]K.Sayamana,H.Arakawa.Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO_2.[J].Chem.Soc.,Faraday Trans.93(8)(1997):1647-1655.
    [125]H.Yamashita,M.Harada.J.Misaka,M.Takeuchi,K.Ikeue,M.Anpo.Degradation ofpropanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts.[J].Photochem.Photobiol.A 6003(2002):1-5.
    [126]A.Hagfeldt,M.G-ratze.Light-induced redox reactions in nanocrystalline systems.[J].Chem.Rev.95(1)(1995):49-68.
    [127]L.Spanbel,H.Weller,A.Henglein.Photochemistry of semiconductor colloids.22.Electron injection from illuminated CdS into attached TiO_2 and ZnO particles.[J].Am.Chem.Soc.109(1987):6632-6635.
    [128]J.C.Yang,Y.C.Kim,Y.G.Shul,C.H.Shin,T.K.Lee.Characterization of photoreduced Pt/TiO:and decomposition of dichloroacetic acid over photoreduced Pt/TiO~ catalysts.[J].Appl.Surf.Sci.121/122(1997):525-529.
    [129]V.Vamathevan,H.Tse,R.Amal,G.Low,$.McEvoy.Effects of Fe3+ and Ag+ions on the photocatalytic degradation of sucrose in water.[J].Catal.Today 68(2001):201-208.
    [130]C.Xi,Z.Chert,Q.Li,Z.Jin.Effects of H+,C1-and CH3COOH on the photocatalytic conversion of PtC16~(2-) in aqueous TiO_2 dispersion.[J].Photochem.Photobiol.A 87(3)(1995) 249-255.
    [131]X.Z.Li,F.B.Li.Study ofAu/Au3+-TiO_2 photocatalysts toward visible photooxidation for water and wastewater treatment.[J].Environ.Sci.Tech.35(11) (2001):2381-2387.
    [132]R.Dalven.Physics of Metal-Semiconductor and Metal-Insulator-Semicon ductor Junctions,Introduction to Applied Solid State Physics,2nd ed.,Plenum Press,New York,London,1990,Chapter4:111-128.
    [133]H.Tada,K.Teranishi,Y.Inubushi,S.Ito.TiO_2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H_2O:incorporation effect of nanometer-sized Ag particles.[J].Chem.Commun.(1998):2345-2346.
    [134]C.R.Chenthamarakshan,K.Rajeshwar,Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO_2 suspensions:an interfacial induced adsorpti on-reduction pathway mediated by formate iota.[J].Electrochem.Commun.22(2000):527-530.
    [135]Mantana Moonsiri,Pramoch Rangsunvigit,Sumaeth Chavadej,Erdogan Gulari.Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products.[J].Chemical Engineering Journal 97(2004):241-248.
    [136]Xin He,Xiujian Zhao,Baoshun Liu.The synthesis and kinetic growth of anisotropic silver particles loaded on TiO_2 surface by photoelectrochemical reduction method.[J].Applied Surface Science 254(2008):1705-1709.
    [137]A.L.Stroyuk,V.V.Shvalagin,S.Ya.Kuchmii.Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles.[J].Journal of Photochemistry and Photobiology A:Chemistry 173(2005):185-194.
    [138]Limin Wang,Nan Wang,Lihua Zhu*,Hongwei Yu,Heqing Tang.Photocatalytic reduction of Cr(Ⅵ) over different TiO_2 photocatalysts and the effects of dissolved organic species.Journal of Hazardous Materials 152(2008):93-99.
    [139]M.Sokmen,A.Ozkan.Decolourising textile wastewater with modified titania:the effects of inorganic anions on the photocatalysis.[J].Journal of Photochemistry and Photobiology A:Chemistry 147(2002):77-81.
    [140] T. Mishra , J. Hait, Noor Aman, R.K. Jana, S. Chakravarty. Effect of UV and visible light on photocatalytic reduction of lead and cadmium over titania based binary oxide materials. [J]. Journal of Colloid and Interface Science 316 (2007):80-84.
    [141] T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal. Effects of nano-Ag particles loading on TiO_2 photocatalytic reduction of selenate ions. [J].Chemical Engineering Journal 95 (2003): 179-186.
    [142] S. Rengaraj, X.Z. Li. Enhanced photocatalytic activity of TiO_2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension.V. [J]. Journal of Molecular Catalysis A: Chemical 243 (2006):60-67.
    [143] Anna V. Korzhak, Natalia I. Ermokhina, Alexander L. Stroyuk. Photocatalytic hydrogen evolution over mesoporous TiO_2/metal nanocomposites.[J]. Journal of Photochemistry and Photobiology A:Chemistry(in press).
    [144] T. Aarthi, Giridhar Madras. Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO_2.[J].CatalysisCommunications,9, (2008): 630-634.
    [145] Jianjun Liu , Xinping Li, Shengli Zuo, Yingchun Yu. Preparation and photocatalytic activity of silver and TiO_2 nanoparticles/montmorillonite composites. [j].Applied Clay Science 37 (2007):275-280.
    [146] E. Szabo-Bardos, H. Czili and A. Horvath, Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO_2 surface.[J]. Photochem. Photobiol., A, 154, (2003): 195-201.
    [147] V. Vamathevan, R. Amal, D. Beydoun, G Low and S. McEvoy.Photocataly tic oxidation of organics in water using pure and silvermodified titanium dioxide particles.[J].Photochem. Photobiol., A,148,(2002):233-245.
    [148] I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytid es. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. [j].Appl. Catal., B, 42,(2003): 187-201.
    [149]D.Shchukin,E.Ustinovich,D.Sviridov,P.Pichat.Effect of silver deposits on the photocatalytic activity of titanium dioxide for the removal of 2-chloroph enol in water,Photochem.Photobiol.Sci.,3,(2004):142-144.
    [150]M.Moonsiri,P.Rangsunvigit,S.Chavadej,E.Gulari.Effect of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products.[J].Chem.Eng.J,97,(2004):241-248.
    [151]W.Lee,H.S.Shen,K.Dwight,A.Wold,Effect of Silver on the Photocatalytic Activity of TiO_2,.[J].Solid State Chem,106,(1993):288-294.
    [152]M.Sokmen,D.W.Allen,F.Akkas,N.Kartal and F.Acar,Photodegradation of some dyes using Ag-loaded titanium dioxide.[J].Water,Air,Soil Pollut.132,(2001):153-163.
    [153]K.V.S.Rao,B.Lavedrine and P.Boule,Influence of metallic species on TiO_2for the photocatalytic degradation of dyes and dye intermediates.[J].Photochem.Photobiol.,A,154,(2003):189-193.
    [154]H.M.Sung-Sub,J.R.Choi,H.J.Hah,S.M.Koo,Y.C.Bae.Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 under visible and UV light irradiation.[J].Photochem.Photobiol.,A,163(2004):37-44.
    [155]J.M.Herrmann,H.Tahiti,Y.A.Ichou,G Lassaletta,A.R.Gonzalez-Elipe,A.Fernadez.Characterisation and photocatalytic activity in aqueous medium of TiO_2 and Ag-TiO_2 coatings on quartz.[J].Appl.Catal.B,13(1997):219-228.
    [156]A.Mills and S.K.Lee,Platinum group metals and their oxides in semiconduct or photosensitization-Basic principles,metal photodeposition and water photo splitting reactions.[J].Platinum Metals Rev,47(2003):2-12.
    [157]A.Dobosz and A.Sobczynski,The influence of silver additives on titania photoactivity in the photooxidation of phenol.[J].Water Res,37(2003):1489-1496.
    [158]S.X.Liu,Z.P.Qu,X.W.Han,C.L.Sun.A mechanism for enhanced photo catalytic activity of silver-loaded titanium dioxide.[J].Catal.Today, 93-95,(2004):877-884.
    [159]包华辉,徐铸德,殷好勇,李国华.TiO_2纳米管及其负载Ag、Au纳米粒子的合成.浙江大学学报(工学版)2005,39(12):1862-1865.
    [160]KOMARNENI S,I I D S,NEWALKAR.Microwave-polyol process for Pt and Ag nanoparticles.[J].Langrnuir,2002,18(15):5959-5962.
    [161]M.A.Behnajadye.Enhancement of photocatalytic activity of TiO_2 nanoparticles by silver doping:photodeposition versus liquid impregnation methods.[J].Global NEST Journal.10(2008):1-7.
    [162]Tecush Mohammadi,Asghar Zeini Isfahani.Photooxidation of Salicylic Acid with TiO_2 and Metal Coated TiO_2.[J].Acta Chim.Slov.55,(2008):172-178
    [163]S.Rengaraj,X.Z.Li.Enhanced photocatalytic activity of TiO_2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension.[J].Journal of Molecular Catalysis A:Chemical 243,(2006):60-67
    [164]T.T.Y.Tan,C.K.Yip,D.Beydoun,R.Areal.Effects of nano-Ag particles loading on TiO_2 photocatalytic reduction of selenate ions.[J].Chemical Engineering Journal.95,(2003):179-186
    [165]I.M.Arabatzis,T.Stergiopoulos,M.C.Bemard.Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange.[J].Appl.Catal.B:Environmental.42,(2003):187-201
    [166]卢萍,姚明明,张颖.过渡金属离子的掺杂对TiO_2光催化活性的影响.[J].感光科学与化学,20,(3),(2002):185-190
    [167]Vogel R,Hoyer P,Welrr H.Quantum-sized PbS,CdS,Ag2S,Sb_2S_3 and Bi_2O_3particles as sensitizers for various nanoporous wide-bandgap semiconductors.[J].Phys.Chem,98(12),(1994):3183-3188
    [168]Choi W,Temin A,Hoffnlann M R.The role of metal ion dopants in Quantum -sized TiO_2:Comlation between photoreactivity and charge carried recombine ation dynamics.[J].Phys.Chem,98(5),1994:13669-13679
    [169]Anpo M,Takeuchi M.The design and development of highly reactive titanium oxide photocatalysts operating undervisible light irradiation.[J].Catal,216,(2003):506-511
    [170]Hiromi Yamashita,Masaru Harada,Junko Misaka.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts:Fe ion-implanted TiO_2,Catal.Today,84,(2003):191-196
    [171]Lagemaat J van de,Park N G,Frank A J.tnfluence of electrical potential distribution,charge transport,and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO_2solar cells:a study by electrical impedance and optical modulation techniques.[J].J phys them.B,104,(2000):2044-2052.
    [172]Baoshun Liu,Liping Wen,Xiujian Zhao.The structure and photocatalytic studi es of N-doped TiO_2 films prepared by radio frequency reactive magnetron sputtering.[J].Solar Energy Materials & Solar Cells.92,(2008):1-10
    [173]T.lhara,M.Miyoshi,Y.Iriyama,O.Matsumoto,S.Sugihara.Visible-light -active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping.[J].Appl.Catal.B 42,(2003):403-410
    [174]Yoshitaka Nakano,Takeshi Morikawa.Origin of visible-light sensitivity in N-doped TiO_2 films.[J].Chemical Physics.339,(2007):20-26
    [175]Ihara T,Miyoshi M,Iriyama Y.Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping.[J].Applied Catalysis B:Environmental,42,(2003):403-409
    [176]Yin S,Yamaki H,Komatsu M.Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine.[J].Journal of Materials Chemistry,13,(2003):2996-3001
    [177]Lindgren T,Mwabora J M,Avendano E.Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering.[J].Journal of Physical Chemistry B,107,(2003):5709-5716
    [178]Irie H,Watanabe Y,Hashimoto K.Nitrogen-concentration dependence on photocatalytic activity of TiO_2-_xN_x powders.[J].Journal of Physical Chemistry B,107,(2003):5483-5486
    [179]Burda C,Kou Y,Chen X.Enhanced Nitrogen Doping in TiO_2 Nanoparticles [J].J Nano Letters,3(8),(2003):1049-1051
    [180]王祖鹓,章福祥,杨雅莉,崔洁,孙青,关乃佳.不同胺介质中一步合成具有可见光相应的TiO_2.[J].催化学报,27(12),(2006):1091-1095
    [181]Saba N C,TompkinsHG.Titanium nitride oxidation chemistry:an X-ray photoelectron spectroscopy study.[J].J.ApplPhys,72(1992):3072-3079
    [182]孙剑辉,乔利平,孙胜鹏,祁巧艳,张干.氮掺杂型纳米TiO_2在可见光及太阳光下的光催化性能研究.[J].环境科学学报,10,(2006):1688-1694
    [183]I.M.Arabatzis,T.Stergiopoulos,M.C.Bernard,et al.Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange.[J].Applied Catalysis B:Environmental,42(2003):187-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700