用户名: 密码: 验证码:
甜味蛋白Monellin基因的合成、功能分析及对桑树的遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑树(Morus alba L.)是多年生双子叶森本植物,也是一种重要的经济作物。桑树全身都是宝:桑叶被用作家蚕和畜禽的饲料;桑椹中富含花青素等物质,现已受到越来越多人们的喜爱;桑根、桑皮和桑枝等作为一种传统药材,被用到中药中。随着科技的发展,桑树的价值将得到最大程度的开发利用,因此,选育新桑品种是研究者的重要任务之一。桑树的传统育种,如选择育种、杂交育种等技术已不能满足蚕桑产业向多元化方向发展的需要,现在越来越多的研究者开始了桑树的分子育种相关研究。很多研究表明,外源基因对桑树进行遗传转化是可行的,但如何获得适合的外源基因,提高外源基因的表达量,寻找适合的基因转化方法等都是需要面对和解决的难点。因此,对桑树遗传转化的研究任重而道远。
     从西非植物Dioscoreophyllum cumminsii的果实中获得的天然的甜味蛋白Monellin,具有甜度高、热量低等特点。但它的热稳定性较差,其开发生产也受到了产地和资源等因素的限制,难以规模化。因此,研究者运用生物技术的方法,合成了甜味蛋白基因,并在原核与真核表达系统中成功表达,获得的甜味蛋白在酸性环境下最高能耐受60℃高温;在1992年报道了该蛋白在植物中的应用,基因被成功导入莴苣和土豆中,但未能检测出甜味。
     如何能够提高该蛋白的表达量和热稳定性,如何能够将monellin基因导入桑树中并得到表达?本研究围绕这些问题开展了较为深入系统的研究,并取得了较好的研究结果,现将研究要点总结如下:
     1.一个人工设计合成的monellin基因
     本研究根据已报道的Monellin甜蛋白氨基酸序列,通过统计“各物种密码子使用频率数据库codon usage database”信息,兼顾桑树与毕赤酵母密码子的偏爱性,人工设计优化了一条长为294bp的单链monellin基因,并采用重叠PCR的方法合成该基因。将合成的基因核苷酸序列在NCBI中进行比对,结果显示这是一个具有新核苷酸序列的monellin基因。我们将这一基因向NCBI进行了提交,确定基因登录号为GenBank:JQ282905。该基因如能在真核生物和植物的表达系统中表达,则为它扩展应用到其它作物中去提供了新的思路和途径。
     2.新monellin基因的真核表达研究
     本研究中,选取巴斯德毕赤酵母GS115为宿主菌,以胞外分泌型的载体pPIC9K为基础,构建了两个表达载体pPIC9K-M-E和pPIC9K-M。表达载体pPIC9K-M-E中包含有甜味蛋白monellin基因和绿色荧光蛋白EGFP基因,pPIC9K-M中只包含monellin基因,但它们中均在基因下游带上了组氨酸标签以方便蛋白的分离纯化。构建好的表达载体经线性化后,采用电击法转化入毕赤酵母GS115,经菌落PCR和平板筛选分别获得了阳性酵母表达菌株GS115/pPIC9K-M和GS115/pPIC9K-M-E,利用含G418的平板筛选出基因多拷贝酵母菌株后,在BMGY和BMMY培养基中利用甲醇诱导获得了表达上清。然后采用Ni-NTA亲和柱纯化表达的蛋白,经分析验证两种蛋白均有甜味,约为标准蔗糖的500倍,甜味刺激来的慢去的慢;诱导重组菌GS115/pPIC9K-M-E产生的蛋白在荧光显微镜下能够发出强烈的荧光,诱导重组子GS115/pPIC9K-M获得的蛋白产物能耐80℃高温,pH值在3-12之间时,蛋白降解较少。这些结果证明我们获得的蛋白不但具有甜味,还具有有相对较高的对热稳定性,也有较宽的耐酸碱性。这为它的开发利用提供了条件。由此,我们将获得的monellin基因向国家知识产权局申请了国家发明专利,并于2012年5月获正式授权,专利号为ZL201010042099.3。该基因的获得为桑树及作物遗传转化创新了一个有意义的目的基因。
     3.利用根癌农杆菌介导法研究monellin基因对桑树的遗传转化
     在农杆菌介导法中需要大量的植物受体材料,为了高效获取组培所需的子叶、下胚轴等外植体,本研究特别探索了一种快速促进桑种子萌发的方法-振荡培养法。实验并分析了静置培养和振荡培养2种培养方式处理下,桑种子萌发状态及萌发过程中内源激素含量和超氧化物歧化酶(SOD)活性的变化。结果显示:振荡培养的桑种子萌发快而整齐,萌发率高达99%,比静置培养分别高9个百分点。经测定,桑种子萌发过程中振荡培养组的SOD活性高于静置培养组。内源激素测定结果显示,IAA和GA均参与了桑种子的萌发过程,且相对较低浓度的IAA和较高浓度的GA能促进桑种子的萌发;当GA含量远高于ABA含量时,能大大促进桑种子的萌发与幼苗的生长。上述实验结果表明,振荡培养比静置培养方式不仅可以提前2天以上获得萌发桑苗,缩短桑树组培时间,还能减少外植体被真菌等感染的机率。
     本研究采用根癌农杆菌介导法和花粉介导法对monellin基因在桑树中的遗传转化进行了研究。实验中,构建了植物表达载体pCAMBIA2301-M,以“桂优62号”、“特优2号”、“河南桑”和“嘉陵30号”桑树品种的子叶、下胚轴和丛生芽为遗传转化的受体,经基因转化、诱导培养、生根炼苗等获得了6株基因转化苗,其中“嘉陵30号”和“桂优62号”各3株。经过实验发现,“嘉陵30号”丛生芽和“桂优62号”下胚轴是较好的遗传转化受体,其中共转化215个受体材料,经鉴定获得4株阳性转化苗,转化率为1.9%;而以“河南桑”的组培外植体作为遗传转化受体没有获得阳性转化苗。实验表明,不同品种资源的桑材料用作转化受体时,其遗传转化效果存在较大差异。实验也表明根癌农杆菌介导基因转化桑树是可行的。
     4.利用花粉介导法研究monellin基因对桑树的遗传转化
     本研究借鉴研究室李军等的花粉介导法将载体pCAMBIA2300-M-E导入“红果1号”和“育2号”杂交桑种子中,共收获1096粒种子,其中200粒种子在萌发期用卡那霉素筛选,获得19株桑苗移栽大田;另外896粒桑种,经振荡培养后播种至大田精心管理。最终,花粉介导法共获得125株遗传转化实生苗,经鉴定有11株阳性转化苗,转化率为1%。这说明本研究采用的花粉介导法也是可行的遗传转化方法。
Mulberry Morus alba L. is a perennial woody dicotyledonous plants, and it is also a kind of important economic tree species in China. Each part of mulberry plant is a treasure:mulberry leaves are used as the natural forage for silkworm Bombyx mori L. and livestock; Mulberry fruits are rich in anthocyanin and other functional substances, so more and more people adore them; Mulberry roots, barks and ramulus mori as the kind of vegetation medicinal materials. were used in traditional Chinese medicine. With the development of science and technology, the value of mulberry will receive a large extent of development and utilization; therefore, breeding new mulberry varieties is one of the most important tasks for researchers. Mulberry traditional breeding, such as selective breeding and cross breeding, can not meet the needs of mulberry breeding. With the development of biotechnology, molecular breeding has become an important direction in mulberry breeding. Many studies showed that the transfer of exogenous genes into mulberry is feasible. However, the synthesis of suitable exogenous gene, the improvement of their expression quantity and the look for suitable transformation method are still problematic. Researchers have heavy responsibilities about mulberry genetic transformation.
     Monellin is one of the intensely sweet proteins present in the fruit of West African plant Dioscoreophyllum cumminsii. This natural protein would lose sweetness at high temperatures under acidic pH. Its development and production were affected by the origin or resource, and very difficult to scale. Therefore, the researchers synthesized a monellin gene, which has been expressed in different expression systems, such as E.coli system,B. Subtilis system,S. cerevisiae system,and P. pastoris system. In1997, the single-chain monellin was found to be expressed at a high level in the food yeast Candida utilis, and it only maintains its stability after incubation at60℃for10minutes. Only in1992, monellin was transformed into tomato and lettuce, but it did not show sweet taste.
     To improve the expression quantity and thermal stability of Monellin, to transfer and express monellin gene into mulberry, this study has carried out around these problems and then the systematic deep research has been done completely based on reliability. We had achieved good results, and the main points were briefly summed up as follows:
     1. Optimization and synthesis of special monellin gene
     Firstly, the codon usage frequency and preference index of Pichia pastoris and Morus alba L.were statistical analysised from codon usage database. According to the amino acid sequence of the single-chain monellin which was reported, we designed a fantastic monellin gene by using the codon bias of Pichia pastoris and Morus alba L.. This nucleotide sequence of the monellin gene was analyzed using NCBI Blast, the result showed that this is a new gene. Then This gene was then synthesized by Genscript. The NCBI accession number of this new synthetic gene is JQ282905.
     2. Expression of a fantastic monellin gene in Pichia pastoris and its characterization
     In this study, the exocytosis Pasteur pichia GS115was selected for host bacterium. pPIC9K was the foundational vector. On that basis, two expression vectors named pPIC9K-M-E and pPIC9K-M were constructed. Expression vector pPIC9K-M-E contained a monellin gene and an enhanced green fluorescent protein (EGFP) gene. The pPIC9K-M only contains a monellin gene. But both vectors have taken a histidine label for separation and purifycation of the protein. The expression vectors were linearized and transformed into P. pastoris GS115strain by electroporation. The positive strains of yeast expression GS115/pPIC9K-M and GS115/pPIC9K-M-E were obtained by colony PCR or flat screening; the positive strain was cultured in BMGY culture medium and induced by methanol. Furthermore, the recombinant protein was purified by Ni-NTA affinity chromatography.
     Results showed that the object proteins were successfully expressed in P.pastoris. By a taste test, results showed that the expressed proteins had intense sweetness and it is almost500times sweeter than sucrose by weight. From the fluorescence detection, results demonstrated that the recombinant protein produced by GS115/pPIC9K-M-E strain was easily detectable by its intense fluorescence. The protein was considerably stable between37℃to70℃, and at pH3to pH12. These characterizations made its application of great wide. This fantastic gene was included two species codon bias, thus it can be applied in fermentation industry, also can be used in breeding of mulberry. This monellin gene had obtained the patent of invention in China in2012, and its publicity number is ZL201010042099.3. The gene is a meaningful gene for mulberry and crop genetic transformation.
     3. Study on monellin gene transformation in mulberry by agrobacterium-mediated method
     In the Agrobacterium-mediated method, mulberry tissue culture is the foundation, and how to quickly get explant is one of the most important links. In order to obtain large number of cotyledons and hypocotyls from germinated mulberry seeds as explants for mulberry tissue culture, the seeds were germinated by shaking cultural. After that, we observed seed germination and measured variations of endogenous phytohormone content and SOD(superoxide dismutase) activity during germination of the seeds under static and shaking cultural conditions. The results showed that the seeds germinated quickly and uniformly under shaking condition. In shaking condition, the seed germination rate was as high as99%, being9percentage points higher over the static condition respectively. SOD activity and endogenous phytohormone content of mulberry seeds during germination were very different between shaking condition and static condition. After analysis, we think the shaking condition is a good way to get explants.
     In this study, the agrobacterium tumefaciens-mediated method of genetic transformation were studied. The expression vector named pCAMBIA2301-M was constructed. Using the cotyledons, hypocotyl and cluster bud of four mulberry species named "Guiyou62","Teyou2","Henan" and "Jialing30" as the receptors of transformation, the new monellin gene was transferred into the receptors. After transformation, induction, rooting and hardening of the explants,6plantlets were obtained. Half of them are "Guiyou62", and the others are "Jialing30". We found that the hypocotyl of "Guiyou62" and the cluster buds of "Jialing30" are good genetic transformation receptors.215receptors were used, and then submitted for molecular detection. Finally, we got4positive plantlets, and the genetic transformation rate was1.9%. But the genetic transformation rate of "Henan" was0. The experimental results showed that different receptors had different effect in genetic transformation.
     4. Study on monellin gene transformation in mulberry by pollen-mediated method
     In this test, we studied on monellin gene transformation in mulberry by pollen-mediated method. The expression vector named pCAMBIA2300-M-E was constructed. The introduction of monellin gene into the hybrid mulberry seed of Red No.1and Breeding No.2was performed using pollen-mediated method referred to Li Jun et al.. A total number of1096hybrid seeds were obtained and200seeds had been selected by kanamicin Other896seeds were cultured by shaking, then they were sowed into field. We obtained125plantlets of monellin gene transformation, and all of them were chosen for molecular detection. Finally, we got11positive plantlets, and the genetic transformation rate was1%.
     All the results show that it is feasible to gene transformat into mulberry by Agrobacterium-mediated and pollen-mediated transformation.
引文
[1]柯益富.桑树栽培及育种学[M].北京:中国农业出版社,1997.
    [2]王芮龄,余茂德.桑子叶与胚轴不同区段离体再生植株的研究[J].蚕业科学,2005,31(3):334-336.
    [3]Shalini L, Vibha G, Paramjit K. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica) [J]. Transgenic Res.,2008,17:651-663.
    [4]谈建中,楼程富,钟名其等.大豆球蛋白基因表达载体的构建及对桑树的遗传转化[J].蚕业科学,1999,25(1):6-11.
    [5]陆小平,楼成富,王波等.用植株转化法将GUS基因导入桑树幼苗的研究[J].蚕业科学,2004,30(2):120-132.
    [6]郑建仙.高效甜味剂[M].北京:中国轻工业出版社,2009
    [7]CHEN Zhongjun, HENG Cai, LI Zhengying, et al. Expression and secretion of a single-chain sweet protein monellin in Bacillus subtilis by sacB promoter and signal peptide[J]. Appl Microbiol Biotechnol,2007,73: 1377-1381.
    [8]MORRIS J A, CAGAN R H. Purification of monellin, the sweet principle of Discorephtllum cumminisii[J]. Biochem Biophys Acta,1972,261:114-122.
    [9]KONDO K, MIURA Y, SONE H, et al. High-level expression of a sweet protein, monellin, in the food yeast Candida utilis[J]. Nature Biotechnology,1997,15:453-457.
    [10]Chen ZJ, Cai H, Li ZY, Liang XL, Shangguan XC. Expression and secretion of a single-chain sweet protein monellin in Bacillus subtilis by sacB promoter and signal peptide[J]. Appl Microbiol Biotechnol,2007, 73:1377-1381.
    [11]Wei-Feng Xue, Olga Szczepankiewicz, Eva Thulin, Sara Linse. Jannette Carey. Role of protein surface charge in monellin sweetness[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2009,3:410-420.
    [12]Morris JA, Cagan RH. Purification of monellin, the sweet principle of Discorephtllum cumminisii[J]. Biochem Biophys Acta,1972,261:114-122.
    [13]Bohak Z, Li SL. The structure of monellin and its relation to the sweetness of the protein[J], Biochem Biophys Acta,1976,427:153-170.
    [14]Kohmuras M, Nio N, Ariyoshi Y. Complete amino acid sequence of the sweet protein monellin[J]. Agric Biol Chem,1990,54:2219-2224.
    [15]Penarrubia L,Kim R,Giovannoni J,K.im SH. Production of the sweet protein monellin in transgenic plant [J]. Biotechnology,1992,10:561-564.
    [16]Brouwer JN, Hellekant G, Kasahara Y, Wel H, Zotterman Y. Electrophysiological study of the gustatory effects of the sweet proteins monellin and thaumatin in monkey, guinea pig and rat[J]. Acta Physiol Scand, 1973.89:550-557.
    [17]周平,潘乃糙,刘春清等.外源甜蛋白THAUMATIN 11基因转入烟草的研究[J].植物学报,1994,11(4):17-20
    [18]EdensL,HeslingaL,KlokR,et al. Cloning of cDNA eneoding the sweet tasting Plant Protein thaumatin and its expression in Eseherichia coli[J].Gene,1982,18:1-12.
    [19]Van Der Wel H, Loeve K. Isolation and characterization of thaumatin Ⅰ and Ⅱ, the sweet-tasting proteins from Thaumatococcus daniellii Benth[J].J. Eur. Biochem.1972,31:221-225.
    [20]丁鸣,HellekantG,胡忠.耐热甜味蛋白Brazzein的特性和化学修饰[J].云南植物研究,1996,18(2):123-133.
    [21]Fariba M, Assadi-P, Davis J A, et al. Efficient production of recombinant brazzein,a small heat-stable, sweet-tasting protein of plant origin [J]. Arch Biochem BioPhy,2000a,376(2):252-258.
    [22]胡新文,郭建春.植物甜蛋白mabinlinHcDNA的克隆与序列分析[J].生命科学研究,1998,2(3):189-193.
    [23]刘敬梅,陈大明,陈杭.甜蛋白基因MBLll对葛筐的遗传转化[J].园艺学报,2001,28(3):246-250.
    [24]AbeK, YamashitaH, AraiS, KuriharaY. Molecular cloning of curculin, anoveltaste-modifying Protein with a sweet taste[J]. Biochim BioPhys Aeta,1992,1130:232-234.
    [25]Kim SH, Kang CH, Kim R,Cho JM, Lee BY,Lee TK. Redesigning a sweet protein:increased stability and renaturability[J]. Protein Engineering,1989,2:571-575.
    [26]Kondo K, Miura Y, Sone H, Kazuo K, Lijima H. High-level expression of a sweet protein, monellin, in the food yeast Candida utilis[J]. Nature Biotechnol,1997,15:453-457.
    [27]Penarrubia L,Kim R,Giovannoni J,Kim SH. Production of the sweet protein monellin in transgenic plant[J]. Biotechnology,1992,10:561-564.
    [28]Lee S.B., Kim Y.,Lee J.et al., Stable expression of the sweet protein monellin variant MNEI in tobacco chloroplasts[J]. Plant Biotechnology Reports,2012,6(4):285-295.
    [29]Szczepankiewicz O., Cabaleiro-Lago C., Tartaglia G.,et al.Interactions in the native state of monellin, which play a protective role against aggregation[J]. Molecular Biosystems,2011,7(2):521-532.
    [30]Esposito V., Guglielmi F., Martin S. R.,et al.. Aggregation Mechanisms of Cystatins:A Comparative Study of Monellin and Oryzacystatin[J]. Biochemistry,2010,49(13):2805-2810.
    [31]Xue W.F., Szuepankiewicz O, Thulin E,et al., Role of protein surface charge in monellin sweetness[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2009,1794(3):410-420.
    [32]Aghera N, Udgaonkar J.B. Kinetic Studies of the Folding of Heterodimeric Monellin:Evidence for Switching between Alternative Parallel Pathways[J]. Journal of Molecular Biology,2012.420(3):235-250.
    [33]Aghera N, Udgaonkar J.B. Heterologous expression, purification and characterization of heterodimeric monellin[J]. Protein Expression and Purification,2011,76(2):248-253.
    [34]Chen ZJ,Li ZY,Yu N,Yan LL. Expression and secretion of a single-chain sweet protein, monellin,in Saccharomyces cerevisiae by an a-factor signal peptide[J]. Biotechnol Lett.,2011,33:721-725.
    [35]Cui HZ,Li M, Xu QF,Guo SD. Synthesis of a bacterial-like plant Monellin gene and its expression in E.coli[J]. Scientia Agricultura Sinica,1999,32:58-62.
    [36]Liu XC, Zhang YJ, Yu H, Secretory expression of monellin in yeast Pichia pastoris, [J]. Modern food science and technology,2008,24:20-22.
    [37]Cregg J M, Vedvick T S, Raschke W C. Recent Advances in the expression of foreign genes in Pichia pastoris [J]. Bio/Technology,1993,11(8):905-910.
    [38]Peng Y, Bu W, Kang L Y. Methylotrophic yeast system [J]. Biotechnol Information,2000,1:38-41.
    [39]Zhuang S M, Landegent J E, Verschuerren C A, et al. Apoptin, a protein encoded by chicken anemia virus, induces cell death in human hematologic malignant cells [J]. Leukemia,1995,1:118-120.
    [40]胡世界,罗素兰,张吉贞等.巴斯德毕赤酵母表达系统及其高水平表达策略[J].生物技术,2007,17(6):78-83.
    [41]Romanos MA, Scorer CA, Clare JJ, Foreign gene expression in yeast:a review[J]. Yeast,1992,8:423-488.
    [42]Koutz P, Davis GR, Stillman C, Barringer K, Cregg J, Thill G. Structural comparison of the Pichia pastoris alcohol oxidase genes, [J]. Yeast,1989,5:167-177.
    [43]张卓,王丕武,付永平等.大豆查尔酮异构酶基因的克隆及粟酒裂殖酵母表达载体的构建[J].河南农业科学,2010,(11)
    [44]罗竞红,游自立.巴斯德毕赤酵母表达系统在外源基因表达中的研究进展[J],生物技术通报,2007,3:75-79
    [45]Cregg JM, Vedvick TS, Raschke WC. Recent advances in the expression of foreign genes in Pichia pastoris[J]. Bio. Technology,1993,11:905-910.
    [46]ROMANOS M A, SCORER C A, CLARE J J. Foreign gene expression in yeast:a review[J]. Yeast,1992,8: 423-488.
    [47]FARBER K N, HARDER W, AB G, et al. Review:methylotrophic yeasts as factories for the production of foreign proteins[J]. Yeast,1995,11:1331-1344.
    [48]BARR K A, HOPKINS S A, SREEKRISHNA K. Protocol for efficient secretion of HSA developed from Pichia pastoris[J]. Pharm Eng,1992,12:48-51.
    [49]ELLIS S B, BRUST P F, KOUTZ P J, et al. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast, Pichia pastoris[J]. Mol Cell Biol,1985,5:1111-1121.
    [50]KOUTZ P J, DAVIS G R, STILLMAN C, et al. Structural comparison of the Pichia pastoris alcohol oxidase genes[J]. Yeast,1989,5:167-177.
    [51]国家农业生命科学技术科普基地.转基因作物与我们的生活[M].北京:科学出版社,2011.
    [52]迟君道,崔艳莉,卢华.转基因作物种植及生产概况[J].黑龙江农业科学,2002,(2):30-31.
    [53]工关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,2002.
    [54]贾七荣,郭三堆,安道昌.转基因棉花[M].北京:科学出版社,2001.
    [55]叶兴国,王艳丽,丁文静.主要农作物转基因研究现状和展望[J].中国生物工程杂志,2006,26(5):93-100.
    [56]陈秀兰,张玉忠,张军等.植物分子育种研究进展[J].棉花学报,1997,9(1):5-8
    [57]耿立召,刘传亮,李付广.农杆菌介导法与基因枪轰击法结合在植物遗传转化上的应用[J].西北植物学报,2005,(1):205-210.
    [58]张宏,王国英,谢友菊等.超声波介导法转化玉米愈伤组织及可育转基因植株的获得[J].中国科学(C辑),1997,27(2):162-167.
    [59]Cheng M,Fry J E,Pang S Z.Genetic transformation of wheat mediated by Agrobacterium tumefaciens[J].Plant Physiol, 1997,115:971-980.
    [60]H Wu,C Sparks.Factors influencing successful Agrobacterium-madiated genetic transformation of wheat[J]. Plant Cell Rep,2003,21:659-668.
    [61]Loset J R,Urbaniak B,Karine N I,et al. Flavoriod profiling among wild type and related GM wheat varieties[J]. Plant Molecular Biology,2007,65(5):645-654.
    [62]刘石泉,余沛涛.农杆菌介导高等植物基因转化的影响因素[J].自然杂志,2002,2(1):16-20.
    [63]王兰岚,傅荣昭,宋桂英等.利用激光微束穿刺法将外源基因导入小麦的研究[J].遗传学报,1995,22(5):394-399.
    [64]阎新甫,刘文轩,林秋萍等.外源DNA导入小麦后代变异株系的酯酶同工酶分析[J].华北农学报,1994,9(1):39-43.
    [65]程备久,李红,宋道军等.离子注射法导入棉花外源基因的研究[J].安徽农业大学学报,1993,20:19-22.
    [66]华志华,朱雪峰,林鸿生等.基因枪转化获得的转基因水稻中外源基因整合与表达规律研究[J].遗传学报,2001,25(12):2012-2215.
    [67]李卫,董文,周菲.参与在农杆菌介导遗传转化过程中的植物因子研究进展[J].中国生物工程杂志,2003,(12):62-67.
    [68]Vasil V,Srivastava V,Castilo A.Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos[J].Bio/Technology,1993,11:1153-1158.
    [69]Altpeter F,Vasil V,Srivastava,V,Stoger,E and Vasil I K.Accelerated production of transgenic wheat (Triticum aestivum L.)plants[J].Plant Cell Rep,1996,16:12-17.
    [70]Becker D,Brettschneder R,Lorz H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue[J].Plant Journal,1994,5:229-307.
    [71]Blechl A E,Anderson 0 D.Expression of novel high molecular weight glutenin subunit gene in transgenic wheat[J].Nat Biotechnol,1996,14:875-879.
    [72]Oard J H,Paige D F,Simmonds J A,Gradziel T M.Transient gene expression in maize,rice,and wheat cells using an airgun apparatus[J].Plant Physiol,1990,92:334-339.
    [73]王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究[J].遗传学报,2002,29(3):260-265.
    [74]夏光敏,李忠谊,贺晨霞,等.根癌农杆菌介导的小麦转基因植株再生[J].植物生理学报,1999,25(1):22-28.
    [75]薛哲勇,贺晨霞,孙松,等.农杆菌介导的胆碱脱氢酶基因(betA)转化小麦及影响转化效率的因素[J].山东大 学学报(理学版),2004,39(3):104-115.
    [76]张彬,丁在松,张桂芳,等.根癌农杆菌介导获得稗草Ecppc转基因小麦的研究[J].作物学报,2007,33(3):356-362.
    [77]叶兴国,王艳丽,康乐,等.农杆菌敏感小麦基因型的筛选及其转化[J].作物学报,2005,31(12):1552-1556.
    [78]陈志贤.利用农杆菌介导法转移拟咬基因获得可遗传的抗2,4-D植株[J].中国农业科学,1994,27(2):31-7.
    [79]高书颖,郭蔼光.根癌农杆菌介导法获得烟草转入骨形成蛋白一成熟肤基因植株[J].西北植物学报,2001,21(6):1128-1133.
    [80]汪波.苎麻遗传转化受体系统建立及根癌农杆菌介导法遗传转化研究[D].2006.
    [81]黄永芬,王清撤,付桂荣等.美洲拟蝶抗冻蛋白基因(afp)导人番茄的研究[J].生物化学,1997,13(4):418-422.
    [82]严继勇BcpLH反义基因在大白菜中的转化及其功能的研究[D].杭州:浙江大学,2004.
    [83]王傲雪,李景富,徐香玲等.发根农杆菌介导的抗病毒基因导人番茄转化系统的建立[J].东北农业大学学报,2000,31(3):233-240.
    [84]Curtis Ian S,Nam Hong G. Transgenic radish(R aphanus sativus L.longipinna Bailey)by floral-dip method plant development and surfactant are importan optimizing transformation efficiency [J].Transgenic Research, 2001,10:363-371
    [85]Zhou GY,Weng J,Zeng Y et al.Introduction of exogenous DNA into cotton embryos[J].Method in Enzymology.1983,101:433-81.
    [86]王广金,李忠杰,张晓东等.利用花粉管通道法编码优质HMW-GS基因导入小麦进行品质改良的研究[J]黑龙江农业科学,2002,(6):1-3.
    [87]王立新,孟荣华,郭仁俊,等.应用花粉管通道法进行小麦抗白粉病转基因的研究初报[J].农业生物技术通报,2001,9(3):265-268.
    [88]曾君祉,王东江,吴有强等.用花粉管途径获得小麦转基因植株[J].中国科学B辑,1993,23(3):256-262.
    [89]曹德菊,李爱青.花粉管将外源除草剂基因导入红麻的有效方法及参数研究[J].中国麻作,2000,22:1-5.
    [90]邓德旺,郭三堆.棉花花粉管通道法转基因的分子细胞学机理研究[J].云南大学学报,2000,21:124-125.
    [91]邓德旺,王国英,师素恩等.花粉介导的遗传转化研究进展[J].发育与生殖生物学报(英文版),1997,6(1):69-80.
    [92]陈颖,葛毅强,苏宁等.食品中转基因成分检测方法的研究进展[J].食品与发酵工业,2003,29(6):82-86.
    [93]姚文国,朱水芳.转基因食品检验分析技术概述[J].质量控制,2003,11,26-28.
    [94]杨铭铎,张春梅,华庆等.转基因食品快速检测技术的研究进展[J].食品科学,2004,25(11):424-427.
    [95]魏志刚.植物基因工程中存在的问题及对策.东北林业大学学报,2001,29(5):68-74.
    [96]杨丽,阎雯,,张竞竞等.来源于转基因植物的食品安全性评价原则和内容[J].中国食物与营养,2008,12:7-10.
    [97]郭兴启,于大胜,陈红等.植物中转录后基因沉默的启动、传导与抑制[J].生命科学研究,2001,5(3):129-133.
    [98]吴成仓,徐静斐,曹勇伟.天蚕抗菌肽B基因嵌合表达载体的构建及其对桑树和烟草的转化研究[J].蚕业科 学,1992,18(2):124-126.
    [99]王洪利,楼程富,张有做等.水稻半胱氨酸蛋白酶抑制剂基因转化桑树获得转基因植株的初报[J].蚕业科学,2003,29(3):291-294.
    [100]Maehii H.Leaf disc transformation of mulberry by Agrobactedum Ti-plasmid[J].J Seri. Sci. Jpn,1990, 105-110.
    [101]王勇,陈爱玉.植物基因工程技术及在桑树上的应用前景[J].蚕业科学,1994,20(1):235-238.
    [102]大山胜夫.桑芽培养初报[J].日蚕杂,1968,46(3):135-138.
    [103]中国农业科学院蚕业研究所.中国桑树栽培学[M].上海:上海科学技术出版社,1985:105-106.
    [104]Minamizawa K. Moriculture:science of mulberry cultivation [M]. Japan:Meiho-sha, Japan Science Press, 1984:130-132
    [105]冈成美等.日蚕杂,1973,42(4):317-324.
    [106]押金健吴.桑下胚轴愈伤组织不定芽形成及幼苗育成[J].日本蚕丝科学与技术,1989,107(11):41-45.
    [109]陈爱玉,倪国孚.桑树幼胚培养和试管苗快速繁殖技术的研究[J].蚕业科学,1989,15(4):173-176.
    [110]孔令汶,谭智达,卞元生等.影响桑树叶片培养不定芽形态分化主要因素的研究[J].蚕业科学,1995,21(2):67-71.
    [111]林寿康,计东风,秦俊等.桑树花药培养获得单倍体植株[J].中国科学B辑,1987,3,280-287.
    [112]王彦文.桑树转基因受体系统的建立及遗传转化研究[D].四川:四川农业大学,2006.
    [113]Hiroaki Machii. Leaf disk transformation of mulberry plant (Morus alba L.) by Agrobacterium Ti-plasmid [J]. J Seric Set Jpn.1990,59 (2):105-110.
    [114]Jefferson,R.A. Assaying chimeric genes in plants:The GUS gene fusion system[J].Plant Molecular Biology Reporter,1987,5(4):387-405.
    [115]Machii H. Sung G B,Yamanouchi H.Tuansient of Gus gene introduced into mulberry plant by particle bombardment[J].J Seri.Sci.Jpn,1996,65:503-506
    [116]Kohmura M, Nio N, Ariyoshi Y, Solid-phase synthesis of crystalline monellin,a sweet protein[J].Agric Biol Chem,1990,54:539-545.
    [117]吴乃虎.基因工程原理[M].北京:科学出版社,1998.
    [118]刘庆慧,韩文君.WSSV3个编码蛋白的基因密码子偏爱性分析[J].海洋水产研究,2005,26(4):1-7.
    [119]王艳,马文丽,郑文岭.SARS冠状病毒的密码子偏爱性分析[J].生命科学研究,2003,7(3):219-223.
    [120]秦伟,黄昆仑,贺晓云,等.水稻密码子优化的cry2A*基因在大肠杆菌中的表达及其表达产物的纯化[J].食品科学,2008,29(7):267-271.
    [121]张正平,杨江科,徐莉等.扩展青霉脂肪酶基因克隆、密码子优化及表达[J].微生物学报,2010,50(2):228-235.
    [122]苏海涯,吴跃明,刘建新.桑叶中的营养物质及其在反刍动物饲养中的应用[J].中国奶牛,2002,1:26-30.
    [123]Huiying L, Huoqing H, Peilong Y, et al. A Novel Phytase appA from Citrobacter amalonaticus CGMCC 1696:Gene Cloning and Overexpression in Pichia pastoris [J]. Curr Microbiol,2007,55:185-192.
    [124]Nakamura, Y., Gojobori, T. and Ikemura, T. Codon usage tabulated from the international DNA sequence databases:status for the year 2000[J]. Nucl. Acids Res,2000,28,292.
    [125]赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报,2000,16(3):902-905.
    [126]黄培堂,译.分子克隆实验指南[M].3版.北京:科学出版社,2005:1254-1255.
    [127]国家农业生命科学技术科普基地.转基因作物与我们的生活[M].北京:科学出版社,2011.
    [128]谢莲萍.转基因植物的研究进展[J].安徽农业科学,2009,37(22):10384-10386.
    [129]宋送泉,程红焱,龙春林等.种子生物学研究指南[M].北京:科学出版社,2005:57-58;93
    [130]陈建勋.植物生理学试验[M].华南理工大学科学出版社,2006:268-270.
    [131]张政,张强,转花等.荞麦幼苗内源激素测定的高效液相色谱法[J].色谱,1994,,12(2):140-141.
    [132]程光宇,吴国荣,陆长梅,等.花生种子SOD活性及热稳定性研究[J].中国油料作物学报,1999,21(2):41-44
    [133]工忠.植物生理学[M].北京:中国农业出版社,2000:271-282;328-333.
    [134]宋送泉,程红焱,龙春林等.种子生物学研究指南[M].北京:科学出版社,2005:57-58;93.
    [135]程光宇,吴国荣,陆长梅等.花生种子SOD活性及热稳定性研究[J].中国油料作物学报,1999,21(2):41-44.
    [136]颜启传.种子学[M].北京:中国农业出版社,2001:61-62.91-97.
    [137]张兰杰,辛广,王艳丽.山葡萄籽和皮中原花青素类SOD活性的测定[J].食品科学,2009,30(7):72-74.
    [138]韩碧文.植物生长物质[M].北京:科学出版社,1987:78-95.
    [139]雷泞菲,彭书明,牛蓓等.珍稀濒危植物珙桐种子休眠萌发过程中内源激素的变化[J].广西植物,2009,29(1):66-69.
    [140]Atici O, Agar G, Battal P. Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress [J]. Bio Plantarum,2005,49(2):215-222.
    [141]Jain A, Dev Sharma A. Phytohormone effects on germination and on carbohydrate metabolism in pearl millet seeds [J]. Israel Plant Sci,2005,53(2):109-114.
    [142]刘杨,汪强盛,丁艳峰,等.水稻休眠分蘖芽萌发过程中内源激素水平的变化[J].作物学报,2009,35(2):356-362
    [143]朱祯,孙宝林,刘春明,等.转化介导小麦原生质体转化及转基因白化苗的再生[J].生物工程学报,1993,(4):320-323
    [144]肖娅萍,胡雅琴,王枯之.卡那霉素对地灵愈伤组织诱导和生长的影响[J].西北植物学报,2003,23(2):318-322.
    [145]王丕武,张晓玲等.卡那霉素对大豆种子发芽的影响[J].吉林农业大学学报,1996,18(4):8-21
    [146]王勇.抗生索对桑树外植体生长与分化的影响[J].蚕业科学,1996,22(2):72-76.
    [147]包立生,杨晓红,郑寨生等.应用卡那霉素快速鉴定苗床期抗虫杂交棉[J].湖北农业科学,2002,6:56-58
    [148]朱建楚,胡银岗,奚亚军,等.实时荧光定量PCR技术在检测外源基因拷贝数中的应用[J].西北农业学报,2005,14(6):78-82
    [149]Simon-Mateo C,Lopez-Moya J J,Guo H.S,Gonzalez E,and Garcia J A.,Suppressor activity of potyviral and cucumoviral infections in potyvirus-induced transgene silencing[J],J.Gen.Virol.,2003,84:2877-2883
    [150]Andreason G L, Evans G A. Introduction and expression of DNA molecules in eukaryotic cells by electroporation[J]. Bio Techniques,1988,6:650-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700