用户名: 密码: 验证码:
贵金属(亚)纳米结构修饰电极的压电电化学研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因具有特殊的结构和独特的理化性质,贵金属(亚)纳米材料的基础和应用研究备受关注。创新贵金属(亚)纳米材料的合成和分析表征方法,对促进贵金属(亚)纳米材料在电催化和电分析等方面的研究具有重要意义。本学位论文中,我们简要综述了石英晶体微天平(QCM)技术、贵金属(亚)纳米材料及其修饰电极的制备与应用的近期进展,开展了数种贵金属(亚)纳米材料及其修饰电极应用于电催化和电分析的研究。‘主要内容如下:
     1.通过在Au电极表面欠电位沉积(UPD)Cu、再与Pt源(H2PtCl6或K2PtCl4)进行原电池置换反应(GRR),制得单层级Pt原子修饰的金电极(对H2PtCl6或K2PtCl4,所制电极分别记为Pt(CuUPD-Pt4+)n/Au或Pt(CuUPD-Pt2+)n/Au,n表示欠电位沉积—置换过程的重复次数)。首次用电化学石英晶体微天平(EQCM)技术定量研究了所制电极,评估了其在碱性环境中催化甲醇氧化的质量比活性(SECAm)。结果表明,以H2PtCl6为Pt源所制电极(Pt(CuUPD-Pt4+)3/Au)的活性更高,最大SECAm高达35.7mAμgPt-1。根据EQCM结果计算了置换效率,籍此讨论了Pt原子在Au电极表面的层层组装结构,发现所制电极表面的裸Au位点分布百分数与实验结果(由AuOx还原峰电量测算)吻合。
     2.通过在Au电极表面UPD Cu、再在H2PtCl6+HAuCl4的混合溶液中进行GRR,制得Pt-Au混合原子单层修饰的金电极(PtxAuy(CuUPD-Pt4+)/Au, x和y为混合溶液中H2PtCl6和HAuCl4的摩尔浓度比),并用QCM技术计算了CUUPD与Pt(或Au)原子之间的置换效率。通过建立电极表面Pt原子的电化学性质(电化学技术测定)与其负载量(QCM测定)之间的相关性,提出了一种测定Pt-Au混合原子单层中Pt负载量的新方法。同时,考察了Pt-Au混合原子单层催化剂在酸性介质中对甲酸的电催化氧化性能,评估了Pt的活性面积比活性(SECAa)和SECAm,并比较了Pt-Au混合原子单层与其他Pt-M(M=Ir、Rh、Pd、Ru、Os)混合原子单层对甲酸的催化活性。结果表明,Pt-Au混合原子单层催化剂的催化活性最好,最大SECAa和SECAm分别为124mA·cmpt-2和102mA·μgpt-1(Pt4Au1(cuuPD-Pt4+)/Au),为迄今的比活性最高的Pt基甲酸电催化剂。
     3.GRR通常为较活泼金属(还原剂)和相对不活泼金属的盐(氧化剂)之间的化学氧化还原反应,UPD是指单层级金属分子(如Cu或Pb)在异种金属基底(如Pt)上的电沉积电位正于其能斯特本体沉积电位的电沉积现象,两者在基础与应用研究中均受到广泛关注。尽管目前已有许多关于GRR和UPD的报道,但GRR过程中是否会发生UPD以及UPD对GRR的影响还不清楚。作为一个新概念研究,我们在双舱室原电池(DCGC)装置中,利用QCM技术和其他相关技术,探究了较活泼金属(如Cu或Pb)在相对不活泼金属(如Pt)表面的UPD。我们发现,GRR过程中模板金属离子或其他加入的有适当活性的金属离子均可自动发生UPD。基于GRR-UPD一体化的新概念,我们提出了一种简单、便利而有效的方法(特别是DCGC法)来制备性能增强的功能纳米复合物。本章对GRR过程中UPD行为的揭示,有助于更好地理解GRR过程和探索新应用。
     4.采用DCGC装置,以金属Cu为阳极,以金属Pd为阴极,利用QCM和电化学噪声(ECN)技术研究了Pb在Pd表面的UPD及本体Cu的溶出。同时,以Cu为阳极,以HClO4为阳极液,以多壁碳纳米管(MWCNTs)修饰的玻碳电极(GCE)为阴极,以K2PtCl4+PdCl2+Pb(C104)2为阴极液,利用GRR-UPD概念调控Cu与Pt+Pd混合盐(K2PtCl4+PdCl2)之间的GRR,在阴极(MWCNTs/GCE)制备含Pb的Pt-Pd电催化剂,在碱性环境中考察了其对乙醇的电催化氧化性能,并藉此发展了一种高灵敏的乙醇电化学传感器。所得修饰电极对乙醇的检测灵敏度为138μAmM-1cm-2,检测限为6.6μM(S/N=3),线性范围为0.05~10mM。
     5.采用DCGC装置,以活泼金属Cu为阳极,以金属Au为阴极,利用QCM和ECN技术研究了Pb在Au表面UPD及本体Cu的溶出。同时,以Cu为阳极,以HClO4为阳极液,以MWCNTs/GCE为阴极,以H2PtCl6+HAuCl4+Pb(ClO4)2为阴极液,利用GRR-UPD概念调控Cu与Pt+Au混合盐(H2PtCl6+HAuCl4)之间的GRR,在MWCNTs/GCE(阴极)表面制备含Pb的Pt-Au电催化剂,在碱性环境中考察了其对甲醇的电催化氧化性能。
     6.采用DCGC装置,以金属Cu为阳极,以HC104为阳极液,以MWCNTs/GCE为阴极,以PdCl2+HAuCl4+Pb(ClO4)2为阴极液,利用GRR-UPD概念调控Cu与Pd+Au混合盐(PdCl2+HAuCl4)之间的GRR,在MWCNTs/GCE(阴极)表面制备含Pb的Pd-Au电催化剂,在碱性环境中考察了其对甲醛的电催化氧化性能,并藉此发展了一种高灵敏的甲醛电化学传感器。所得修饰电极对甲醛的检测灵敏度为666μAmM-1cm2,检测限为0.89μM(S/N=3),线性范围为O.01~5.0mM。
Basic and applied researches of noble metal (sub-)nanomaterials have received wide attentions in diverse fields due to their unique structures and unique physicochemical properties. It is of significance to innovate the synthesis and analysis/characterization methods to stimulate the electrocatalysis and electroanalysis studies of noble metal (sub-)nanomaterials. In this dissertation, we briefly review the recent advances of quartz crystal microbalance (QCM) technology and the preparation and application of noble metal (sub-)nanomaterials, and then conduct electrocatalysis and electroanalysis studies of some noble metal (sub)nanomaterials and their modified electrodes. The main contents are summarized below.
     1. Underpotential deposition (UPD) of Cu on an Au electrode followed by galvanic replacement reaction (GRR) of CuUPD with a Pt source (H2PtCl6or K2PtCl4) yielded Au-supported Pt adlayers (for short, Pt(CuUPD-Pt4+)n/Au for H2PtCl6, or Pt(CuUPD-Pt2+)n/Au for K2PtCl4, where n denotes the number of UPD-replacement cycles). The electrochemical quartz crystal microbalance (EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific activity (SECAm) for methanol oxidation in alkaline solution. In comparison with Pt(CuUPD-Pt2+)n/Au, Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity, and the maximum SECAm was obtained to be as high as35.7mAμgpt-1at Pt(cuUPD-Pt4+)3/Au. The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed replacement efficiency, and the calculated distribution percentages of bare Au agree well with the experimental results deduced from the charge under the AuOx-reduction peaks.
     2. UPD of Cu on an Au electrode followed by GRR of CuUPD in the mixture of Pt source and Au source (H2PtCl6+HAuCl4) yielded Au-supported Pt-Au mixed atomic monolayer (PtxAuy(CuUPD-Pt4+)/Au, where x and y denote the ratio of molar concentration of H2PtCl6to HAuCl4in the mixture). The replacement efficiency between CuUPD atoms and Pt (or Au) atoms was calculated by QCM. By establishing the correlation between the electrochemical properties of Pt atom (determined by the electrochemistry) and the Pt loading (determined by QCM), a new method was proposed to calculate the Pt loading in the Pt-Au mixed atomic monolayer. Meanwhile, the Pt active area-normalized specific activity (SECAa) and the SECAm of Pt-Au mixed atomic monolayer toward the electrocatalytic oxidation of formic acid in acid solution were examined. In comparison with the performance of other Pt-M(M=Ir, Rh, Pd, Ru and Os) mixed atomic monolayer, the Pt-Au mixed atomic monolayer exhibited the best performance among the examined catalysts, with the highest SECAa (124mA·cmpt-2) and SECAm (102mA·μgPt-1) on the optimal electrode (Pt4Au1(CuUPD-Pt4+/Au) reported to date.
     3. GRR is the redox reaction betweem relatively active metal (reductant) and the salt of less active metal (oxidant), and UPD of metals refers to their (sub-)monolayer deposition at potentials more positive than the Nernstian potential for bulk deposition, both of which have attracted great academic and industrial interests in many areas. However, little is known about the possible occurrence and effect of UPD during GRR to date. As demonstration-of-concept examples here, we explore the co-occurrence of UPD of Cu or Pb on Pt during the corresponding GRR, mainly using a double cabin galvanic cell (DCGC) device, QCM, and relevent techniques. It is found that the UPD of either the ions of the template metals used in GRR or other added metal ions of appropriate electroactivities can spontaneously and universally occur during the GRR, and a simple, flexible (especially in the DCGC mode) and efficient protocol is thus recommended based on the integrated GRR-UPD concept for preparation of functional metal nanocomposites with improved electrocatalysis performance. The insights obtained here emphasize that the GRR involve the occurrence and effect of UPD, which should help the better understanding of various GRR for application explorations.
     4. The QCM and electrochemical noise (ECN) device technologies were employed to examine the UPD of Pb on Pd and the bulk stripping of Cu in the DCGC with a Cu anode and a Pd cathode. In addition, we used the concept of GRR-UPD to turn the GRR between Cu and Pt+Pd mixed salts (K2PtCl4+PdCl2) for synthesizing Pb-containing Pt-Pd nanoparticles on the cathode in a DCGC with a Cu anode, a multiwalled carbon nanotubes (MWCNTs) modified glassy electrode (GCE) cathode, a HC104anolyte, and a K2PtCl4+PdCl2+Pb(C104)2catholyte. The catalytic performance of the resultant Pb-containing Pt-Pd nanoparticles toward electrocatalytic oxidation of ethanol was examined in alkaline solution, and the Pb-containing Pt-Pd nanoparticles modified MWCNTs/GC electrode was used to construct an amperometric sensor for ethanol detection. The sensor exhibited a linear amperometric response to ethanol concentration from0.05to10mM with a sensitivity of138μAmM-1cm-2, a limit of detection (S/N=3) of6.6μM.
     5. The QCM and ECN technologies were employed to examine the UPD of Pb on Au and the bulk stripping of Cu in the DCGC with a Cu anode and a Au cathode. In addition, we used the concept of GRR-UPD to turn the GRR between Cu and Pt+Au mixed salts (H2PtCl6+HAuCl4) for synthesizing Pb-containing Pt-Au nanoparticles on the cathode in a DCGC with a Cu anode, a MWCNTs/GCE cathode, a HClO4anolyte, and a H2PtCl6+HAuCl4+Pb(C104)2catholyte. The catalytic performance of the resultant Pb-containing Pt-Au nanoparticles toward electrocatalytic oxidation of methanol was examined in alkaline solution.
     6. Here, we used the concept of GRR-UPD to turn the GRR between Cu and Pd+Au mixed salts (PdCl2+HAuCl4) for synthesizing Pb-containing Pd-Au nanoparticles on the cathode in a DCGC with a Cu anode, a MWCNTs/GCE cathode, a HClO4anolyte, and a PdCl2+HAuCl4+Pb(ClO4)2catholyte. The catalytic performance of the resultant Pb-containing PdAu nanoparticles toward electrocatalytic oxidation of formaldehyde was examined in alkaline solution, and the Pb-containing Pd-Au nanoparticles modified MWCNTs/GC electrode was used to construct an amperometric sesnor for formaldehyde detection. The sensor exhibited a linear amperometric response to formaldehyde concentration from0.01to5.0mM with a sensitivity of666μA mM-1cm-2, a limit of detection (S7N=3)of0.89μM.
引文
[1]姚守拙.压电化学与生物传感[M].长沙:湖南师范大学出版社,1997:1.
    [2]Wang X., Song J., Liu J., Wang Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves [J]. Science,2007,316(5821):102-105.
    [3]Yang R., Qin Y., Dai L., Wang Z. L. Power generation with laterally packaged piezoelectric fine wires [J]. Nature Nanotechnology,,2009,4(1):34-39.
    [4]Qin Y., Wang X., Wang Z. L. Microfibre-nanowire hybrid structure for energy scavenging [J]. Nature,2008,451(7180):809-813.
    [5]Xu S., Qin Y., Xu C., Wei Y., Yang R., Wang Z. L. Self-powered nanowire devices [J]. Nature Nanotechnology,2010,5(5):366-373.
    [6]Sauerbrey G. Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung [J]. Zeitschrift fur Physik,1959,155(2):206-222.
    [7]Keiji Kanazawa K., Gordon Ii J. G. The oscillation frequency of a quartz resonator in contact with liquid [J]. Analytica Chimica Acta,1985,175(0):99-105.
    [8]Martin S. J., Granstaff V. E., Frye G. C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading [J]. Analytical Chemistry,1991,63(20):2272-2281.
    [9]Xie Q., Zhang Y., Yuan Y., Guo Y., Wang X., Yao S. An electrochemical quartz crystal impedance study on cystine precipitation onto an Au electrode surface during cysteine oxidation in aqueous solution [J]. Journal of Electroanalytical Chemistry,2000,484(1): 41-54.
    [10]Yao S. Z., Zhou T. A. Dependence of the oscillation frequency of a piezoelectric crystal on the physical parameters of liquids [J]. Analytica Chimica Acta,1988,212(0):61-72.
    [11]Lachenwitzer A., Magnussen O. M. Electrochemical Quartz Crystal Microbalance Study on the Kinetics of Nickel Monolayer and Multilayer Electrodeposition on (111)-Oriented Gold Films [J]. The Journal of Physical Chemistry B,2000,104(31):7424-7430.
    [12]Uosaki K., Ye S., Naohara H., Oda Y., Haba T., Kondo T. Electrochemical Epitaxial Growth of a Pt(111) Phase on an Au(111) Electrode [J]. The Journal of Physical Chemistry B,1997, 101(38):7566-7572.
    [13]Bohannan E. W., Huang L.-Y., Miller F. S., Shumsky M. G., Switzer J. A. In Situ Electrochemical Quartz Crystal Microbalance Study of Potential Oscillations during the Electrodeposition of Cu/Cu2O Layered Nanostructures [J]. Langmuir,1998,15(3):813-818.
    [14]Deakin M. R., Melroy O. Underpotential metal deposition on gold, monitored in situ with a quartz microbalance [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1988,239(1-2):321-331.
    [15]Nicic I., Liang J., Cammarata V., Alanyalioglu M., Demir U., Shannon C. Underpotential Deposition of Te Monolayers on Au Surfaces from Perchloric Acid Solution Studied by Chronocoulometry and EQCM [J]. The Journal of Physical Chemistry B,2002,106(47): 12247-12252.
    [16]Itoh J., Sasaki T., Ohtsuka T. The influence of oxide layers on initial corrosion behavior of copper in air containing water vapor and sulfur dioxide [J]. Corrosion Science,2000,42(9): 1539-1551.
    [17]Joiret S., Keddam M., Novoa X. R., Perez M. C., Rangel C., Takenouti H. Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH [J]. Cement and Concrete Composites,2002,24(1):7-15.
    [18]Zhao C., Jiang Z. Polymerization and redox behavior of polypyrrole (PPy) films by in situ EQCM and PT techniques [J]. Applied Surface Science,2004,229(1-4):372-376.
    [19]Liu M., Ye M., Yang Q., Zhang Y., Xie Q., Yao S. A new method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemisty [J]. Electrochimica Acta, 2006,52(1):342-352.
    [20]Lacey M. J., Sosna M., Owen J. R. An electrochemical quartz crystal microbalance study of poly(acrylonitrile) deposition initiated by electrogenerated superoxide [J]. Electrochimica Acta,2013,96(0):23-26.
    [21]Li Y., Liu M., Xiang C., Xie Q., Yao S. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions [J]. Thin Solid Films,2006,497(1-2):270-278.
    [22]Su Z., Huang J., Xie Q., Fang Z., Zhou C., Zhou Q., Yao S. Electrochemical quartz crystal microbalance study of covalent tethering of carboxylated thiol to polyaniline for electrocatalyzed oxidation of ascorbic acid in neutral aqueous solution [J]. Physical Chemistry Chemical Physics,2009,11(40):9050-9061.
    [23]Mukoyama I., Aoki K., Chen J. Electrochemical dissolution of polythiophene films [J]. Journal of Electroanalytical Chemistry,2002,531(2):133-139.
    [24]Xiang C, Xie Q., Hu J., Yao S. Studies on electrochemical copolymerization of aniline with o-phenylenediamine and degradation of the resultant copolymers via electrochemical quartz crystal microbalance and scanning electrochemical microscope [J]. Synthetic Metals,2006, 156(5-6):444-453.
    [25]Dolatshahi-Pirouz A., Rechendorff K.., Hovgaard M. B., Foss M., Chevallier J., Besenbacher F. Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D [J]. Colloids and Surfaces B:Biointerfaces,2008,66(1):53-59.
    [26]Rudrake A., Karan K., Horton J. H. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces [J]. Journal of Colloid and Interface Science,2009,332(1): 22-31.
    [27]Guicai L., Xiaoli S., Ping Y., Ansha Z., Nan H. Investigation of fibrinogen adsorption on solid surface by quartz crystal microbalance with dissipation(QCM-D) and ELISA [J]. Solid State Ionics,2008,179(21-26):932-935.
    [28]Serro Ap Fau-Degiampietro K., Degiampietro K Fau-Colaco R., Colaco R Fau-Saramago B., Saramago B. Adsorption of albumin and sodium hyaluronate on UHMWPE:a QCM-D and AFM study [J]. Biointerfaces,2010,78(1):1-7.
    [29]Zeng X., Hatton R. EQCM study of adsorption of bipyridine on Au polycrystalline electrode using underpotential deposition of Pb as a probe [J]. Electrochimica Acta,2000,45(22-23): 3629-3638.
    [30]Mikko S., Loikas K., Kankare J. Effect of Polyelectrolyte Multilayers on the Response of a Quartz Crystal Microbalance [J]. Analytical Chemistry,2003,75(21):5895-5904.
    [31]Lvov Y., Munge B., Giraldo O., Ichinose I., Suib S. L., Rusling J. F. Films of Manganese Oxide Nanoparticles with Polycations or Myoglobin from Alternate-Layer Adsorption [J]. Langmuir,2000,16(23):8850-8857.
    [32]He H., Xie Q., Zhang Y., Yao S. A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction [J]. Journal of Biochemical and Biophysical Methods,2005,62(3): 191-205.
    [33]Xie Q., Xiang C., Zhang Y., Yuan Y., Liu M., Nie L., Yao S. In situ monitoring of gold-surface adsorption and acidic denaturation of human serum albumin by an isolation-capacitance-adopted electrochemical quartz crystal impedance system [J]. Analytica Chimica Acta,2002,464(1):65-77.
    [34]Xie Q., Zhang Y., Xu M., Li Z., Yuan Y., Yao S. Combined quartz crystal impedance and electrochemical impedance measurements during adsorption of bovine serum albumin onto bare and cysteine-or thiophenol-modified gold electrodes [J]. Journal of Electroanalytical Chemistry,1999,478(1-2):1-8.
    [35]Niikura K., Matsuno H., Okahata Y. Direct Monitoring of DNA Polymerase Reactions on a Quartz-Crystal Microbalance [J]. Journal of the American Chemical Society,1998,120(33): 8537-8538.
    [36]Su Z., Chen L., Liu Y., He X., Zhou Y., Xie Q., Yao S.35MHz quartz crystal microbalance and surface plasmon resonance studies on the binding of angiotensin converting enzyme with lisinopril [J]. Biosensors and Bioelectronics,2010,26(7):3240-3245.
    [37]Tian L., Wei W., Mao Y. Kinetic studies of the interaction between antitumor antibiotics and DNA using quartz crystal microbalance [J]. Clinical Biochemistry,2004,37(2):120-127.
    [38]Gryte D. M., Ward M. D., Hu W.-S. Real-Time Measurement of Anchorage-Dependent Cell Adhesion Using a Quartz Crystal Microbalance [J]. Biotechnology Progress,1993,9(1): 105-108.
    [39]Redepenning J., Schlesinger T. K., Mechalke E. J., Puleo D. A., Bizios R. Osteoblast attachment monitored with a quartz crystal microbalance [J]. Analytical Chemistry,1993, 65(23):3378-3381.
    [40]Levi M. D., Salitra G., Levy N., Aurbach D., Maier J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage [J]. Nat Mater,2009,8(11):872-875.
    [41]Huang J., Xie Q., Tan Y., Fu Y., Su Z., Huang Y., YAO S. Preparation of Pt/multiwalled carbon nanotubes modified Au electrodes via Pt-Cu co-electrodeposition/Cu stripping protocol for high-performance electrocatalytic oxidation of methanol [J]. Materials Chemistry and Physics,2009,118(2-3):371-378.
    [42]Huang Z., Liu Y., Xie F., Fu Y., He Y., Ma M., Xie Q., Yao S. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution [J]. Chemical Communications,2012,48(99):12106-12108.
    [43]Huang Z., Jia X. E., Xie Q., Tan Y., Huang S., Huang J., Meng Y., Yao S. Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution [J]. Science China Chemistry,2010,53(11):2349-2356.
    [44]Cushing B. L., Kolesnichenko V. L., O'Connor C. J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles [J]. Chemical Reviews,2004,104(9):3893-3946.
    [45]Hu J., Odom T. W., Lieber C. M. Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes [J]. Accounts of Chemical Research,1999,32(5): 435-445.
    [46]Klimov V. I., Mikhailovsky A. A., Xu S., Malko A., Hollingsworth J. A., Leatherdale C. A., Eisler H. J., Bawendi M. G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots [J]. Science,2000,290(5490):314-317.
    [47]Wang Z. L. Characterizing the Structure and Properties of Individual Wire-Like Nanoentities [J]. Advanced Materials,2000,12(17):1295-1298.
    [48]Hansen P. L., Wagner J. B., Helveg S., Rostrup-Nielsen J. R., Clausen B. S., Topsee H. Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals [J]. Science,2002,295(5562):2053-2055.
    [49]Wu D.-Y., Liu X.-M., Huang Y.-F., Ren B., Xu X., Tian Z.-Q. Surface Catalytic Coupling Reaction of p-Mercaptoaniline Linking to Silver Nanostructures Responsible for Abnormal SERS Enhancement:A DFT Study [J]. The Journal of Physical Chemistry C,2009,113(42): 18212-18222.
    [50]Qiu Y., Yang M., Fan H., Lan S., Shao Y., Xu Y., Yang X., Yang S. Synthesis and characterization of hollow gold tetrapods [J]. Materials Letters,2011,65(13):2022-2024.
    [51]Yao Y., Sun Y., Han Y., Yan C. Preparation of Resorcinarene-Functionalized Gold Nanoparticles and Their Catalytic Activities for Reduction of Aromatic Nitro Compounds [J]. Chinese Journal of Chemistry,2010,28(5):705-712.
    [52]Wang Q.-T., Wang X.-B., Lou W.-J., Hao.J.-C. Stable Blue-and Green-Emitting Zinc Oxide from Ionic Liquid Crystal Precursors [J]. ChemPhysChem,2009,10(18):3201-3203.
    [53]Zhang J., Han B., Li W., Zhao Y., Hou M. Reversible Switching of Lamellar Liquid Crystals into Micellar Solutions using CO2 [J]. Angewandte Chemie International Edition,2008, 47(52):10119-10123.
    [54]Tencomnao T., Apijaraskul A., Rakkhithawatthana V., Chaleawlert-umpon S., Pimpa N., Sajomsang W., Saengkrit N. Gold/cationic polymer nano-scaffolds mediated transfection for non-viral gene delivery system [J]. Carbohydrate Polymers,2011,84(1):216-222.
    [55]Yang W., Wang Y., Li J., Yang X. Polymer wrapping technique:an effective route to prepare Pt nanoflower/carbon nanotube hybrids and application in oxygen reduction [J]. Energy& Environmental Science,2010,3(1):144-149.
    [56]Sun S. H., Yang D. Q., Villers D., Zhang G. X., Sacher E., Dodelet J. P. Template-and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires [J]. Advanced Materials,2008,20(3):571-574.
    [57]Sun S., Jaouen F., Dodelet J.-P. Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells [J]. Advanced Materials,2008,20(20):3900-3904.
    [58]Sun S., Yang D., Zhang G., Sacher E., Dodelet J.-P. Synthesis and Characterization of Platinum Nanowire-Carbon Nanotube Heterostructures [J]. Chemistry of Materials,2007, 19(26):6376-6378.
    [59]Hong J. W., Kim D., Lee Y. W., Kim M., Kang S. W., Han S. W. Atomic-Distribution-Dependent Electrocatalytic Activity of Au-Pd Bimetallic Nanocrystals [J]. Angewandte Chemie International Edition,2011,50(38):8876-8880.
    [60]Guo S., Dong S., Wang E. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet:Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation [J]. ACS Nano,2009,4(1):547-555.
    [61]Wang L., Yamauchi Y. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell [J]. Journal of the American Chemical Society,2010,132(39):13636-13638.
    [62]Tian N., Zhou Z.-Y., Sun S.-G., Ding Y., Wang Z. L. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity [J]. Science,2007, 316(5825):732-735.
    [63]Huang W., Wang M., Zheng J., Li Z. Facile Fabrication of Multifunctional Three-Dimensional Hierarchical Porous Gold Films via Surface Rebuilding [J]. The Journal of Physical Chemistry C,2009,113(5):1800-1805.
    [64]Ye F., Li J., Wang T., Liu Y., Wei H., Li J., Wang X. Electrocatalytic Properties of Platinum Catalysts Prepared by Pulse Electrodeposition Method Using SnO2 as an Assisting Reagent [J]. The Journal of Physical Chemistry C,2008,112(33):12894-12898.
    [65]Lai M., Riley D. J. Templated electrosynthesis of nanomaterials and porous structures [J]. Journal of Colloid and Interface Science,2008,323(2):203-212.
    [66]Lu L., Eychmuller A. Ordered Macroporous Bimetallic Nanostructures:Design, Characterization, and Applications [J]. Accounts of Chemical Research,2008,41(2):244-253.
    [67]Stein A., Li F., Denny N. R. Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles [J]. Chemistry of Materials,2007, 20(3):649-666.
    [68]Liu J., Cao L., Huang W., Li Z. Direct electrodeposition of PtPd alloy foams comprised of nanodendrites with high electrocatalytic activity for the oxidation of methanol and ethanol [J]. Journal of Electroanalytical Chemistry,2012,686(0):38-45.
    [69]Liu J., Cao L., Huang W., Li Z. Preparation of AuPt Alloy Foam Films and Their Superior Electrocatalytic Activity for the Oxidation of Formic Acid [J]. ACS Applied Materials& Interfaces,2011,3(9):3552-3558.
    [70]Wang H., Wang L., Sato T., Sakamoto Y., Tominaka S., Miyasaka K., Miyamoto N., Nemoto Y., Terasaki O., Yamauchi Y. Synthesis of Mesoporous Pt Films with Tunable Pore Sizes from Aqueous Surfactant Solutions [J]. Chemistry of Materials,2012,24(9):1591-1598.
    [71]Xie F., Huang Z., Chen C., Xie Q., Huang Y., Qin C., Liu Y., Su Z., Yao S. Preparation of Au-film electrodes in glucose-containing Au-electroplating aqueous bath for high-performance nonenzymatic glucose sensor and glucose/O2 fuel cell [J]. Electrochemistry Communications,2012,18(0):108-111.
    [72]Sun Y., Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science, 2002,298(5601):2176-2179.
    [73]Skrabalak S. E., Chen J., Sun Y., Lu X., Au L., Cobley C. M., Xia Y. Gold Nanocages: Synthesis, Properties, and Applications [J]. Accounts of Chemical Research,2008,41(12): 1587-1595.
    [74]Gonzalez E., Arbiol J., Puntes V. F. Carving at the Nanoscale:Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature [J]. Science,2011,334(6061):1377-1380.
    [75]Brankovic S. R., Wang J. X., Adzic R. R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces [J]. Surface Science,2001,474(1-3):L173-L179.
    [76]Zhang J., Vukmirovic M. B., Xu Y., Mavrikakis M., Adzic R. R. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates [J]. Angewandte Chemie International Edition,2005,44(14):2132-2135.
    [77]Kibler L. A., EI-Aziz A. M., Hoyer R., Kolb D. M. Tuning Reaction Rates by Lateral Strain in a Palladium Monolayer [J]. Angewandte Chemie International Edition,2005,44(14): 2080-2084.
    [78]Zhang J., Vukmirovic M. B., Sasaki K., Nilekar A. U., Mavrikakis M., Adzic R. R. Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics [J]. Journal of the American Chemical Society,2005,127(36):12480-12481.
    [79]Zhang J., Lima F. H. B., Shao M. H., Sasaki K., Wang J. X., Hanson J., Adzic R. R. Platinum Monolayer on Nonnoble Metal-Noble Metal Core-Shell Nanoparticle Electrocatalysts for O2 Reduction [J]. The Journal of Physical Chemistry B,2005,109(48):22701-22704.
    [80]Adzic R. R., Zhang J., Sasaki K., Vukmirovic M. B., Shao M., Wang J. X., Nilekar A. U., Mavrikakis M., Valerio J. A., Uribe F. Platinum Monolayer Fuel Cell Electrocatalysts [J]. Topics in Catalysis,2007,46(3-4):249-262.
    [81]Zhou W.-P., Sasaki K., Su D., Zhu Y., Wang J. X., Adzic R. R. Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction [J]. The Journal of Physical Chemistry C,2010,114(19):8950-8957.
    [82]Lima F. H. B., Zhang J., Shao M. H., Sasaki K., Vukmirovic M. B., Ticianelli E. A., Adzic R. R. Catalytic Activity-d-Band Center Correlation for the 02 Reduction Reaction on Platinum in Alkaline Solutions [J]. The Journal of Physical Chemistry C,2007,111(1):404-410.
    [83]Zhou W.-P., Yang X., Vukmirovic M. B., Koel B. E., Jiao J., Peng G., Mavrikakis M., Adzic R. R. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy [J]. Journal of the American Chemical Society,2009,131(35):12755-12762.
    [84]Ghosh T., Vukmirovic M. B., DiSalvo F. J., Adzic R. R. Intermetallics as Novel Supports for Pt Monolayer 02 Reduction Electrocatalysts:Potential for Significantly Improving Properties [J]. Journal of the American Chemical Society,2009,132(3):906-907.
    [85]Huang X., Tang S., Zhang H., Zhou Z., Zheng N. Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals [J]. Journal of the American Chemical Society,2009,131(39):13916-13917.
    [86]Huang X., Zhang H., Guo C., Zhou Z., Zheng N. Simplifying the Creation of Hollow Metallic Nanostructures:One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes [J]. Angewandte Chemie International Edition,2009,48(26):4808-4812.
    [87]Lee E. P., Peng Z., Chen W., Chen S., Yang H., Xia Y. Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes [J]. ACSNano,2008,2(10):2167-2173.
    [88]Zhou Z.-Y., Huang Z.-Z., Chen D.-J., Wang Q., Tian N., Sun S.-G. High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation [J]. Angewandte Chemie International Edition,2010,49(2):411-414.
    [89]Chen Q.-S., Zhou Z.-Y., Vidal-Iglesias F. J., Solla-Gullon J., Feliu J. M., Sun S.-G. Significantly Enhancing Catalytic Activity of Tetrahexahedral Pt Nanocrystals by Bi Adatom Decoration [J]. Journal of the American Chemical Society,2011,133(33):12930-12933.
    [90]Liu H.-X., Tian N., Brandon M. P., Zhou Z.-Y., Lin J.-L., Hardacre C., Lin W.-F., Sun S.-G. Tetrahexahedral Pt Nanocrystal Catalysts Decorated with Ru Adatoms and Their Enhanced Activity in Methanol Electrooxidation [J]. ACS Catalysis,2012,2(5):708-715.
    [91]Xu D., Liu Z., Yang H., Liu Q., Zhang J., Fang J., Zou S., Sun K. Solution-Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum-Copper Nanocubes [J]. Angewandte Chemie International Edition,2009,48(23):4217-4221.
    [92]Wu B., Hu D., Kuang Y., Liu B., Zhang X., Chen J. Functionalization of Carbon Nanotubes by an Ionic-Liquid Polymer:Dispersion of Pt and PtRu Nanoparticles on Carbon Nanotubes and Their Electrocatalytic Oxidation of Methanol [J]. Angewandte Chemie International Edition,2009,48(26):4751-4754.
    [93]Cao L., Scheiba F., Roth C., Schweiger F., Cremers C., Stimming U., Fuess H., Chen L., Zhu W., Qiu X. Novel Nanocomposite Pt/RuO2·xH2O/Carbon Nanotube Catalysts for Direct Methanol Fuel Cells [J]. Angewandte Chemie International Edition,2006,45(32):5315-5319.
    [94]Guo S., Dong S., Wang E. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation [J]. Energy & Environmental Science,2010,3(9):1307-1310.
    [95]Selvaraj V., Alagar M., Kumar K. S. Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications [J]. Applied Catalysis B:Environmental,2007, 75(1-2):129-138.
    [96]Liu P., Ge X., Wang R., Ma H., Ding Y. Facile Fabrication of Ultrathin Pt Overlayers onto Nanoporous Metal Membranes via Repeated Cu UPD and in Situ Redox Replacement Reaction [J]. Langmuir,2008,25(1):561-567.
    [97]Wang R., Wang C., Cai W.-B., Ding Y. Ultralow-Platinum-Loading High-Performance "Nanoporous Electrocatalysts with Nanoengineered Surface Structures [J]. Advanced Materials, 2010.22(16):1845-1848.
    [98]Li M., Liu P., Adzic R. R. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols [J]. The Journal of Physical Chemistry Letters,2012,3(23):3480-3485.
    [99]Kinoshita K. Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes [J]. Journal of The Electrochemical Society,1990,137(3):845-848.
    [100]Maillard F., Martin M., Gloaguen F., Leger J. M. Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition [J]. Electrochimica Acta,2002,47(21):3431-3440.
    [101]Travitsky N., Ripenbein T., Golodnitsky D., Rosenberg Y., Burshtein L., Peled E. Pt-, PtNi-and PtCo-supported catalysts for oxygen reduction in PEM fuel cells [J]. Journal of Power Sources,2006,161(2):782-789.
    [102]Koffi R. C., Coutanceau C., Garnier E., Leger J. M., Lamy C. Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR) [J]. Electrochimica Acta,2005,50(20):4117-4127.
    [103]Zhang H., Jin M., Wang J., Li W., Camargo P. H. C., Kim M. J., Yang D., Xie Z., Xia Y. Synthesis of Pd-Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction [J]. Journal of the American Chemical Society,2011,133(15):6078-6089.
    [104]Ghanem M. A. Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode [J]. Electrochemistry Communications,2007, 9(10):2501-2506.
    [105]Xiao F., Mo Z., Zhao F., Zeng B. Ultrasonic-electrodeposition of gold-platinum alloy nanoparticles on multi-walled carbon nanotubes-ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite [J]. Electrochemistry Communications,2008, 10(11):1740-1743.
    [106]Guo S., Wen D., Zhai Y., Dong S., Wang E. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet:One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing [J]. ACS Nano,2010,4(7):3959-3968.
    [107]Zhang Y., Zhang M., Cai Z., Chen M., Cheng F. A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media [J]. Electrochimica Acta,2012,68(0):172-177.
    [108]Sun C.-L., Lee H.-H., Yang J.-M., Wu C.-C. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites [J]. Biosensors and Bioelectronics,2011,26(8):3450-3455.
    [109]Mao H., Li Y., Liu X., Zhang W., Wang C., Al-Deyab S. S., El-Newehy M. The application of novel spindle-like polypyrrole hollow nanocapsules containing Pt nanoparticles in electrocatalysis oxidation of nicotinamide adenine dinucleotide (NADH) [J]. Journal of Colloid and Interface Science,2011,356(2):757-762.
    [110]Yuan J. H., Wang K., Xia X. H. Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing [J]. Advanced Functional Materials,2005,15(5):803-809.
    [111]Niu X., Chen C., Zhao H., Chai Y., Lan M. Novel snowflake-like Pt-Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose sensing [J]. Biosensors and Bioelectronics,2012,36(1):262-266.
    [112]Feng X., Li R., Hu C., Hou W. Direct electron transfer and electrocatalysis of hemoglobin immobilized on graphene-Pt nanocomposite [J]. Journal of Electroanalytical Chemistry,2011, 657(1-2):28-33.
    [113]Cao S., Zhang L., Chai Y., Yuan R. Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst [J]. Talanta,2013(0).
    [114]Haghighi B., Tabrizi M. A. Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles [J]. Colloids and Surfaces B: Biointerfaces,2013,103(0):566-571.
    [115]Liu S.-Q., Ju H.-X. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode [J]. Analytical Biochemistry,2002,307(1):110-116.
    [116]Yang M., Qu F., Li Y., He Y., Shen G., Yu R. Direct electrochemistry of hemoglobin in gold nanowire array [J]. Biosensors and Bioelectronics,2007,23(3):414-420.
    [117]Han J.-H., Boo H., Park S., Chung T. D. Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor [J]. Electrochimica Acta,2006,52(4):1788-1791.
    [118]Gonzalez-Garcia M. B., Fernandez-Sanchez C, Costa-Garcia A. Colloidal gold as an electrochemical label of streptavidin-biotin interaction [J]. Biosensors and Bioelectronics, 2000,15(5-6):315-321.
    [119]Huang J., Li J., Yang Y., Wang X., Wu B., Anzai J.-i., Osa T., Chen Q. Development of an amperometric 1-lactate biosensor based on 1-lactate oxidase immobilized through silica sol-gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode [J]. Materials Science and Engineering:C,2008,28(7):1070-1075.
    [120]Hsin Y. L., Hwang K. C., Yeh C.-T. Poly(vinylpyrrolidone)-Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells [J]. Journal of the American Chemical Society,2007,129(32):9999-10010.
    [121]Wen Z., Wang Q., Li J. Template Synthesis of Aligned Carbon Nanotube Arrays using Glucose as a Carbon Source:Pt Decoration of Inner and Outer Nanotube Surfaces for Fuel-Cell Catalysts [J]. Advanced Functional Materials.2008,18(6):959-964.
    [122]Hammer B., Morikawa Y., Norskov J. K. CO Chemisorption at Metal Surfaces and Overlayers [J]. Physical Review Letters,1996,76(12):2141-2144.
    [123]Kitchin J. R., Norskov J. K., Barteau M. A., Chen J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals [J]. The Journal of Chemical Physics,2004,120(21):10240-10246.
    [124]Yang L., Yang W., Cai Q. Well-Dispersed PtAu Nanoparticles Loaded into Anodic Titania Nanotubes:A High Antipoison and Stable Catalyst System for Methanol Oxidation in Alkaline Media [J]. The Journal of Physical Chemistry C,2007,111(44):16613-16617.
    [125]Guo X., Guo D.-J., Qiu X.-P., Chen L.-Q., Zhu W.-T. A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium [J]. Electrochemistry Communications,2008,10(11):1748-1751.
    [126]Hernandez-Fernandez P., Rojas S., Ocon P., Gomez de la Fuente J. L., San Fabian J., Sanza J., Pena M. A., Garcia-Garcia F. J., Terreros P., Fierro J. L. G. Influence of the Preparation Route of Bimetallic Pt-Au Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction [J]. The Journal of Physical Chemistry C,2007,111(7):2913-2923.
    [127]Kim J., Jung C, Rhee C. K., Lim T.-h. Electrocatalytic Oxidation of Formic Acid and Methanol on Pt Deposits on Au(111) [J]. Langmuir,2007,23(21):10831-10836.
    [128]Tang H., Chen J. H., Wang M. Y., Nie L. H., Kuang Y. F., Yao S. Z. Controlled synthesis of platinum catalysts on Au nanoparticles and their electrocatalytic property for methanol oxidation [J]. Applied Catalysis A:General,2004,275(1-2):43-48.
    [129]Yu Y., Hu Y., Liu X., Deng W., Wang X. The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement [J]. Electrochimica Acta,2009,54(11): 3092-3097.
    [130]Shin T.-Y., Yoo S.-H., Park S. Gold Nanotubes with a Nanoporous Wall:Their Ultrathin Platinum Coating and Superior Electrocatalytic Activity toward Methanol Oxidation [J]. Chemistry of Materials,2008,20(17):5682-5686.
    [131]Ge X., Wang R., Liu P., Ding Y. Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation [J]. Chemistry of Materials,2007,19(24):5827-5829.
    [132]Zhao G., He J., Zhang C., Zhou J., Chen X., Wang T. Highly Dispersed Pt Nanoparticles on Mesoporous Carbon Nanofibers Prepared by Two Templates [J]. The Journal of Physical Chemistry C.,2008,112(4):1028-1033.
    [133]Okahata Y., Kawase M., Niikura K., Ohtake F., Furusawa H., Ebara Y. Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance [J]. Analytical Chemistry,1998,70(7):1288-1296.
    [134]Su Y., Xie Q., Chen C., Zhang Q., Ma M., Yao S. Electrochemical Quartz Crystal Microbalance Studies on Enzymatic Specific Activity and Direct Electrochemistry of Immobilized Glucose Oxidase in the Presence of Sodium Dodecyl Benzene Sulfonate and Multiwalled Carbon Nanotubes [J]. Biotechnology Progress,2008,24(1):262-272.
    [135]Tu X., Xie Q., Xiang C., Zhang Y., Yao S. Scanning Electrochemical Microscopy in Combination with Piezoelectric Quartz Crystal Impedance Analysis for Studying the Growth and Electrochemistry as Well as Microetching of Poly(o-phenylenediamine) Thin Films [J]. The Journal of Physical Chemistry B,2005,109(9):4053-4063.
    [136]Park S., Yang P., Corredor P., Weaver M. J. Transition Metal-Coated Nanoparticle Films:Vibrational Characterization with Surface-Enhanced Raman Scattering [J]. Journal of (he American Chemical Society,2002,124(11):2428-2429.
    [137]Mrozek M. F., Xie Y., Weaver M. J. Surface-Enhanced Raman Scattering on Uniform Platinum-Group Overlayers:Preparation by Redox Replacement of Underpotential-Deposited Metals on Gold [J]. Analytical Chemistry,2001,73(24):5953-5960.
    [138]Kim Y.-G., Kim J. Y., Vairavapandian D., Stickney J. L. Platinum Nanofilm Formation by EC-ALE via Redox Replacement of UPD Copper:Studies Using in-Situ Scanning Tunneling Microscopy [J]. The Journal of Physical Chemistry B,2006,110(36):17998-18006.
    [139]Shimazu K., Kawaguchi T., Isomura T. Construction of Mixed Mercaptopropionic Acid/Alkanethiol Monolayers of Controlled Composition by Structural Control of a Gold Substrate with Underpotentially Deposited Lead Atoms [J]. Journal of the American Chemical Society,2002,124(4):652-661.
    [140]Yoo S.-H., Park S. Electrocatalytic applications of a vertical Au nanorod array using ultrathin Pt/Ru/Pt layer-by-layer coatings [J]. Electrochimica Acta,2008,53(10):3656-3662.
    [141]Zeis R., Mathur A., Fritz G., Lee J., Erlebacher J. Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells [J]. Journal of Power Sources, 2007,165(1):65-72.
    [142]Spendelow J. S., Wieckowski A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media [J]. Physical Chemistry Chemical Physics,2007,9(21): 2654-2675.
    [143]Luo J., Njoki P. N., Lin Y., Mott D., Wang, Zhong C.-J. Characterization of Carbon-Supported AuPt Nanoparticles for Electrocatalytic Methanol Oxidation Reaction [J]. Langmuir,2006,22(6):2892-2898.
    [144]Mott D., Luo J., Njoki P. N., Lin Y., Wang L., Zhong C.-J. Synergistic activity of gold-platinum alloy nanoparticle catalysts [J]. Catalysis Today,2007,122(3-4):378-385.
    [145]Nagashree K. L., Ahmed M. F. Electrocatalytic oxidation of methanol on Pt modified polyaniline in alkaline medium [J]. Synthetic Metals,2008,158(15):610-616.
    [146]Ji X., Lee K. T., Holden R., Zhang L., Zhang J., Botton G. A., Couillard M., Nazar L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes [J]. Nature Chemistry,2010,2(4):286-293.
    [147]Zhang G.-R., Zhao D., Feng Y.-Y., Zhang B., Su D. S., Liu G., Xu B.-Q. Catalytic Pt-on-Au Nanostructures:Why Pt Becomes More Active on Smaller Au Particles [J]. ACS Nano,2012, 6(3):2226-2236.
    [148]Chen D.-J., Zhou Z.-Y., Wang Q., Xiang D.-M., Tian N., Sun S.-G. A non-intermetallic PtPb/C catalyst of hollow structure with high activity and stability for electrooxidation of formic acid [J]. Chemical Communications,2010,46(24):4252-4254.
    [149]Zhang S., Guo S., Zhu H., Su D., Sun S. Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles [J]. Journal of the American Chemical Society,2012, 134(11):5060-5063.
    [150]Neurock M., Janik M., Wieckowski A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt [J]. Faraday Discussions,2009,140(0):363-378.
    [151]Nilekar A. U., Sasaki K., Farberow C. A., Adzic R. R., Mavrikakis M. Mixed-Metal Pt Monolayer Electrocatalysts with Improved CO Tolerance [J]. Journal of the American Chemical Society,2011,133(46):18574-18576.
    [152]Buttry D. A., Ward M. D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance [J]. Chemical Reviews,1992,92(6):1355-1379.
    [153]Llorca M. J., Feliu J. M., Aldaz A., Clavilier J. Formic acid oxidation on Pdad+Pt(100) and Pdad+Pt(111) electrodes [J]. Journal of Electro analytical Chemistry,1994,376(1-2): 151-160.
    [154]Wang C. H., Yang C., Song Y. Y., Gao W., Xia X. H. Adsorption and Direct Electron Transfer from Hemoglobin into a Three-Dimensionally Ordered Macroporous Gold Film [J]. Advanced Functional Materials,2005,15(8):1267-1275.
    [155]Du B., Tong. A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt [J]. The Journal of Physical Chemistry B,2005,109(38): 17775-17780.
    [156]Bus E., van Bokhoven J. A. Electronic and Geometric Structures of Supported Platinum, Gold, and Platinum-Gold Catalysts [J]. The Journal of Physical Chemistry C,2007,111(27): 9761-9768.
    [157]Hyman M. P., Medlin J. W. Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction Reaction Intermediates on Model Pt(111)-Alloy Surfaces [J]. The Journal of Physical Chemistry C,2007,111(45):17052-17060.
    [158]Moulder J. F., tickle W. F., Sobol P. E., Bomben K. D. Handbook of X-ray Photoelectron Spectroscopy [J]. Physical Electronics,1995.
    [159]Zhang Z., Wang Y., Wang X. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid [J]. Nanoscale,2011,3(4):1663-1674.
    [160]Zhao D., Wang Y.-H., Xu B.-Q. Pt Flecks on Colloidal Au (PtAu) as Nanostructured Anode Catalysts for Electrooxidation of Formic Acid [J]. The Journal of Physical Chemistry C,2009, 113(49):20903-20911.
    [161]Zhang S., Shao Y., Yin G., Lin Y. Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation [J]. Angewandte Chemie International Edition,2010,49(12):2211-2214.
    [162]Zhang S., Shao Y., Yin G., Lin Y. Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation [J]. Journal of Power Sources,2010,195(4):1103-1106.
    [163]Lee S. W., Chen S., Sheng W., Yabuuchi N., Kim Y.-T., Mitani T., Vescovo E., Shao-Horn Y. Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol [J]. Journal of the American Chemical Society,2009,131(43):15669-15677.
    [164]Qu L., Dai L., Osawa E. Shape/Size-Controlled Syntheses of Metal Nanoparticles for Site-Selective Modification of Carbon Nanotubes [J]. Journal of the American Chemical Society,2006,128(16):5523-5532.
    [165]Oh M. H., Yu T., Yu S.-H., Lim B., Ko K..-T., Willinger M.-G., Seo D.-H., Kim B. H., Cho M. G., Park J.-H., Kang K., Sung Y.-E., Pinna N., Hyeon T. Galvanic Replacement Reactions in Metal Oxide Nanocrystals [J]. Science,2013,340(6135):964-968.
    [166]Herrero E., Buller L. J., Abruna H. D. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials [J]. Chemical Reviews,2001,101(7):1897-1930.
    [167]Santos M. C., Cabral M. F., Machado S. A. S. Tellurium underpotential deposited ad-atoms on Au electrodes:A new electrodeposition mechanism using an electrochemical quartz crystal nanobalance [J]. Electrochimica Acta,2011,58(0):1-5.
    [168]Wei Z. D., Li L. L., Luo Y. H., Yan C., Sun C. X., Yin G. Z., Shen P. K. Electrooxidation of Methanol on upd-Ru and upd-Sn Modified Pt Electrodes [J]. The Journal of Physical Chemistry B,2006,110(51):26055-26061.
    [169]Uhm S., Chung S. T., Lee J. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell [J]. Electrochemistry Communications,2007, 9(8):2027-2031.
    [170]Zhang L., Zhang J., Kuang Q., Xie S., Jiang Z., Xie Z., Zheng L. Cu2+-Assisted Synthesis of Hexoctahedral Au-Pd Alloy Nanocrystals with High-Index Facets [J]. Journal of the American Chemical Society,2011,133(43):17114-17117.
    [171]Yu Y., Zhang Q., Xie J., Lee J. Y. Engineering the architectural diversity of heterogeneous metallic nanocrystals [J]. Nat Commun,2013,4:1454.
    [172]Tan Y., Xie Q., Huang J., Duan W., Ma M., Yao S. Study on Glucose Biofuel Cells Using an Electrochemical Noise Device [J]. Electroanalysis,2008,20(14):1599-1606.
    [173]Tan Y., Deng W., Li Y., Huang Z., Meng Y., Xie Q., Ma M., Yao S. Polymeric Bionanocomposite Cast Thin Films with In Situ Laccase-Catalyzed Polymerization of Dopamine for Biosensing and Biofuel Cell Applications [J]. The Journal of Physical Chemistry B,2010,114(15):5016-5024.
    [174]Xie Q., Wang J., Zhou A., Zhang Y., Liu H., Xu Z., Yuan Y., Deng M., Yao S. A Study of Depletion Layer Effects on Equivalent Circuit Parameters Using an Electrochemical Quartz Crystal Impedance System [J]. Analytical Chemistry,1999,71(20):4649-4656.
    [175]Fu Y., Li P., Bu L., Wang T., Xie Q., Chen J., Yao S. Exploiting Metal-Organic Coordination Polymers as Highly Efficient Immobilization Matrixes of Enzymes for Sensitive Electrochemical Biosensing [J]. Analytical Chemistry,2011,83(17):6511-6517.
    [176]Wang J., Chen G., Chatrathi M. P., Musameh M. Capillary Electrophoresis Microchip with a Carbon Nanotube-Modified Electrochemical Detector [J]. Analytical Chemistry,2003,76(2): 298-302.
    [177]Wunsche M., Meyer H., Schumacher R. Formation and properties of UPD copper deposits on polycrystalline platinum electrodes [J]. Electrochimica Acta,1995,40(5):629-635.
    [178]Hwang S.-M., Bonevich J. E., Kim J. J., Moffat T. P. Electrodeposition of Pt100-xPbx Metastable Alloys and Intermetallics [J]. Journal of The Electrochemical Society,2011, 158(6):D307-D316.
    [179]Su D. S., Perathoner S., Centi G. Nanocarbons for the Development of Advanced Catalysts [J]. Chemical Reviews,2013,113(8):5782-5816.
    [180]Personick M. L., Langille M. R., Zhang J., Mirkin C. A. Shape Control of Gold Nanoparticles by Silver Underpotential Deposition [J]. Nano Letters,2011,11(8):3394-3398.
    [181]Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells:a review [J]. Materials Chemistry and Physics,2003,78(3):563-573.
    [182]Jiang Q., Jiang L., Qi J., Wang S., Sun G. Experimental and density functional theory studies on PtPb/C bimetallic electrocatalysts for methanol electrooxidation reaction in alkaline media [J]. Electrochimica Acta,2011,56(18):6431-6440.
    [183]Rebeloa M. J. F., Dario Compagnoneb, Guilbaultc G. G., Lubranod G. J. Alcohol electrodes in beverage measurements [J]. Analytical Letters,1994,27(15):3027-3037.
    [184]Lobo M. J., Miranda A. J., Tunon P. Flow-injection analysis of ethanol with an alcohol dehydrogenase-modified carbon past electrode [J]. Electroanalysis,1996,8(10):932-937.
    [185]Calull M., Marce R. M., Borrull F. Determination of carboxylic acids, sugars, glycerol and ethanol in wine and grape must by ion-exchange high-performance liquid chromatography with refractive index detection [J]. Journal of Chromatography A,1992,590(2):215-222.
    [186]Kamei T., Tsuda T., Mibu Y., Kitagawa S., Wada H., Naitoh K., Nakashima K. Novel instrumentation for determination of ethanol concentrations in human perspiration by gas chromatography and a good interrelationship between ethanol concentrations in sweat and blood [J]. Analytica Chimica Acta,1998,365(1-3):259-266.
    [187]Kotiaho T., Lauritsen F. R., Choudhury T. K., Cooks R. G., Tsao G. T. Membrane introduction mass spectrometry [J]. Analytical Chemistry,1991,63(18):875A-883A.
    [188]Rahim S. A., Geeso S. G. Colorimetric determination of ethanol in the presence of methanol and other species in aqueous solution [J]. Talanta,1992,39(11):1489-1491.
    [189]Pang C.-C., Chen M.-H., Lin T.-Y., Chou T.-C. An amperometric ethanol sensor by using nickel modified carbon-rod electrode [J]. Sensors and Actuators B:Chemical,2001,73(2-3): 221-227.
    [190]Tao B., Zhang J., Hui S., Wan L. An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode [J]. Sensors and Actuators B:Chemical,2009,142(1):298-303.
    [191]Huang H.-Y., Chen P.-Y. PdNi-and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media [J]. Talanta,2010,83(2):379-385.
    [192]Shi J., Ci P., Wang F., Peng H., Yang P., Wang L., Wang Q., Chu P. K. Pd/Ni/Si-microchannel-plate-based amperometric sensor for ethanol detection [J]. Electrochimica Acta,2011,56(11):4197-4202.
    [193]Liu Y., Zhang L., Guo Q., Hou H., You T. Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode [J]. Analytica Chimica Acta,2010, 663(2):153-157.
    [194]Shibli S. M. A., Suma N. D., Dilimon V. S. Development of TiO2-supported RuO2 composite-incorporated Ni-P electrodes for amperometric measurement of ethanol [J]. Sensors and Actuators B:Chemical,2008,129(1):139-145.
    [195]Scavetta E., Stipa S., Tonelli D. Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing [J]. Electrochemistry Communications,2007, 9(12):2838-2842.
    [196]Hayes E. T., Bellingham B. K., Mark Jr H. B., Galal A. An amperometric aqueous ethanol sensor based on the electrocatalytic oxidation at a cobalt-nickel oxide electrode [J]. Electrochimica Acta,1996,41(2):337-344.
    [197]Di Noto V., Negro E., Gliubizzi R., Lavina S., Pace G., Gross S., Maccato C. A Pt-Fe Carbon Nitride Nano-electrocatalyst for Polymer Electrolyte Membrane Fuel Cells and Direct-Methanol Fuel Cells:Synthesis, Characterization, and Electrochemical Studies [J]. Advanced Functional Materials,2007,17(17):3626-3638.
    [198]Liao S., Holmes K.-A., Tsaprailis H., Birss V. I. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol [J]. Journal of the American Chemical Society,2006,128(11):3504-3505.
    [199]Zeng J., Su F., Han Y.-F., Tian Z., Poh C. K., Liu Z., Lin J., Lee J. Y., Zhao X. S. Pt Nanoparticles Supported on Sandwiched Ru/Carbon Nanocomposite as a Bimetallic Catalyst for Methanol Electrooxidation [J]. The Journal of Physical Chemistry C,2008,112(40): 15908-15914.
    [200]Yeo K. M., Choi S., Anisur R. M., Kim J., Lee I. S. Surfactant-Free Platinum-on-Gold Nanodendrites with Enhanced Catalytic Performance for Oxygen Reduction [J]. Angewandte Chemie International Edition,2011,50(3):745-748.
    [201]Xu D., Bliznakov S., Liu Z., Fang J., Dimitrov N. Composition-Dependent Electrocatalytic Activity of Pt-Cu Nanocube Catalysts for Formic Acid Oxidation [J]. Angewandte Chemie International Edition,2010,49(7):1282-1285.
    [202]Pemstich K. P., Schenker M., Weibel F., Rossi A., Caseri W. R. Electroless Plating of Ultrathin Films and Mirrors of Platinum Nanoparticles onto Polymers, Metals, and Ceramics [J]. ACS Applied Materials & Interfaces,2010,2(3):639-643.
    [203]Zhu C., Guo S., Zhai Y., Dong S. Layer-by-Layer Self-Assembly for Constructing a Graphene/Platinum Nanoparticle Three-Dimensional Hybrid Nanostructure Using Ionic Liquid as a Linker [J]. Langmuir,2010,26(10):7614-7618.
    [204]Hwang. S. J-, Yoo S. J., Jang S., Lim T.-H., Hong S. A., Kim S.-K. Ternary Pt-Fe-Co Alloy Electrocatalysts Prepared by Electrodeposition:Elucidating the Roles of Fe and Co in the Oxygen Reduction Reaction [J]. The Journal of Physical Chemistry C,2011,115(5): 2483-2488.
    [205]Qu L., Dai L. Substrate-Enhanced Electroless Deposition of Metal Nanoparticles on Carbon Nanotubes [J]. Journal of the American Chemical Society,2005,127(31):10806-10807.
    [206]Mohl M., Kumar A., Reddy A. L. M., Kukovecz A., Konya Z., Kiricsi I., Vajtai R., Ajayan P. M. Synthesis of Catalytic Porous Metallic Nanorods by Galvanic Exchange Reaction [J]. The Journal of Physical Chemistry C,2009,114(1):389-393.
    [207]Papadimitriou S., Armyanov S., Valova E., Hubin A., Steenhaut O., Pavlidou E., Kokkinidis G., Sotiropoulos S. Methanol Oxidation at Pt-Cu, Pt-Ni, and Pt-Co Electrode Coatings Prepared by a Galvanic Replacement Process [J]. The Journal of Physical Chemistry C,2010, 114(11):5217-5223.
    [208]Tian N., Zhou Z.-Y., Yu N.-F., Wang L.-Y., Sun S.-G. Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation [J]. Journal of the American Chemical Society,2010,132(22): 7580-7581.
    [209]Cui C.-H., Yu J.-W., Li H.-H., Gao M.-R., Liang H.-W., Yu S.-H. Remarkable Enhancement of Electrocatalytic Activity by Tuning the Interface of Pd-Au Bimetallic Nanoparticle Tubes [J]. ACS Nano,2011,5(5):4211-4218.
    [210]Lu C.-L., Prasad K. S., Wu H.-L., Ho J.-a. A., Huang M. H. Au Nanocube-Directed Fabrication of Au-Pd Core Shell Nanocrystals with Tetrahexahedral, Concave Octahedral, and Octahedral Structures and Their Electrocatalytic Activity [J]. Journal of the American Chemical Society,2010,132(41):14546-14553.
    [211]Shen Q., Min Q., Shi J., Jiang L., Zhang J.-R., Hou W., Zhu J.-J. Morphology-Controlled Synthesis of Palladium Nanostructures by Sonoelectrochemical Method and Their Application in Direct Alcohol Oxidation [J]. The Journal of Physical Chemistry C,2009,113(4): 1267-1273.
    [212]Li G., Pickup P. G. The promoting effect of Pb on carbon supported Pt and Pt/Ru catalysts for electro-oxidation of ethanol [J]. Electrochimica Acta,2006,52(3):1033-1037.
    [213]Hogarth M. P., Hards G. A. Direct Methanol Fuel Cells [J]. Platinum Metals Review,1996, 40(4):150-159.
    [214]Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell [J]. Catalysis Today,1997,38(4):445-457.
    [215]Reddington E., Sapienza A., Gurau B., Viswanathan R., Sarangapani S., Smotkin E. S., Mallouk T. E. Combinatorial Electrochemistry:A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts [J]. Science,1998,280(5370):1735-1737.
    [216]Xu C., Su Y., Tan L., Liu Z., Zhang J., Chen S., Jiang S. P. Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol electrooxidation of direct alcohol fuel cells [J]. Electrochimica Acta,2009,54(26):6322-6326.
    [217]Xu J., Hua K.., Sun G., Wang C., Lv X., Wang Y. Electrooxidation of methanol on carbon nanotubes supported Pt-Fe alloy electrode [J]. Electrochemistry Communications,2006,8(6): 982-986.
    [218]Uchida H., Ozuka H., Watanabe M. Electrochemical quartz crystal microbalance analysis of CO-tolerance at Pt-Fe alloy electrodes [J]. Electrochimica Acta,2002,47(22-23):3629-3636.
    [219]Hernandez-Fernandez P., Montiel M., Ocon P., Fierro J. L. G., Wang H., Abruna H. D., Rojas S. Effect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported Pt [J]. Journal of Power Sources,2010,195(24):7959-7967.
    [220]Guo D.-J., Cui S.-K. Hollow PtCo nanospheres supported on multi-walled carbon nanotubes for methanol electrooxidation [J]. Journal of Colloid and Interface Science,2009,340(1): 53-57.
    [221]Gasteiger H. A., Markovic N., Ross P. N., Cairns E. J. Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys [J]. The Journal of Physical Chemistry,1994, 98(2):617-625.
    [222]Watanabe M., Motoo S. Electrocatalysis by ad-atoms:Part Ⅱ. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1975,60(3):267-273.
    [223]Gasteiger H. A., Markovic N. M., Ross P. N. H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru.1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects [J]. The Journal of Physical Chemistry,1995,99(20): 8290-8301.
    [224]Sun Y.-P., Xing L., Scott K. Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode [J]. Journal of Power Sources,2010,195(1):1-10.
    [225]Lu Q., Yang B., Zhuang L., Lu J. Anodic Activation of PtRu/C Catalysts for Methanol Oxidation [J]. The Journal of Physical Chemistry B,2005,109(5):1715-1722.
    [226]Zhou X.-W., Zhang R.-H., Zhou Z.-Y., Sun S.-G. Preparation of PtNi hollow nanospheres for the electrocatalytic oxidation of methanol [J]. Journal of Power Sources,2011,196(14): 5844-5848.
    [227]Jiang Q., Jiang L., Hou H., Qi J., Wang S., Sun G. Promoting Effect of Ni in PtNi Bimetallic Electrocatalysts for the Methanol Oxidation Reaction in Alkaline Media:Experimental and Density Functional Theory Studies [J]. The Journal of Physical Chemistry C,2010,114(46): 19714-19722.
    [228]Jiang Q., Jiang L., Wang S., Qi J., Sun G. A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media [J]. Catalysis Communications,2010,12(1):67-70.
    [229]Neto A. O., Dias R. R., Tusi M. M., Linardi M., Spinace E. V. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process [J]. Journal of Power Sources,2007,166(1):87-91.
    [230]Yi Q., Zhang J., Chen A., Liu X., Xu G., Zhou Z. Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol [J]. Journal of Applied Electrochemistry,2008,38(5):695-701.
    [231]Kim I.-T., Lee H.-K., Shim J. Synthesis and Characterization of Pt-Pd Catalysts for Methanol Oxidation and Oxygen Reduction [J]. Journal of Nanoscience and Nanotechnology,2008, 8(10):5302-5305.
    [232]He W., Wu X., Liu J., Zhang K., Chu W., Feng L., Hu X., Zhou W., Xie S. Pt-Guided Formation of Pt-Ag Alloy Nanoislands on Au Nanorods and Improved Methanol Electro-Oxidation [J]. The Journal of Physical Chemistry C,2009,113(24):10505-10510.
    [233]Zhao D., Wang Y.-H., Yan B., Xu B.-Q. Manipulation of Pt□Ag Nanostructures for Advanced Electrocatalyst [J]. The Journal of Physical Chemistry C,2009,113(4):1242-1250.
    [234]Morante-Catacora T. Y., Ishikawa Y., Cabrera C. R. Sequential electrodeposition of Mo at Pt and PtRu methanol oxidation catalyst particles on HOPG surfaces [J]. Journal of Electroanalytical Chemistry,2008,621(1):103-112.
    [235]Wang Z.-B., Zhao C.-R., Shi P.-F., Yang Y.-S., Yu Z.-B., Wang W.-K., Yin G.-P. Effect of a Carbon Support Containing Large Mesopores on the Performance of a Pt-Ru-Ni/C Catalyst for Direct Methanol Fuel Cells [J]. The Journal of Physical Chemistry C,2009,114(1):672-677.
    [236]Zhu J., Cheng F., Tao Z., Chen J. Electrocatalytic Methanol Oxidation of Pt0.5Ru0.5-xSnx/C (x= 0-0.5) [J]. The Journal of Physical Chemistry C,2008,112(16):6337-6345.
    [237]Yang L. X., Allen R. G., Scott K., Christenson P., Roy S. A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation [J]. Journal of Power Sources,2004,137(2):257-263.
    [238]Neburchilov V., Wang H., Zhang J. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC [J]. Electrochemistry Communications,2007,9(7): 1788-1792.
    [239]Iizuka Y., Tode T., Takao T., Yatsu K.-i., Takeuchi T., Tsubota S., Haruta M. A Kinetic and Adsorption Study of CO Oxidation over Unsupported Fine Gold Powder and over Gold Supported on Titanium Dioxide [J]. Journal of Catalysis,1999,187(1):50-58.
    [240]Yu C., Jia F., Ai Z., Zhang L. Direct Oxidation of Methanol on Self-Supported Nanoporous Gold Film Electrodes with High Catalytic Activity and Stability [J]. Chemistry of Materials, 2007,19(25):6065-6067.
    [241]Ferrin P., Mavrikakis M. Structure Sensitivity of Methanol Electrooxidation on Transition Metals [J]. Journal of the American Chemical Society,2009,131(40):14381-14389.
    [242]Hu Y., Zhang H., Wu P., Zhang H., Zhou B., Cai C. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation [J]. Physical Chemistry Chemical Physics,2011, 13(9):4083-4094.
    [243]Luo J., Maye M. M., Kariuki N. N., Wang L., Njoki P., Lin Y., Schadt M., Naslund H. R., Zhong C.-J. Electrocatalytic oxidation of methanol:carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol [J]. Catalysis Today,2005,99(3-4): 291-297.
    [244]Xu C., Wang R., Chen M., Zhang Y., Ding Y. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties [J]. Physical Chemistry Chemical Physics, 2010,12(1):239-246.
    [245]Stafford G. R., Bertocci U. In Situ Stress and Nanogravimetric Measurements During Underpotential Deposition of Pb on (111)-Textured Au [J]. The Journal of Physical Chemistry C.,2007,111(47):17580-17586.
    [246]Burda C., Chen X., Narayanan R., El-Sayed M. A. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chemical Reviews,2005,105(4):1025-1102.
    [247]Demkiv O., Smutok O., Paryzhak S., Gayda G., Sultanov Y., Guschin D., Shkil H., Schuhmann W., Gonchar M. Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase [J]. Talanta,2008,76(4): 837-846.
    [248]Stergiou D. V., Karkabounas S. C., Veltsistas P. G., Evmiridis N. P., Vlessidis A. G. Kinetic-potentiometric assay of formaldehyde in pharmaceutical and industrial samples, monitored by copper solid ion selective electrode, after its reaction with the copper(Ⅱ)-bis-(ethylenediamine) complex [J]. Microchimica Acta,2007,158(1-2):59-64.
    [249]Ensafi A. A., Nazemi Z. Determination of formaldehyde by its catalytic effect on the oxidation of pyrogallol red by bromate using flow-injection spectrophotometric detection [J]. Journal of Analytical Chemistry,2007,62(10):987-991.
    [250]Teixeira L. S. G., Leao E. S., Dantas A.1. F., Pinheiro H. s. L. C., Costa A. C. S., de Andrade J. B. Determination of formaldehyde in Brazilian alcohol fuels by flow-injection solid phase spectrophotometry [J]. Talanta,2004,64(3):711-715.
    [251]Bianchi F., Careri M., Musci M., Mangia A. Fish and food safety:Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis [J]. Food Chemistry, 2007,100(3):1049-1053.
    [252]Michels J. J. Improved measurement of formaldehyde in water-soluble polymers by high-performance liquid chromatography coupled with post-column reaction detection [J]. Journal of Chromatography A,2001,914(1-2):123-129.
    [253]Zhou Z.-L., Kang T.-F., Zhang Y., Cheng S.-Y. Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a Nafion-modified glassy carbon electrode [J]. Microchimica Acta,2009,164(1-2):133-138.
    [254]Jin G.-P., Li J., Peng X. Preparation of platinum nanoparticles on polyaniline-coat multi-walled carbon nanotubes for adsorptive stripping voltammetric determination of formaldehyde in aqueous solution [J]. Journal of Applied Electrochemistry,2009,39(10): 1889-1895.
    [255]Xiao F., Zhao F., Deng L., Zeng B. High electrocatalytic effect of PtAuPd ternary alloy nanoparticles electrodeposited on mercapto ionic liquid film [J]. Electrochemistry Communications,2010,12(5):620-623.
    [256]Herschkovitz Y., Eshkenazi I., Campbell C. E., Rishpon J. An electrochemical biosensor for formaldehyde [J]. Journal of Electroanalytical Chemistry,2000,491(1-2):182-187.
    [257]Wang Q., Zheng J., Zhang H. A novel formaldehyde sensor containing AgPd alloy nanoparticles electrodeposited on an ionic liquid-chitosan composite film [J]. Journal of Electroanalytical Chemistry,2012,674(0):1-6.
    [258]Yuan D., Xu C., Liu Y., Tan S., Wang X., Wei Z., Shen P. K. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation [J]. Electrochemistry Communications,2007,9(10):2473-2478.
    [259]Jia F., Wong K.-w., Zhang L. Electrochemical Synthesis of Nanostructured Palladium of Different Morphology Directly on Gold Substrate through a Cyclic Deposition/Dissolution Route [J]. The Journal of Physical Chemistry C,2009,113(17):7200-7206.
    [260]Chen X., Wu G., Chen J., Chen X., Xie Z., Wang X. Synthesis of "clean"and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide [J]. Journal of the American Chemical Society,2011,133(11):3693-3695.
    [261]Zhu Z.-Z., Wang Z., Li H.-L. Self-assembly of palladium nanoparticles on functional multi-walled carbon nanotubes for formaldehyde oxidation [J]. Journal of Power Sources, 2009,186(2):339-343.
    [262]Shim J. H., Kim J., Lee C., Lee Y. Porous Pd Layer-Coated Au Nanoparticles Supported on Carbon:Synthesis and Electrocatalytic Activity for Oxygen Reduction in Acid Media [J]. Chemistry of Materials,2011,23(21):4694-4700.
    [263]Pawelec B., Cano-Serrano E., Campos-Martin J. M., Navarro R. M., Thomas S.,. Fierro J. L. G. Deep aromatics hydrogenation in the presence of DBT over Au-Pd/y-alumina catalysts [J]. Applied Catalysis A:General,2004,275(1-2):127-139.
    [264]Lee Y. W., Kim M., Kim Y., Kang S. W., Lee J.-H., Han S. W. Synthesis and Electrocatalytic Activity of Au-Pd Alloy Nanodendrites for Ethanol Oxidation [J]. The Journal of Physical Chemistry C,2010,114(17):7689-7693.
    [265]Safavi A., Farjami F. Electrochemical Design of Ultrathin Palladium Coated Gold Nanoparticles as Nanostructured Catalyst for Amperometric Detection of Formaldehyde [J]. Electroanalysis,2011,23(8):1842-1848.
    [266]Wang J., Pedrero M., Cai X. Palladium-doped screen-printed electrodes for monitoring formaldehyde [J]. Analyst,1995,120(7):1969-1972.
    [267]Cai X., Kalcher K. Studies on the electrocatalytic reduction of aliphatic aldehydes on palladium-modified carbon paste electrodes [J]. Electroanalysis,1994,6(5-6):397-404.
    [268]Wang J., Pamidi P. V. A., Cepria G. Electrocatalysis and amperometric detection of aliphatic aldehydes at platinum-palladium alloy coated glassy carbon electrode [J]. Analytica Chimica Acta,1996,330(2-3):151-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700