用户名: 密码: 验证码:
有机薄膜晶体管气体传感器的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机薄膜晶体管(Organic Thin-Film Transistors, OTFT)气体传感器是近年来国际上化学传感领域发展较为迅速的一种新型气体传感器,相较于传统气体传感器具有很多独特的优势,如尺寸小、成本低、制备工艺简单、多参数检测、便于集成等。本文以薄膜晶体管为传感器件,在对器件制备工艺和结构参数进行优化的基础上,对OTFT电学特性和OTFT气体传感器的气敏特性进行了系统的研究,同时对其气敏机理进行了深入的分析研究。其主要内容包括以下几个方面:
     1.以n型重掺杂硅外延片作为衬底,热氧化二氧化硅(SiO_2)作为绝缘层,具有叉指电极结构的钛/金电极作为源极和漏极制备了薄膜晶体管器件。设计了不同的绝缘层厚度(125nm、195nm和300nm)和不同沟道宽长比(40、160和640),采用真空蒸发镀膜工艺分别在在薄膜晶体管上制备了酞菁铜(CopperPhthalocyanine, CuPc)和α-六噻吩(α-Sexithiophene,α-6T)作为有机有源层,首次研究了绝缘层厚度对于OTFT气敏性能的影响,同时对沟道宽长比的影响也进行了测试分析。测试结果表明,当绝缘层厚度为125nm、沟道宽长比为160时,OTFT气体传感器表现出最优的电学和气敏特性,利用OTFT的载流子传输理论对测试结果进行了分析。
     2.对金属酞菁薄膜晶体管的气敏特性和敏感机理进行了系统研究。研究了CuPc薄膜晶体管气体传感器对H2S气体的气敏性能,该传感器在室温下对H2S表现出较好的响应/恢复特性、重复性和选择性。实验过程中分析发现,空气中的氧对于有机薄膜晶体管气体传感器的性能具有重要作用,气体分子的极性和得失电子能力的强弱直接影响器件对气体响应的大小。同时对基于p型的CuPc、酞菁钴(Cobalt Phthalocyanine, CoPc)和n型十六氟酞菁铜(CopperHexadecafluorophthalocyanine,F_(16)CuPc)OTFT的电学特性和对甲基磷酸二甲酯(Dimethyl methylphosphonate,DMMP)的气敏响应进行了测试;测试结果表明,CoPc和F_(16)CuPcOTFT均具有良好的电学性能,但对相同浓度的DMMP响应均低于CuPcOTFT,这是因为CuPc薄膜中的Cu离子对DMMP具有一定的催化降解作用,从而对DMMP表现出较好的响应。
     3.在薄膜晶体管上采用气喷镀膜工艺制备了聚(3-己基噻吩)(Poly(3-hexylthiophene),P3HT)/氧化锌(ZnO)纳米颗粒有机/无机复合薄膜,研究了该传感器在室温下对甲醛(Formaldehyde,HCHO)气体的响应特性;结果表明,P3HT/ZnO复合薄膜晶体管相比于P3HT薄膜晶体管对甲醛表现出更大的响应和恢复特性,这是因为P3HT/ZnO复合薄膜的多孔三维网状结构为甲醛气体分子提供了更多的吸附位,从而有利于甲醛的吸附和解析,同时n型ZnO与p型P3HT在接触界面形成了pn异质结,其界面累积的载流子能有效弥补半导体薄膜中的缺陷,从而有助于电子/空穴的传输,在一定程度上提高了器件的性能。不同气喷量和复合薄膜中ZnO纳米材料的含量对复合薄膜的形貌及气敏性能有一定影响;优化后的P3HT/ZnO复合薄膜OTFT对甲醛气体表现出良好的响应/恢复特性、重复性和选择性,但稳定性能有待进一步提高。此外,对比分析了P3HT/ZnO、P3HT/Fe_2O_3和P3HT/InSnO复合薄膜晶体管对甲醛的气敏特性,实验结果表明,P3HT/ZnO薄膜晶体管具有最优的气敏性能,结合纳米材料的尺寸和能带宽度、器件的电学特性对测试结果进行了深入的分析。
     4.对基于P3HT-ZnO异质结结构分层薄膜和P3HT/ZnO复合薄膜的薄膜晶体管的气敏性能进行了对比,结果表明P3HT/ZnO复合薄膜晶体管在室温下对NO_2气体的气敏性能明显优于P3HT-ZnO异质结器件,结合薄膜形貌和载流子传输机理进行了分析。F_(16)CuPc-CuPc异质结薄膜晶体管对NO_2气体具有一定的响应,但并未表现出恢复特性,其性能有待进一步的深入研究。
Organic Thin Film Transistors (OTFT) gas sensor is a novel and fast developinggas sensor device at the field of international chemical sesors in recent years. OTFT gassensor has many distinctive advantages compared with other traditional gas sensors,such as small size, low cost, simple fabricated technology, multi-parameter detection,easy integration. This dissertation adopted OTFT as sensing component, and carried outa series of research at the electrical characteristics of OTFT and sensing properties ofOTFT gas sensor on the basis of the fabrication technology and parameter optimizationof the device. The main content includes following points:
     1. Thin-Film Transistors were made in a bottom contact configuration on aSb-doped n+-type Czochralski (CZ)-grown silicon wafer. The gate dielectric layer wasthermal SiO_2. The source and drain interdigital electrodes were formed by depositingtitanium (Ti) film (20nm) and gold (Au) film (50nm) on the top of the gate dielectric.During the fabrication process of TFT, different thickness of the insulator layer (125nm,195nm and300nm) and different ratios of channel width to length (40,160and640)were designed. Copper Pthalocyanine (CuPc) and α-Sexithiophene (α-6T) weredeposited onto the electrode layer and used as the organic active layer by vacummevaporation. CuPc TFTs were used to investigate the dependence of electricalcharacteristics and sening properties to H2S gas on the thickness of the insulator layer atroom temperature. α-6T TFTs were used to investigate the dependence of electricalcharacteristics and sening properties to NO_2gas on the channel parameters at roomtemperature. The results showed that the TFTs with195nm thick-insulator layer and160ratio of channel width to length exhibite the optimal electrical characteristics andsening properties. Carrier transport theory of OTFT was used to understand themechanism of this process and results.
     2. The gas-sensing properties and sensing mechanism of TFT based metalpthalocyanines were investigated systematically. The TFT based CuPc (p type)semiconductor film was fabricated to study its sensing properties to H2S. The resultsshowed that CuPc TFT exhibited good response/recovery, repeatability and selectivity at room temperature. It was found that oxygen in air played important roles in theproperties of OTFT gas sensor combing with surface morphology of CuPc film. Thepolarities and abilities of donating or trapping electrons of gas molecur influenced thesensing response of OTFT gas sensor directly. At the same time, CuPc, CobaltPhthalocyanine (CoPc, p type) and Copper Hexadecafluorophthalocyanine (F_(16)CuPc, ntype) were fabricated on TFTs to study their electrical characteristics and seningproperties to nerve agent simulants-dimethyl methylphosphonate (DMMP). The resultsshowed that the CoPc and F_(16)CuPc TFTs exbihited good electrical characteristics, butshowed weaker response to DMMP with same concentration compared with CuPc TFT.The Cu ion in CuPc may be helpful to the catalysis and degradation of DMMP andCuPc TFT exhibited better respone.
     3. Poly (3-hexylthiophene)(P3HT) composite materials were fabricated on TFTs asactive layer by spray-deposited method. The sening properties to formaldehyde (HCHO)of P3HT/ZnO composite TFTs were investigated. The results showed that P3HT/ZnOcomposite TFT exhibited better response and recovery to HCHO compared with P3HTTFT. The surface morphology revealed that the P3HT/ZnO composite film exhibitedthree-dimensional network structure and existed many holes, which provided adsorptionsites and helped to the adsorption and desorption of HCHO gas molecules. The interfaceof n type ZnO and p type P3HT formed p-n heterojunction. The carriers accumulated atthe interfaces could make up the defects of semiconductor film effectively and benefitedthe transport process of electrons or holes, which improved the electrical and sensingcharacteristies to some extent. It was found that the different airbrush mass (thethickness of film) and the ratio of ZnO in P3HT/ZnO composite had dependence onmorphology of the film and the properties of OTFT gas sensor. The optimizedP3HT/ZnO composite film TFT exhibited good response/recovery, repeatability andselectivity at room temperature, but the stability needed further improvements.Moreover, P3HT/iron oxide (Fe_2O_3) and P3HT/indium oxide/tin oxide (simpled asInSnO) TFTs were fabricated with the same technology and compared with P3HT/ZnOTFTs. The results showed that P3HT/ZnO TFTs exhibited optimum electrical andHCHO-sensing properties. The size and energy band of nano-materials and theelectrical properties were adapted to analyze the experiment results.
     4. The gas sensing properties of P3HT-ZnO heretolunction TFTs and P3HT/ZnO composite film TFTs were compared and analyzed. The results showed these twodevices had good electrical characteristics. But P3HT-ZnO heretolunction TFTsexhibited weaker response to NO_2than P3HT/ZnO composite TFTs at room temperature.The morphology of film and carrier transport theory were considered to analyze thereason. F_(16)CuPc-CuPc heretolunction TFTs showed some response and no recovery toNO_2at room temperature. The properties of F_(16)CuPc-CuPc heretolunction TFTs neededfurther researches.
引文
[1]范茂军.传感器技术[M].北京:国防工业出版社,2008,1-4
    [2]潘小青,刘庆成.气体传感器及其发展[J].东华理工学院学报,2004,27(1):89-93
    [3]吴玉峰,田彦文,韩元山,等.气体传感器研究进展和发展方向[J].计算机测量与控制,2003,11(10):731-734
    [4] J. T. Mabeck, G. G. Malliaras. Chemical and biological sensors based on organic thin-filmtransistors[J]. Analytical and Bioanalytical Chemistry,2006,384:343-353
    [5]倪星元,张志华.传感器敏感功能材料及应用[M].北京:化学工业出版社,2005,166-172
    [6]蒋亚东,谢光忠.敏感材料与传感器[M].成都:电子科技大学出版社,2008,181-207
    [7]李冬梅,黄元庆,张佳平.集中常见气体传感器的研究进展[J].传感器世界,2006,1:6-11
    [8]高桥清,小长井诚编著,秦起佑,蒋冰译.传感器电子学[M].北京,宇航出版社,1987,1-8
    [9]何杰,夏建白.半导体科学与技术[M].北京:科学出版社,2007:524-554
    [10] P. K. Weimer. The TFT a new thin-film transistor[J]. Proceedings of the IRE,1962,50(6):1462-1469
    [11] G. Horowitz. Organic field-effect transistors[J]. Advanced Materials,1998,10(5):365-377
    [12]张霖,钟建.有机薄膜晶体管及其在传感器方面的应用[J].强激光与离子束,2012,24(7):1523-1527
    [13] A. Tsumura, H. Koezuka, T. Ando. Macromolecular electronic device: Field‐effect transistorwith a polythiophene thin film[J]. Applied Physics Letters,1986,49(18):1210-1212
    [14] H. Koezuka, A. Tsumura, T. Ando. Field-effect transistor with polythiophene thin film[J].Synthetic Metals,1987,18(1–3):699–704
    [15] A. Tsumura, H. Koezuka, T. Ando. Polythiophene field-effect transistor: Its characteristics andoperation mechanism[J]. Synthetic Metals,1988,25(1):11–23
    [16] H. Koezuka, A. Tsumura. Field-effect transistor utilizing conducting polymers[J]. SyntheticMetals,1989,28(1–2):753–760
    [17] G. Horowitz, D. Fichou, X. Peng, et al. A field-effect transistor based on conjugatedalpha-sexithienyl[J]. Solid State Communications,1989,72(4):381-384
    [18] F Garnier, R Hajlaoui, A Yassar,et al. All-polymer field-effect transistor realized by printingtechniques[J]. Science,1994,265(5179):1684-1686
    [19] A.Dodabalapur, H.E. Katz, L.Torsi, et al. Organic heterostructure field-effect transistors[J].Science (New York),1995,269(5230):1560-1562
    [20] A. Dodabalapur, J. Laquindanum, H.E. Katz, et al. Complementary circuits with organictransistors[J]. Applied Physics Letters,1996,69(27):4227-4229
    [21] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, et al. Stacked pentacene layer organic thin-filmtransistors with improved characteristics[J]. Electron Device Letters,1997,18(12):606-608
    [22] T. N. Jackson, Y. Y. Lin, D.J. Gundlach, et al. Organic thin-film transistors for organiclight-emitting flat-panel display backplanes[J]. IEEE Journal of Selected Topics in QuantumElectronics,1998,4(1):100-104
    [23] M. G.Kane, J. Campi, M. S. Hammond, et al. Analog and digital circuits using organicthin-film transistors on polyester substrates[J]. Electron Device Letters,2000,21(11):534-536
    [24] C. D. Sheraw, J. A. Nichols, D. J. Gundlach, et al. An organic thin film transistor backplane forflexible liquid crystal displays[C].58th Device Research Conference, Denver,2000,107-108
    [25] T. N. Jackson. Organic thin film transistors-electronics anywhere[C]. Semiconductor DeviceResearch Symposium, Washington,2001,340-343
    [26] C. D. Sheraw, L. Zhou, J. R. Huang, et al. Organic thin-film transistor-driven polymer-dispersedliquid crystal displays on flexible polymeric substrates[J]. Applied Physics Letters,2002,80(6):1088-1090
    [27] D. J. Gundlach, L. J. Li, T. N. Jackson. Pentacene TFT with improved linear regioncharacteristics using chemically modified source and drain electrodes[J]. Electron DeviceLetters,2001,22(12):571-573
    [28] P. V. Necliudov, M. S. Shur, D. J. Gundlach, et al. Contact resistance extraction in pentacenethin film transistors[J]. Semiconductor Device Research Symposium, Washington,2001,345-348
    [29] D. J. Gundlach, J. A. Nichols, L. Zhou, et al. Thin-film transistors based on well-orderedthermally evaporated naphthacene films[J]. Applied Physics Letters,2002,80(16):2925-2927
    [30] C. Gray, J. Wang, G. Duthaler, et al. Screen printed organic thin film transistors (OTFTs) on aflexible substrate[C]. Proc. SPIE: Organic Field Effect Transistors, San Diego,2001,4466:89-94
    [31] C. Bartic, H. Jansen, A. Campitelli, et al. Ta2O5as gate dielectric material for low-voltageorganic thin-film transistors[J]. Organic Electronics,2002,3(2):65-72
    [32] F. Chen, C. Chu, J. He, et al. Organic thin-film transistors with nanocomposite dielectric gateinsulator[J]. Applied Physics Letters,2004,85(15):3295-3297
    [33] Y. H. Kim, D. G. Moon, J. I. Han. Organic TFT array on a paper substrate[J]. Electron DeviceLetters,2004,25(10):702-704
    [34] J. Jang, S. H. Han.High-performance OTFT and its application[J].Current Applied Physics,2006,6(1):17-21
    [35] A. D. Carlo, F. Piacenza, A. Bolognesi, et al. Influence of grain sizes on the mobility of organicthin-film transistors[J]. Applied Physics Letters,2005,86(26):265301-265301-3
    [36] M. C. Kwan, K. K. Cheng, P. T. Lai, et al. Enhanced mobility for pentacene TFT built onNH3-annealed thermally grown SiO2[C].2005IEEE Conference On Electron Devices AndSolid-State Circuits, Kong Hong,2010,567-570
    [37]胡文平,刘云圻.有机薄膜场效应晶体管[J].物理,1997,11:649-653
    [38]袁剑峰,闫东航,许武.有源层厚度对CuPc-OTFT器件性能的影响[J].液晶与显示,2004,1:14-18
    [39]袁剑峰,闫东航,许武.有机薄膜晶体管阈值电压漂移现象的研究[J].液晶与显示,2004,3:168-173
    [40]胡远川.有机薄膜场效应晶体管及其载流子传输特性[D].北京:清华大学,2004,4-10
    [41] Y. C. Hu, G. F. Dong, L. D. Wang, et al. Organic Light-Emitting Diodes Driven by OrganicTransistors[J]. Chinese Physics Letters,2004,21:723
    [42]耿延候,田洪坤.高迁移率有机薄膜晶体管材料进展[J].分子科学学报,2005,21(6):15-20
    [43]彭俊彪,兰林锋,杨开霞,等. Ta2O5的氢热处理对有机薄膜晶体管性能的影响[J].华南理工大学学报:自然科学版,2006,10:105-108
    [44] C. H. Chang, C. H. Chien, J. Y. Yang. Pentacene-based thin-film transistors with multiwalledcarbon nanotube source and drain electrodes[J]. Applied Physics Letters,2007,91(8):083502-083502-3
    [45]刘翔,邓振波,王章涛,等.有机薄膜晶体管(OTFT)的研究进展[J].现代显示,2007,82:54-60
    [46]史永晶,唐正宁.基于喷墨印刷的OTFT的制备与性能研究[J].包装工程,2009,1:84-86
    [47] P. Y. Lo, P. We. Li, Z. W. Pei, et al. Enhanced P3HT OTFT Transport Performance UsingDouble Gate Modulation Scheme[J]. Electron Device Letters,2009,30(6):629-631
    [48]严剑飞,吴志明,太惠玲,等.有机薄膜晶体管钛/金电极的刻蚀工艺研究[J].功能材料,2010, A02:361-364
    [49]严剑飞,吴志明,太惠玲,等.不同沟道宽长比有机薄膜晶体管性能的研究[J].半导体光电,2011,1:52-55
    [50]严剑飞,吴志明,太惠玲,等. CuPc有机薄膜晶体管稳定性研究[J].半导体光电,2011,2:168-171
    [51]陈卫兵,徐静平,邹豪杰,等. NO退火对并五苯有机薄膜晶体管特性的改善[J].华中科技大学学报:自然科学版,2010,7:66-69
    [52] Y. Wen, Y. Liu. Recent progress in n-channel Organic Thin-Film Transistors[J]. AdvancedMaterials,2010,22:1331-1345
    [53] L. F. Deng, P. T. Lai, W. B Chen, et al. Effects of different annealing gases on pentacene OTFTWith HfLaO gate dielectric[J]. Electron Device Letters,2011,32(1):93-95
    [54]王晓鸿,徐琼,夏亮,等.制备方法对共混物有机薄膜晶体管性能的影响[J].现代显示,2010,10:45-48.
    [55]陈金伙,李文剑,程树英. OTFT开关比对有源层厚度、杂质浓度间制约关系的影响研究[J].贵州大学学报:自然科学版,2012,4:71-76
    [56] H. Laurs, G. Heiland. Electrical and optical properties of phthalocyanine films[J]. Thin SolidFilms,1987,149:129-142
    [57] A. Assadi, G. Gustafsson, M. Willander, et al. Determination of field-effect mobility ofpoly(3-hexylthiophene) upon exposure to NH3gas[J]. Synthetic Metals,1990,37(1-3):123-130
    [58] L. Torsi, A. Dodabalapur, L.Sabbatini, et al. Multi-parameter gas sensors based on organicthin-film-transistors[J]. Sensors and Actuators B: Chemical,2000,67:312–316
    [59] L. Torsi, N. Cioffi, C. D. Franco, et al. Organic thin film transistors: from active materials tonovel applications[J]. Solid State Electronics,2001,45:1479-1485
    [60] L. Torsi, A. Dodabapur, N. Cioffi, et al. NTCDA organic thin-film transistor as humidity sensor:weaknesses and strengths[J]. Sensors and Actuators B: Chemical,2001,77:7-11
    [61] B. Crone, A. Dodabalapur, A. Gelperin, et al. Electronic sensing of vapors with organictransistors[J]. Applied Physics Letters,2001,78(15):2229-2231
    [62] L. Torsi, A. J. Lovinger, B. Crone, et al. Correlation between oligothiophene thin film transistormorphology and vapor responses[J]. The Journal of Physical Chemistry,2002,106(48):12563-12568
    [63] L. Torsi, A. Tafuri, N. Cioffi, et al. Regioregular polythiophene field-effect transistors employedas chemical sensors[J]. Sensors and Actuators B:Chemical,2003,93:257–262
    [64] L. Torsi, M. C. Gallazzi, N. Cioffi, et al. Alkoxy-substituted polyterthiophene thin-filmtransistors as alcohol sensors[J]. Sensors and Actuators B: Chemical,2004,98(2-3):204–207
    [65] F. Marinelli, A. D. Aquila, L. Torsi, et al. An organic field effect transistor as a selective NOxsensor operated at room temperature[J]. Sensors and Actuators B: Chemical,2009,140(2):445-450
    [66] M. Bouvet, A. Leroy, J. Simon, et al. Detection and titration of ozone usingmetallophthalocyanine based field effect transistors[J]. Sensors and Actuators B: chemical,2001,72:86-93
    [67] Z. T. Zhu, J. T. Mason, R. Dieckmann, et al. Humidity sensors based on pentacene thin-filmtransistors[J]. Applied Physics Letters,2002,81(24):4643-4645
    [68] F. Liao, C. Chen, V. Subramanian. Organic TFTs as gas sensors for electronic noseapplications[J]. Sensors and Actuators B: Chemical,2005,107:849-855
    [69] B. J. Chang, V. Liu, V. Subramanian. Printable polythiophene gas sensor array for low-costelectronic noses[J]. Journal of Applied physics,2006,100(1):014506-014506-7
    [70] J. T. Mabeck, G. G. Malliaras. Chemical and biological sensors based on organic thin-filmtransistors[J]. Analytical and Bioanalytical Chemistry,2006,384(2):343-353
    [71] J. B. Chang. Functionalized polythiophene thin-film transistors for low-cost gas sensorarrays[M]. American,University of California at Berkeley,2006
    [72] J. B. Chang, V. Liu, V. Subramanian, et al. Printable polythiophene gas sensor array forlow-cost electronic noses[J]. Journal of Applied Physics,2006,100(1):014506-014506-7
    [73] B. Li, D. N. Lambeth. Chemical sensing using nanostructured polythiophene transistors[J].Nano Letters,2008,8(11):3563-3567
    [74] M. D. Angione, F. Marinelli, A. D. Aquila, et al. Organic thin-film transistors with enhancedsensing capabilities[J]. Interface Controlled Organic Thin Films,2009,217-224
    [75] Y. Park, K. Y. Dong, J. Lee, et al. Development of an ozone gas sensor using single-walledcarbon nanotubes[J]. Sensors and Actuators B: Chemical,2009,140(2):407–411
    [76] J. W. Jeong, Y. D. Lee,Y. M. Kim,et al.The response characteristics of a gas sensor basedon poly-3-hexylithiophene thin-film transistors[J].Sensors and Actuators B: Chemical,2010,146(1):40–45
    [77] S. Tiwari, A. K. Singh, L. Joshi, et al. Poly-3-hexylthiophene based organic field-effecttransistor: Detection of low concentration of ammonia[J]. Sensors and Actuators B: Chemical,2012,171-172:962-968
    [78] E. R. James, D. K. Erik, C. Zhang, et al. Organic thin-film transistors for selective hydrogenperoxide and organic peroxide vapor detection[J]. The Journal of Physical Chemistry C,2012,116(46):24566–24572
    [79]易惠中.气体传感器中的厚薄膜技术[J].传感器技术,1992,1:1-7
    [80] Y. J. Zhang, W. P. Hu. Field-effect transistor chemical sensors of single nanoribbon of copperphthalocyanine[J]. Science in China Series B: Chemistry,2009,52(6):751-754
    [81] H. W. Zan, M. Z. Dai, T. Y. Hsu, et al. Porous organic TFTs for the applications on real-timeand sensitive gas sensors[J]. Electron Device Letters,32(8):1143-1145
    [82]谢丹,蒋亚东,姜健壮,等.基于电荷流动晶体管的新型气敏传感器[J].半导体学报,2001,22(7):933-937
    [83]谢丹,蒋亚东,姜健壮,等.一种新型气敏传感器的研究[J].电子学报,2001,29(8):1083-1085
    [84] D. Xie, Y. Jiang, J. Jiang, et al. Gas sensitive Langumuir-Blodgett films based on erbiumbis[octakis(octyloxy)phthalocyaninato] complex[J]. Sensors and Actuators B: Chemical,2001,77:260-263
    [85] B. Liu, G. Xie, X. Du, et al. Pentacene based organic thin-film transistor as gas sensor[C].Apperceiving Computing and Intelligence Analysis, Cheng Du,2009,1-4
    [86] B. Liu, G. Xie, Xi. Du, et al. Poly(3-hexylthiophene) based Organic field-effect transistor asNO2gas sensor[C]. International Conference on Optical Instruments and Technology, ChengDu,2009,7508
    [87] S. Fu, G. Xie, H. Tai, et al. α-sexithiophene based organic thin film transistors as gas sensor[C].Apperceiving Computing and Intelligence Analysis, Cheng Du,2010,105-108
    [88]陈裕泉,葛文勋.现代传感器原理及应用[M].北京:科学出版社,2007,53-56
    [89] G. Horowitz. Interfaces in organic field-effect transistors[J]. Advanced Polymer Science,2010,223:113-153
    [90] M. J. Panzer, C. D. Frisbie. High carrier density and metallic conductivity in poly (3‐hexylthiophene) achieved by electrostatic charge injection[J]. Advanced Functional Materials,2006,16(8):1051-1056
    [91] R. Ye, M. Baba, K. Suzuki, et al. Effect of O2and H2O on electrical characteristics of pentacenethin film transistors[J]. Thin Solid Films,2004,264-465:437-440
    [92]刘博.有机薄膜晶体管气体传感器的制备及特性研究[D].成都:电子科技大学,2010
    [93]袁剑锋.酞菁铜有机场效应管器件性能的研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2005
    [94]聂国政.有机薄膜晶体管制备和性能研究[D].广州:华南理工大学,28-43
    [95] S. M. Sze, K. K. Ng. Physics of semiconductor devices[D]. New York: Wiley-Interscience,2006:90-101
    [96] C. R. Newman, C. D. Frisbie, D. A. Silva Filho, et al. Introduction to organic thin filmtransistors and design of n-channel organic semiconductors[J]. Chemical Materials,2004,16:4436-4451
    [97] A. Facchetti, M. H. Yoon, T. J. Marks. Gate dielectrics for organic field-effect transistors: newopportunities for organic electronics[J]. Advanced Materials,2005,17(14):1705-1725
    [98] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, et al. Low-voltage organic transistorson plastic comprising high-dielectric constant gate insulators[J]. Science,1999,283(5403):822-824
    [99] L. A. Majewski, R. Schroeder, M. Grell, et al. High capacitance organic field-effect transistorswith modified gate insulator surface[J]. Journal of Applied Physics,2004,96(10):5781-5787
    [100] W. H. Ha, M. H. Choo, S. Im. Electrical properties of Al2O3film deposited at lowtemperatures[J]. Journal of Non-Crystalline Solids,2002,303(1):78–82
    [101] J. Lee, K. Kim, J. H. Kim, et al. Optimum channel thickness in pentacene-based thin-filmtransistors[J]. Applied Physics Letters,2003,82(23):4169-4171
    [102] G. Wang, D. Mosed, A. J. Heeger, et al. Poly(3-hexylthiophene) field-effect transistors withhigh dielectric constant gate insulator[J]. Journal of Applied Physics,2004,95(1):316-322
    [103] S. J. Kang, K. B. Chung, D. S. Park, et al. Fabrication and characterization of the pentacenethin film transistor with a Gd2O3gate insulator[J]. Synthetic Metals,2004,146(3):351–354
    [104] M. H. Yoon, H. Yan, A. Facchetti, et al. Low-voltage organic field-effect transistors andinverters enabled by ultrathin cross-linked polymers as gate dielectrics[J]. Journal of theAmerican Chemical Society,2005,127(29):10388-10395
    [105] J. Veres, S. Ogier, G. Lloyd, et al. Gate Insulators in Organic Field-Effect Transistors[J].Chemistry of Materials,2004,16(23):4543-4555
    [106] S. Y. Park, M. Park, H. H. Lee. Cooperative polymer gate dielectrics in organic thin-filmtransistors[J]. Applied Physics Letters,2004,85(12):2283-2285
    [107] A. Maliakal, H. Katz, P. M. Cotts, et al. Inorganic Oxide Core, polymer shell nanocompositeas a high K gate dielectric for flexible electronics applications[J]. Journal of the AmericanChemical Society,2005,127(42):14655-14662
    [108] L. Burgi, T. J. Richards, R. H.Friend, et al. Close look at charge carrier injection in polymerfield-effect transistors[J]. Journal of Applied Physics,2003,94(9):6129-6137
    [109] S. H. Li, C. W. Chen, V. Shrotriya, et al. High-performance organic thin-film transistors withmetal oxide/metal bilayer electrode[J]. Applied Physics Letters,2005,87(19):193508-193508-3
    [110] D. J. Gundlach, L. J. Li, T. N. Jackson. Pentacene TFT with improved linear regioncharacteristics using chemically modified source and drain electrodes[J]. Electron DeviceLetters,2001,22(12):571-573
    [111] E. Becker, R. Parashkov, G. Ginev, et al. All-organic thin-film transistors patterned by meansof selective electropolymerization[J]. Applied Physics Letters,2003,83(19):4044-4046
    [112] J. H. Cho, J. Lee,Y. Xia, et al. Printable ion-gel gate dielectrics for low-voltage polymerthin-film transistors on plastic[J]. Nature Materials,2008,7:900-906
    [113] Y. C. Li, Y. J. Lin, C. Y. Wei, et al. Ambipolar characteristics of the polyaniline–poly(styrenesulfonic acid)-based organic thin film transistor via poly(vinyl alcohol) interfacemodification[J]. Solid-State Electronics,2013,79:56-59
    [114] Z. Bao, A. J. Lovinger, J. Brown. New air-stable n-channel organic thin film transistors[J].Journal of the American Chemical Society,1998,120:207-208
    [115] T. Mills, L. G. Kaake, X. Y. Zhu. Polaron and ion diffusion in a poly(3-hexylthiophene)thin-film transistor gated with polymer electrolyte dielectric[J]. Applied Physics A: MaterialsScience and processing,2009,95:291-296.
    [116] D. R. Hines, A. Southard, M. S. Fuhrer. Poly(3-hexylthiophene) thin-film transistors withvariable polymer dielectrics for transfer-printed flexible electronics[J]. Journal of AppliedPhysics,104(2):024510-024510-5
    [117] Y. G. Seol, J. G. Lee, N.-E. Lee. Electrical characteristics of poly(3-hexylthiophene) organicthin film transistor with electroplated metal gate electrodes on polyimide[J]. Thin Solid Films,2007,515(12):5065-5069
    [118] J. Ho, A. Rose, T. Swager, et al. Solid-state chemosensitive organic devices for vapor-phosedetection[J]. New York: Springer, Organic Semiconductors in sensor application,2008,141-184
    [119] A. Dell’Aquila, P. Mastrorilli, C. F. Nobile. Oligothipphenes bearing polar groups for organicthin film transistors: synthesis, characterization and preliminary gas sensing results[C].2ndInternational Workshop on Advances in Sensors and Interface, Italy,2007:1-4
    [120] S. Ikeda, K. Saiki, Y. Wada, et al. Graphoepitaxy of sexithiophene and orientation control bysurface treatment[J]. Journal of Applied Physics,2008,103:084313-084313-9
    [121] A. Dodabalapor, L.Torsi, H. E. Katz. Organic transistors: two-dimensional transport andimproved electrical characteristics[J]. Science,1995,268:270-271.
    [122] L. Torsi, A. Dodabalapur, H. E. Katz. An analytical model for short-channel organic thin-filmtransistors[J]. Journal of Applied Physics,1995,78(2):1088-1093
    [123] J. H. Schon, S. Berg, Ch. Kloc, et al. Ambipolar pentacene Field-Effect Transistors andInverters[J]. Science,2000,287(5455):1022-1023
    [124] H. Klauk, M. Halik, U. Zschiechang, et al. High-mobility polymer gate dielectric pentacenethin film transistors[J]. Journal of Applied Physics,2002,92(9):5259-5263
    [125] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, et al. Pentacene-based organic thin-film transistors[J].IEEE transaction of electron devices,1997,44(8):1325-1331
    [126] S. Wo, B. Wang, H. Zhou, et al. Structure of a pentacene monolayer deposited on SiO2: role oftrapped interfacical water[J]. Journal of Applied Physics,2006,100:093504-093504-5
    [127] D. Knipp, R. A. Street, A. Volkel, et al. Pentacene thin film transistors on inorganic dielectrics:morphology, structural, properties, and electronic transport[J]. Journal of Applied Physics,2003,93(1):347-355
    [128] J. Yuan, J. Zhang, J. Wang, et al. Bottom-contact organic field-effect transistors havinglow-dielectric layer under source and drain electrodes[J]. Applied Physics Letters,2003,82(22):3967-3969
    [129] R. D. Yang, J. Park. Ultralow drift in organic thin-film transistor chemical sensors by pulsedgating[J]. Journal of Applied Physics,2007,102:034515-034515-7
    [130] J. Zhang, J. Wang, H. Wang, et al. Organic thin-film transistors in sandwich configuration[J].Applied Physics Letters,2004,84(1):142-144
    [131] R. D. Yang, T. Gredig, C. N. Colesniuc, et al. Ultrathin organic transistors for chemicalsensing[J]. Applied Physics Letters,2007,90:263506-263506-3
    [132] R. B. Chaabane, A. Ltaief, C. Dridi, et al.Study of organic thin film transistors based on nickelphthalocyanine: effect of annealing[J]. Thin Solid Films,2003,427(1-2):371-376
    [133] R. B. Chaabane, A. Ltaief, L. Kaabi, et al. Influence of ambient atmosphere on the electricalproperties of organic thin film transistors[J]. Materials Science and Engineering: C,2006,26(2-3):514-518
    [134]易惠中.气敏功能材料的开发和应用[J].功能材料,1991,22(5):286-293
    [135]应智花.甲基膦酸二甲酯质量敏感型气体传感器的制备及特性研究[D].成都:电子科技大学,2008,46-47
    [136]太惠玲.导电聚合物纳米复合薄膜的制备及其氨敏特性研究[D].成都:电子科技大学,2008,30-38
    [137]马戎,周王民,陈明.气体传感器的研究及发展方向[J].航空计测技术,2004,24(4):1-4
    [138]杨邦朝.薄膜材料与薄膜技术的发展动向[J].电子元件与材料,1994,13(5):1-6
    [139] T. Someya, A. Dodabalapur, J. Huang, et al. Chemical and physical sensing by organicfield-effect transistors and related devices[J]. Advanced Materials,2010,22:3799-3811
    [140] F. I. Bohrer, A. Sharoni, C. Colesniuc, et al. Gas sensing mechanism in chemiresistive Cobaltand Metal-Free Phthalocyanine thin films[J]. Journal of American Chemical Society,2007,129:5640-5646
    [141] R. D. Yang, J. Park, C. N. Colesniuc, et al. Analyte chemisorption and sensing on n-andp-channel copper phthalocyanine thin-film transistors[J]. The Journal of Chemical Physics,2009,130:164603-164603-8
    [142] T. A. Jonges, B. Bott, S. C. Thorpe. Fast response metal phthalocyanine-based gas sensors[J].Sensors and Actuators,1989,17:467-474
    [143] P. B. M. Archer, A. V. Chadwick, J. J. Miasik, et al. Kinetic factors in the response oforganometallic semiconductor gas sensors[J]. Sensors and Actuators,1989,16:379-392
    [144]严剑飞.有机薄膜晶体管器件的设计与制备[D].成都:电子科技大学,2011,19-31
    [145]王希义.真空蒸发镀膜[J].物理实验,1996,7(5):201-202
    [146]林杰,亚振国,丁国利,等.真空蒸发镀膜技术的应用[J].煤矿机械,2000,2:24-25
    [147] G. Guillaud, J. Simon, J. P. Germain. Metallophthalocyanines gas sensors, resistors and fieldeffect transistors[J]. Coordination Chemistry Reviews,1998,178-180:1433-1484
    [148] M.-S. Liao, S. Scheiner. Electronic structure and bonding in metal phthalocyanines, Metal=Fe,Co, Ni, Cu, Zn, Mg[J]. Journal of Chemical Physics,2001,144(22):9780-9791
    [149] J. W. H. Smith, I. G. Hill. Influence of SiO2dielectric preparation on interfacial trap density inpentacene-based organic thin-film transistors[J]. Journal of Applied Physics,2007,101:044503-044503-6
    [150] C. Erlen, F. Brunetti, P. Lugli, et al. Trapping effects in organic thin film transistors[C]. SixthIEEE Conference on Nanotechnology, Danvers,2006,82-85
    [151] M. C. Tanese, D. Fine, A. Dodabalapur, et al. Interface and gate bias dependence responses ofsensing organic thin-film transistors[J]. Biosensors and Bioelectronics,2005,21:782–788
    [152] J. B. Koo, J. H. Lee, C. H. Ku, et al. The effect of channel length on turn-on voltage inpentacene-based thin film transistor[J]. Synthetic Metals,2006,156:633-636
    [153]付嵩琦. OTFT器件及气敏性能研究[D].成都:电子科技大学,2011,25-34
    [154]孙萍.有毒有害气体传感器及阵列研究[D].成都:电子科技大学,2010,54-55
    [155] E. T. Zellers, M. Han. Effects of temperature and humidity on the performance ofpolymer-coated surface acoustic wave vapor sensor arrays[J]. Analytical Chemistry,1996,68:2409-2418
    [156] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui. Temperature and gate voltage dependence of holemobility in polycrystalline oligothiophene thin film transistors[J]. Journal of Applied Physics,2000,87(9):4456-4463
    [157] S. Jung, T. Ji, V. K. Varadan. Temperature sensor using thermal transport properties in thesubthreshold regime of an organic thin film transistor[J]. Applied Physics Letters,2007,90:062105-062105-3
    [158] Y.-L. Lee, C.-Y. Hsiao, C.-H. Chang, et al. Effects of sensing temperature on the gas sensingproperties of copper phthalocyanine and copper tetra-tert-butyl phthalocyanine films[J].Sensors and Actuators B: Chemical,2003,94:169–175
    [159] L. Li, Q. Tang, H. Li, et al. Organic thin-film of phthalocyanines[J]. Pure and AppliedChemistry,2008,80(11):2231-2240
    [160]谢丹. NO2气敏LB膜及其微结构传感器研究[D].成都:电子科技大学,2001:140-164
    [161] J. Zhang, H. Wang, X. Yan, et al. Phthalocyanine composites as high-mobility semiconductorsfor organic thin-film transistors[J]. Advanced Materials,2005,17:1191-1193
    [162]岳茂兴,徐冰心,李轶,等.硫化氢吸入中毒损伤特点和紧急救治[J].中华急诊医学杂志,2005,2:175-176
    [163] W. Hu, Y. Liu, Y. Xu, et al. The gas sensitivity of a metal-insulator-semiconductorfield-effect-transistor based on langmuir-blodgett films of a new asymmetrically substitutedphthalocyanine[J]. Thin Solid Films,2000,360:256-260
    [164] M. Passard, C. Maleysson, A. Pauly, et al. Gas sensitivity of phthalocyanine thin films[J].Sensors and Actuators B: Chemical,1994,19(1-3):489-492
    [165] A. D. Haan, M. Debliquy, A. Decroly. Influence of atmospheric pollutants on the conductanceof phthalocyanine films[J]. Sensors and Actuators B: Chemical,1999,57(1-3):69-74
    [166]陈国珍,黄贤智,刘文远,等.紫外-可见光分光光度法[M].北京:原子能出版社,1983:20-35
    [167]黄嘉.有机磷敏感材料的制备及气敏特性研究[D].成都:电子科技大学,2012,1-16
    [168]胡佳.神经性毒剂痕量挥发性气体声表面波传感器的研究[D].成都:电子科技大学,2012,86-100
    [169] A. F. Kingery, H. E. Allen. The environmental fate of organophosphorus nerve agents: Areview[J]. Toxicological&Environmental Chemistry,1995,147(3-4):155-184
    [170] Q. Zheng, Y. Fu, J. Xu. Advances in the chemical sensors for the detection of DMMP-Asimulant for nerve agent sarin[J]. Procedia Engineering,2010,7:179-184
    [171] S. Fanget, S, Hentz, P. Puget, et al. Gas Sensors based on gravimetric detection-A review[J].Sensors and Actuators B: Chemical,2011,160:804-821
    [172] W. C. Trogler. Chemical sensing with semiconducting metal phthalocyanines[J]. Struct Bond,2012,142:91-118
    [173] J. E. Royer, E. D. Kappe, C. Zhang, et al. Organic thin-film transistors for selective hydrogenperoxide and organic peroxide vapor detection[J]. The Journal of Physical Chemistry,2012,116:245566-24572
    [174] J. E. Royer, S. Lee, C. Chen, et al. Analyte selective response in solution-depositedtetrabenzoporphyrin thin-film field-effect transistor sensors[J]. Sensors and Actuators B:Chemical,2011,158:333-339
    [175] Y. Xie, B. N. Popov. Catalyzed decomposition of nerve gases and potentiometric detection ofthe byproducts[J]. Analytica Chimica Acta,2001,448(1-2):221-230
    [176] J. Zhang, H. Wang, X. Yan, et al. Phthalocyanine composites as high-mobility semiconfuctorsfor organic thin-film transistors[J]. Advanced Materials,2005,17:1191-1193
    [177]马盼,姜健壮.酞菁在有机场效应晶体管方面的研究进展[J].大学化学,2008,28(3):1-7
    [178] Y. Huang, H. Li. J. Ma, et al. Scanning tunneling microscopy investigation of self-assembledCuPc/F16CuPc binary superstructures on graphite[J]. Langmuir,2010,26(5):3329-3334
    [179] J. L. Yang, S. Schumann, T. S. Jones. Morphology and structure transistions of copperhexadecafluorophthalocyanine (F16CuPc) thin films[J]. The Journal of Physical Chemistry,2010,114(2):1057-1063
    [180] G. Harsanyi. Polymer films in sensor applications: a review of present uses and futurepossibilities[J]. Senor Review,2000,20(2):98-105
    [181] V. Saxena, D. K. Aswal, M. Kaur, et al. Enhanced NO2selectivity of hybridpoly(3-hexylthiophene): ZnO-nanowire thin films[J]. Applied Physics Letters,2007,90:043516
    [182] S. D. Oosterhout, M. M. Wienk, S. S. Van Bavel, et al. The effect of the three-dimensionalmorphology on the efficiency of hybrid polymer solar cells[J]. Nature Materials,2009,8:818-824
    [183] A. N. Watkins, F. S. Ligler. Patterned deposition of sol-gel thin films using an airbrush[J].Analytical Letters,2000,33(9):1899-1912
    [184] R. Green, A. Morfa, A. J. Ferguson, et al. Performance of bulk heterojunction photovoltaicdevices prepared by airbrush spray deposition[J]. Applied Physics Letters,2008,92:033301-033301-4
    [185] C. K. Chan, L. J. Richter, B. Dinardo, et al. High performance airbrushed organic thin filmtransistors[J]. Applied Physics Letters,2010,96:133304-133304-4
    [186] M. C. Wu, Y. Y. Lin, S. Chen, et al. Enhancing light absorption and carrier transport of P3HTby doping multi-wall carbon nanotubes[J]. Chemical Physics Letters,2009,148:64-68
    [187] Z. H. Sun, J. H. Li, C. M. Liu, et al. Enhancement of hole mobility of Poly(3-hexylthiophene)induced by Titania Nanorods in composite films[J]. Advanced Materials,2011,23:3648-3652
    [188] G. W. Hsieh, F. M. Li, P. Beecher, et al. High performance nanocomposite thin film transistorswith bilayer carbon nanotube-polythiphene active channel by ink-jet printing[J]. Journal ofApplied Physics,2009,106:123706
    [189] Y. D. Park, J. A. Lim, Y. Jiang, et al. Enhancement of the field-effect mobility ofpoly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors[J]. OrganicElectronics,2008,9:317-322
    [190] F. Yan, J. H. Li, S. M. Mok. Highly photosensitive thin film transistors based on a compositeof poly(3-hexylthiophene) and titania nanoparticles[J]. Journal of Applied Physics,2009,106:074501-074501-7
    [191] G. Korotcenkov, S.-D. Han, B. K. Cho, et al. Grain size effects in sensor response ofnanostructured SnO2-and In2O3-based conductometric thin film gas sensor[J]. CriticalReviews in Solid State and Materials Science,2009,34:1-17
    [192] C. Wang, L. Yin, L. Zhang, et al. Metal oxide gas sensors: sensitivity and influencingfactors[J]. Sensors,2012,10:2088-2106
    [193] J. Zhang, X. Liu, L. Wang, et al. Synthesis and gas sensing properties of α-Fe2O3@ZnOcore-shell nanospindles[J]. Nanotechnology,2011,22:185501-185501-7
    [194] S. K. Kim, S.-H. Hwang, D. Chang, et al. Preparation of mesoporous In2O3nanofibers byelectrospinning and their application as CO gas sensor[J]. Sensors and Actuators B: Chemical,2010,149:28-33
    [195] H.-C. Chiu, C.-S. Yeh. Hydrothermal synthesis of SnO2nanoparticles and their gas-sensingof alcohol[J]. The Journal of Physical Chemistry C,2007,111:7256-7259
    [196]江建平,孙成城.异质结原理与器件[M].北京:电子工业出版社,2010:1-10
    [197]闫东航,王海波,杜宝勋.有机半导体异质结:晶态有机半导体材料与器件[M].北京:科学出版社,2012:144-146,214-254
    [198] H. Wang,D. Yan. Organic heterostructures in organic field-effect transistors[J]. NPG AsiaMaterials,2010,2(2):69-78
    [199] W. Chen, D. Qi, H. Huang, et al. Organic-organic heterojunction interfaces: effect ofmolecular orientation[J]. Advanced Functional Materials,2011,21:410-424
    [200] D. Yan. Charge transportation in organic heterojunction and its application for doubleconducting channel field-effect transistors[J]. Proc. of SPIE Organic Field-Effect Transistors,San Diego,2005:5940-5940-7
    [201] H. Wang, J. Wang, H. Huang, et al. Organic heterojunction with reverse retifyingcharacteristics and its application in field-effect transistors[J]. Organic Electronics,2006,7:369-374
    [202] X. Wang, S. Ji, H. Wang, et al. Highly sensitive gas sensor enhanced by tuning the surfacepotential[J]. Organic Electronics,2011,12:2230-2235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700