用户名: 密码: 验证码:
碱性铝燃料电池和固体氧化物燃料电池相关关键材料制备与评价表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统能源供应日趋紧张,生态环境日益恶化的情况下,新型环保、安全、高效的燃料电池越来越广泛地受到人们的青睐与关注。但迄今为止,燃料电池在走向实际应用的道路上仍面临着技术及成本等众多不容忽视的问题,严重制约着燃料电池产业的进一步发展。在燃料电池开发过程中,新型电池材料及其制备技术的开发与应用,直接影响着燃料电池运行的效率及成本,是发展燃料电池技术的核心和基础。本论文以新型燃料电池——碱性铝燃料电池和固体氧化物燃料电池为研究背景,重点开展了有关碱性铝燃料电池电解液缓蚀剂、碱性铝燃料电池铝合金阳极以及固体氧化物燃料电池合金连接体保护涂层制备和表征的相关研究,目的在于通过开发新型电池材料及其制备技术,进一步提高电池效率,降低电池成本,推进燃料电池技术的进步。
     在缓蚀剂研究方面,系统研究了氢氧化铟、锡酸钠、柠檬酸钠以及间苯二酚对铝合金阳极在85℃,Smol·L-1/NaOH电解液中以800mA·cm-2的大电流密度放电时腐蚀行为以及电化学行为的影响,并在此基础上合成了能同时发挥各组分特长,综合应用性能优良的MCI (modified compound inhibitor)复合缓蚀剂。在铝合金阳极研究方面,以添加适量MCI改性复合缓蚀剂的5ml·L-1NaOH溶液为电解液,系统研究了合金元素、固溶热处理制度以及热轧工艺对铝合金阳极在85℃,含MCI的Smol·L-1NaOH电解液中以800mA·cm-2的大电流密度放电时的耐腐蚀性能以及电化学性能的影响,并系统分析了合金元素以及热处理轧制工艺在铝合金阳极组织以及性能变化过程中的作用机制。在合金连接体保护涂层研究方面,分别采用溶胶-凝胶(sol-gel)和电泳沉积(EPD)方法在Crofer22APU合金连接体表面制备了Cu-Mn (Cu1.2Mn1.8O4)以及Mn-Co (Mn1.5Co1.5O4)尖晶石保护涂层,系统研究了沉积工艺以及烧结制度对涂层保护Crofer22APU合金在800℃高温氧化120h前后组织结构的影响,同时对涂层保护合金连接体在高温长时间氧化过程中的氧化动力学行为及导电性能进行了评估。通过以上研究,获得了以下重要结论:
     1.某单位碱性铝燃料电池所用特种铝合金阳极材料在85℃、5
     mol·L-1NaOH电解液中以800mA·cm-2的大电流密度放电时电极电位较负,电化学活性较好,但其在高温强碱性电解液中的耐蚀性能较差,析氢腐蚀速率高达0.906mL·min-1·cm-2,因而在高温强碱性电解液中使用时需要添加相应的电解液缓蚀剂;
     2.对单一缓蚀剂的研究表明,In(OH)3是综合性能较好的单组份缓蚀剂,当其浓度为4mmol·L-1时,铝合金阳极材料的析氢速率为0.295mL·min-1·cm-2,电极电位为-1.597V。Na2SnO3是对铝合金阳极具有最好抑氢作用的单组份缓蚀剂,缓蚀剂缓蚀效率高达81.29%,但Na2SnO3的加入会对铝合金阳极电化学活性的发挥产生较大影响。柠檬酸钠是对铝合金阳极电化学活性影响最小的单组份缓蚀剂,而与柠檬酸钠正好相反,间苯二酚是对铝合金阳极电化学活性影响最大的单组份缓蚀剂;
     3.所研发的改性复合缓蚀剂MCI有力发挥了无机有机缓蚀剂之间的协同缓蚀效应,当在电解液中加入适量的MCI后,铝合金阳极析氢速率仅为0.134mL·min-1·cm-2,缓蚀剂缓蚀效率高达86.65%,而此时铝合金阳极的电极电位仍然较负,为-1.589V,说明MCI在保证铝阳极良好耐蚀性能的同时,又能使铝阳极具有较好的电化学活性。同时所开发的MCI改性复合缓蚀剂同各单组份缓蚀剂都是通过抑制阳极反应来减缓析氢腐蚀速率,同属于阳极抑制型缓蚀剂;
     4.对碱性铝燃料电池新型铝合金阳极材料的开发研究表明,适当含量的高析氢过电位元素Sn和In在合金中的加入既可以提高铝阳极材料的耐腐蚀性能,又可以分别通过降低阳极氧化膜离子阻力和在基体中形成低共熔体合金来减小阳极极化,提高材料电化学活性。元素Ga虽然也可以在一定程度上提高铝阳极电化学活性,但含量较高时,铝阳极析氢腐蚀严重,耐蚀性能较差。混合稀土元素主要通过提高合金组织均匀性,减小活性偏析相聚集来同时提高铝阳极耐腐蚀性能和电化学活性;
     5.固溶热处理制度对新型铝合金阳极材料耐腐蚀性能和电化学性能的影响主要是通过提高合金元素固溶度,减少活性元素偏析团聚来实现的,轧制工艺对铝合金阳极材料耐腐蚀性能和电化学性能的影响主要是通过动态再结晶来实现的。研究表明,当对540℃下固溶处理5h后的新型铝合金材料在420℃,以40%的道次变形量进行轧制时,合金组织中动态再结晶过程得以进行,基体中活性元素大量固溶且分布均匀,偏析相团聚现象减少,此时,铝合金阳极材料不仅具有最小的析氢腐蚀速率(0.089mL·min-1·cm-2),而且具有最负的电极电位(-1.630V),材料耐腐蚀性能和电化学活性最好;
     6.通过电泳沉积(EPD)方法在合金连接体表面制备Mn-Co尖晶石保护涂层是提高合金连接体材料综合应用性能的有效表面改性方法。所制备的Mn1.5Co1.5O4尖晶石保护涂层,不仅可以有效提高合金连接体材料在高温长时间氧化过程中的抗氧化性能,减缓Cr2O3氧化层厚度的进一步增长,同时还能有效阻止元素Cr在涂层中的挥发与扩散,从而减少阴极材料“铬中毒”现象的发生;
     7.通过合适烧结工艺(1100℃氩气气氛烧结)既可以保证烧结过程中在涂层(2.3μm)和基体间所形成的Cr2O3氧化层厚度较薄,Crofer22APU合金连接体高温氧化过程中的稳定ASR值(13.1mΩ·cm2)较小,同时可以保证所制备的Mn-Co尖晶石保护涂层结构致密,合金连接体在高温长时间氧化过程中氧化速率(6.31×10-15g2·cm-4·s-1)较低。
The newly developed fuel cells with high efficiency, low pollution and reliable safety have been paid more and more attention recently due to the shortage of traditional energy and deterioration of environment. However, problems such as technology and cost in the practical application of fuel cells still restrict the further development of fuel cell industry. In the research process of fuel cells, the development and application of new battery materials and their manufacturing process, which determines the efficiency and cost of the cell operation, are the core and foundation of fuel cell technology. Taking alkaline aluminum fuel cells and solid oxide fuel cells as the background, this dissertation mainly focuses on the research in preparation and characterization of inhibitors and aluminum alloy anodes in alkaline aluminum fuel cells as well as the protective coatings of metal interconnect in solid oxide fuel cells (SOFCs). All the work is aimed to improve the cell efficiency, reduce the cost and promote the progress of fuel cell industry by developing new battery materials.
     In term of inhibitors, effect of In(OH)3, NaSnO3, sodium citrate and resorcinol on the corrosion and electrochemical behaviors of aluminum anode in85℃, Smol·L-1NaOH electrolyte with current density of800mA·cm-2has been studied respectively. Based on the research of single inhibitors above, a modified composite inhibitor (MCI) which can help the aluminum anode to gain a well balance between corrosion resistance and electrochemical activity has been newly developed. With regard to the research of aluminum alloy anodes, effect of alloy elements, solution heat treatment and hot rolling process on the corrosion and electrochemical behaviors of aluminum anode in85℃, Smol·L-1NaOH electrolyte (containing MCI inhibitor) with current density of800mA·cm-2has been investigated comprehensively. The effect mechanism of alloy elements, heat treatment and rolling process on the micro structure and performance of aluminum alloy has been analyzed as well. In research of interconnect protective coatings, the Cu-Mn (Cu1.2Mn1.8O4) and Mn-Co (Mn1.5Co1.5O4) spinel protective coatings have been prepared on the surface of Crofer22APU stainless steel using sol-gel dip coating and electrophoretic deposition method respectively. The effect of deposition technique and sintering process on the microstructure of coated Crofer22APU alloy before and after oxidizing at800℃for up to120h has been studied. The oxidation kinetics behavior and electrical property of coated substrate during oxidation are also evaluated. The main results obtained are described as follows:
     1. The selected aluminum alloy anode owns the excellent electrochemical activity with negative electrode potential in85℃, Smol·L-1NaOH electrolyte with current density of800mA·cm-2. But the hydrogen evolution corrosion of the alloy in high temperature and strong alkaline electrolyte is really serious and the hydrogen evolution rate is high at0.906mL·min-1·cm-2. The aluminum alloy anode is not suitable for use in pure alkaline electrolyte and needs the assistance of inhibitor;
     2. The study of single inhibitors shows that In(OH)3is the best single inhibitor with favorable electrochemical comprehensive performance. When the concentration of In(OH)3is4mmol·L-1, the hydrogen evolution rate of aluminum anode is0.295mL·min-1·cm-2and the electrode potential is-1.597V. Na2SnO3is the best single inhibitor in decreasing the hydrogen evolution corrosion of the aluminum anode, however, the addition of Na2Sn03will have negative effect on the electrochemical activity of aluminum alloy anode. Sodium citrate owns the minimal impact on the electrochemical activity of aluminum alloy anode. By contrast, resorcinol has the great impact on the electrochemical activity of aluminum alloy anode;
     3. The modified composite inhibitor (MCI) plays a synergies effect between inorganic and organic inhibitor fiercely. With the addition of MCI, the hydrogen evolution rate of aluminum anode decreases to its lowest value at0.134mL·min-1·cm-2and the inhibition efficiency of inhibitor increases to the highest value at86.65%. Meanwhile, the electrode potential of aluminum anode is still negative at-1.589V, which reveals that MCI can help the aluminum alloy anode to gain a well balance between corrosion resistance and electrochemical activity in alkaline electrolyte perfectly. In addition, both the MCI inhibitor and the single inhibitors mentioned above are all belongs to the anode-restrained inhibitor which slows down the hydrogen evolution corrosion by restraining the anode reaction;
     4. The study of novel aluminum alloy anode shows that addition of high hydrogen overpotential elements Sn and In in aluminum alloy will not only enhance the corrosion resistance of alloy, but also can decrease the anodic polarization and improve the electrochemical activity of aluminum anode by reducing the ion resistance of anodic oxide films and forming low melting point alloys respectively. The addition of Ga can also improve the electrochemical activity of aluminum anode to some extent, but high content of Ga will reduce the corrosion resistance of aluminum anode. The mixed rare earth elements can enhance both the corrosion resistance and electrochemical activity of aluminum alloy anode by improving the uniformity of the microstructure;
     5. The electrochemical comprehensive performance of aluminum alloy anode can be improved by the solution heat treatment which can increase the solid solubility of alloy elements and decrease the aggregation of active segregation phases. The effect of rolling process on the corrosion resistance and electrochemical activity of aluminum alloy anode is achieved by the dynamic recrystallized. The uniform microstructure with homogeneous distribution of fine active segregation phases as well as the excellent electrochemical comprehensive performance of newly development aluminum alloy anode is achieved by the dynamic recrystallization under420℃with pass deformation of40%after taking heat treatment at540℃for up to5h. The optimized aluminum alloy anode has the lowest hydrogen evolution rate of0.089mL·min-1·cm-2and the most negative electrode potential of about-1.630V;
     6. The relatively dense, uniform and well adherent Mn1.5Co1.5O4spinel coating which could significantly improve the oxidation resistance of stainless steel substrate and effectively act as a mass barrier to the outward migration of chromium during long-term oxidation process is successfully prepared on the surface of Crofer22APU stainless steel substrate by electrophoretic deposition technique, which indicates that preparation of Mn-Co protective coatings by electrophoretic deposition technique is the effective surface modification method in improving comprehensive application performance of metal interconnects;
     7. The appropriate sintering process (1100℃in Ar atmosphere) of Mn-Co (2.3μm) coated Crofer22APU can not only make sure that a thin Cr2O3oxide layer and low ASR of13.1mΩ·cm2to be obtained, but also can help to form a dense Mn-Co coating layer and to get a low parabolic rate constant of6.31×10-15g2·cm-4·s-1.
引文
[1]胡里清.质子交换膜燃料电池—21世纪的新一代能源动力系统[J].电池工业,2002,7(3,4):225-231.
    [2]卓成林,伍明华.清洁能源及材料的研究现状与发展前景[J].化工科技,2004,12(4):57-60.
    [3]蒋利军,张向军,刘晓鹏,等.新能源材料的研究进展[J].中国材料进展,2009,28(7,8):50-56.
    [4]周文佳.锂离子电池与电化学电容器电极材料的制备及性质研究[D].兰州:兰州大学,2008.
    [5]王兆文,李延祥,李庆峰,等.铝电池阳极材料的开发与应用[J].有色金属,2002,54(1):19-22.
    [6]Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes[J]. Corrosion,1984,40(2):366-371.
    [7]Li Q F, Bjerrum N J. Aluminum as anode for energy storage and conversion:a review[J]. Journal of Power Sources,2002,110(1):1-10.
    [8]Brown C H. An amalgamated aluminum-zinc alloy for use as anode. US: 503567[P],1893-08-15.
    [9]Heise G W, Schumacher E A, Cahoon N C. A heavy duty chlorine-depolarized cell[J]. Journal of the Electrochemical Society,1948,94(3):99-105.
    [10]Zaromb S. The use and behavior of aluminum anodes in alkaline primary batteries[J]. Journal of the Electrochemical Society,1962,109(12):1125-1130.
    [11]Bockstie L, Trevethan D, Zaromb S. Control of Al corrosion in caustic solutions[J]. Journal of the Electrochemical Society,1963,110(4):267-271.
    [12]Shao H B, Wang J M, Wang X Y, et al. Anodic dissolution of aluminum in KOH ethanol solutions[J]. Electrochemistry Communications,2004,6(1):6-9.
    [13]彭成信,杨立,王保峰,等.铝箔在甲基烷基咪唑四氟硼酸盐离子液体电解液中的电化学行为[J].科学通报,2006,51(17):2009-2014.
    [14]袁华堂,焦丽芳,曹建胜,等.离子液体在电池中的应用进展[J].电池,2005,35(2):144-145.
    [15]马正青,左列,庞旭,等.铝电池研究进展[J].船电技术,2008,28(5): 257-261.
    [16]王俊波.铝在碱性介质中得腐蚀与电化学行为[D].杭州:浙江大学,2008.
    [17]奚碚华,夏天.鱼雷动力电池研究进展[J].鱼雷技术,2005,13(2):7-12.
    [18]Karpinski A P, Russell S J, Serenyi J R, et al. Silver based batteries for high power applications[J]. Journal of Power Sources,2000,91(1):77-82.
    [19]Stokes J J. Primary cell. U S:2838591 [P],1958-06-10.
    [20]Licht S L, Peramunage D. Aluminum and sulfur electrochemical batteries and cells. US:5648183[P],1997-07-15.
    [21]Zaromb S. Metal-oxygen power source. US:3554810[P],1967-04-12.
    [22]Licht S L, Marsh C. Aluminum-ferricyanide battery. US:5472807[P], 1995-12-05.
    [23]王振波,尹鸽平,史鹏飞.新型铝合金阳极在碱性海水溶液中的性能研究[J].哈尔滨工业大学学报,2004,36(1):118-121.
    [24]Macdonald D D, English C. Development of anode for aluminum/air batteries solution phase inhibition of corrosion[J]. Journal of Applied Electrochemistry, 1990,20(3):405-417.
    [25]Rosilda L G S, Ganesan M, Kulandainathan M A, et al. Influence of inhibitors on corrosion and anodic behaviour of different grade of Al in alkaline media[J]. Journal of Power Sources,1994,50(3):321-329.
    [26]邵海波,王建明,张昭,等.钙作为合金元素对铝在碱溶液中的缓蚀作用及其与酒石酸盐的协同效应[J].化学学报,2003,61(9):1420-1424.
    [27]杜敏,高荣杰,公萍.海水介质中缓蚀剂研究的回顾和展望[J].材料保护,2002,35(3):7-10.
    [28]范洪波.新型缓蚀剂的合成与应用[M].北京:化学工业出版社,2004:1-2.
    [29]舒方霞,王兆文,高炳亮,等.Al-In-Mg系铝合金阳极在NaOH溶液中的电化学行为[J].轻合金加工技术,2004,32(10):39-42.
    [30]张天胜.缓蚀剂[M].北京:化学工业出版社,2002:476-480.
    [31]Talati? J D, Patel G A. Effect of substituted anilines on the corrosion of aluminum-manganese alloy in phosphoric acid[J]. British Corrosion Journal, 1976,11(1):47-51.
    [32]Krishnan M, Subramanyan. The influence of some aldehydes on the corrosion and anodic behaviour of aluminum in sodium hydroxide solution[J]. Corrosion Science,1977,17(11):893-900.
    [33]Hassan S M, Moussa M N, El-Tagoury M M, et al. Aromatic acid derivatives as corrosion inhibitors for aluminum in acidic and alkaline solutions[J]. Anti-Corrosion Methods and Materials,1990,37(2):8-11.
    [34]Abdel-Gaber A M, Khamis E, Abo-EIDahab H, et al. Inhibition of aluminium corrosion in alkaline solutions using natural compound[J]. Materials Chemistry and Physics,2008,109(2-3):297-305.
    [35]El-Etre A Y, Abdallah M, El-Tantawy. Corrosion inhibition of some metals using lawsoniaextract[J]. Corrosion Science,2005,47(2):385-395.
    [36]Kapali V, Venkatakrishnalyer S, Balaramachandran V, et al. Studies on the best alkaline electrolyte for aluminium/air batteries[J]. Journal of Power Sources, 1992,39(2):263-269.
    [37]Rosilda L G S, Ganesan M, Kulandainathan M A, et al. Influence of inhibitors on corrosion and anodic behaviour of different grade of aluminum in alkaline media[J]. Journal of Power Sources,1994,50(3):321-329.
    [38]邵海波,王建明,张昭,等.钙作为合金元素对铝在碱溶液中的缓蚀作用及其与酒石酸盐的协同效应[J].化学学报,2003,61(9):1420-1424.
    [39]Wang X Y, Wang J M, Shao H B, et al. Influences of Zinc oxide and an organic additive on the electrochemical behavior of pure aluminum in an alkaline solution[J]. Journal of Applied Electrochemistry,2005,35(2):213-216.
    [40]梁叔全,张勇,唐艳,等.碱性铝电池阳极缓蚀剂的研究进展[J].电源技术,2010,34(3):295-298.
    [41]何新快,陈白珍,张钦发.缓蚀剂的研究现状与展望[J].材料保护,2003,36(8):1-3.
    [42]汪的华,甘复兴,姚禄安.缓蚀剂吸附行为研究进展与展望[J].材料保护,2000,33(1):29-32.
    [43]郭稚弧,唐和清.几种植物萃取液对碳钢腐蚀的抑制作用[J].材料保护,1989,22(2):9-12.
    [44]Vasudevan T, Muralidharan S, Alwarappan S, et al. The influence of N-hexadecyl benzyl dimethyl ammonium chloride on the corrosion of mild steel in acids[J]. Corrosion Science,1995,37(8):1235-1244.
    [45]木冠南,赵天培.量热法研究缓蚀作用[J].化学世界,1989,30(1):36-38.
    [46]朱苓.缓蚀剂缓蚀作用的研究方法[J].腐蚀与防护,1999,20(7):300-302.
    [47]李平,刘烈炜,曹继光.新型多功能快速腐蚀测试系统的研究(一):腐蚀参数测量原理和性能研究[J].化工腐蚀与防护,1993,21(2):18-22.
    [48]徐群杰,周国定.交流阻抗法对几种铜缓蚀剂比较研究[J].华东理工大学学报,1998,24(3):324-328.
    [49]周海晖,赵常就.恒电量法快速评价气相缓蚀剂的研究[J].中国腐蚀与防护学报,1995,15(4):291-296.
    [50]李欣,齐晶瑶.用电化学噪声测量法进行缓蚀剂的性能测试及筛选[J].工业水处理,1996,16(6):27-33.
    [51]余兴增,邱富荣.电化学噪音的研究进展[J].腐蚀与防护,1995,16(1):4-7.
    [52]冯益其,陆兆锷.用循环伏安法研究钼酸盐对软钢的缓蚀作用[J].华东化工学院学报,1990,16(3):314-321.
    [53]徐群杰,周国定,陆柱,等.缓蚀剂对铜作用的激光扫描微区光电化学研究[J],化学学报,2000,58(9):1079-1084.
    [54]严川伟,余家康,林海潮,等.激光拉曼光谱在金属腐蚀研究中的应用[J].腐蚀科学与防护技术,1998,10(3):163-169.
    [55]陈旭俊,王海林.孔蚀缓蚀剂及其理论研究评述(二):孔蚀缓蚀作用的研究方法与发展方向[J].材料保护,1991,24(8):4-7.
    [56]Morito N, Suetaka W, Shimodaira S. Spectroscopical approach to the mechanism of the Rebinder effects in MgO immersed in N,N-dimethylformamide or dimethylsulfoxide[J]. Spectrochimica Acta Part A: Molecular Spectroscopy,1971,27(1):131-137.
    [57]宋诗哲,唐子龙.恒电位—恒电流瞬态响应技术研究孔蚀缓蚀剂[J].腐蚀科学与防护技术,1992,4(3):150-155.
    [58]冯益其,方国女,陆兆锷.旋转圆盘电极法测定钢的腐蚀速度[J].华东化工学院学报,1990,16(3):314-321.
    [59]毛建军,高永丰,周国定.光电位法评价铜缓蚀剂[J].腐蚀与防护,1995,(4):171-175.
    [60]Mansfeld F, Jeanjaquet S L, Kendig M W. An electrochemical impedance spectroscopy study of reactions at the metal/coating interface[J]. Corrosion Science,1986,26(9):734-742.
    [61]卢凌彬.铝-空气电池用铝合金阳极与电解液添加剂的研究[D].长沙:中南大学,2002.
    [62]Macdonald D D, Real S, Urquidi-Macdonald M. Evaluation of alloy anodes for aluminum/air batteries Ⅲmechanisms of activation, passivation, and hydrogen evolution[J]. Journal of Electrochemistry Sources,1988,135(10):2397-2409.
    [63]Emregul K C, Aksut A A. The behavior of aluminum in alkaline media[J]. Corrosion Science,42(12):2051-2067.
    [64]Moon S M, Pyun S I. The formation and dissolution of anodic oxide films on pure aluminium in alkaline solution[J]. Electrochimica Acta,1999,44(14): 2445-2454.
    [65]Doche M L, Rameau J J, Durand R, et al. Electrochemical behaviour of aluminium in concentrated NaOH solution[J]. Corrosion Science,41(4): 805-826.
    [66]夏小庆.铝在氢氧化钠溶液中的电化学行为研究[J].化学研究与应用,2002,14(1):51-52.
    [67]林顺岩,王彬.高性能铝合金阳极材料的研究与开发[J].铝加工,2002,25(2):6-9.
    [68]刘功浪,林顺岩,游文,等.阳极铝合金熔炼铸造工艺研究[J].铝加工,2000,23(6):9-12.
    [69]王剑.电池用铝合金阳极材料的开发[J].铝加工,1998,21(5):56-59.
    [70]唐有根,韩红涛,谢正和.稀土Ce掺杂铝合金的结构和电化学性能[J].中南大学学报,2006,37(4):737-741.
    [71]张盈盈,齐公台.稀土金属固溶处理对铝阳极组织和性能的影响[J].金属功能材料,2005,12(2):25-29.
    [72]张燕,宋玉苏,王源升,等.混合稀土对碱性介质中铝阳极性能的影响[J].腐蚀科学与防护技术,2006,18(1):5-8.
    [73]梁叔全,潘安强,张勇,等.碱性铝电池用铝合金阳极研究进展[J].铝加工,2008,182(3):11-14.
    [74]Tuck CDS, Hunter J A, Samans G M. The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes[J]. Journal of Electrochemical Society, 1987,134(12):2970-2981.
    [75]秦学.铝阳极电化学行为及活化机理的研究[D].天津:天津大学,1997.
    [76]李振亚,易玲,刘稚蕙,等.含镓、锡的铝合金在碱性溶液中的活化机理[J].电化学,2001,7(3):316-320.
    [77]张燕,宋玉苏.碱性介质中Al-Ga-Sn-Mg的阳极行为研究[J].腐蚀与保护,2005,26(4):143-146.
    [78]Wilhelmsen W, Arnesen T, Hasvold Q, et al. The electrochemical behaviour of Al-In alloys in alkaline electrolytes[J]. Electrochimica Acta,1991,36(1):79-85.
    [79]Saidman S B, Bessone J B. Cathodic polarization characteristica and activation of aluminum in chloride solutions containing indium and zinc ions[J]. Journal of Applied Electrochemistry,1997,27(6):731-737.
    [80]Maimoni A. Aluminum-air power cell, a progress report[R]. USA:UCRL,1985.
    [81]Marilyn J, Niksa J, Wheeler J. Aluminum-oxygen batteries for space applications[J]. Journal of Power Sources,1988,22(3-4):261-267.
    [82]马景灵,文九巴,焦孟旺,等.合金元素Mn对铝合金阳极组织与性能的影响[J].腐蚀与防护,2008,29(11):667-669.
    [83]Hunter J A, Scamans G M, Ocallaghan W B. Aluminum batteries. US: 4942100[P],1990-07-17.
    [84]Crossland A C, Thompson G E, Smith C J E, et al. Formation of manganese-rich layers during anodizing of Al-Mn alloys[J]. Corrosion Science,1999,41(10): 2053-2069.
    [85]Shi P F, Yin G P, Xia B J, et al. Studies on the anodic behavior of aluminum electrodes in alkaline solution[J]. Journal of Power Sources,1993,45(1): 105-109.
    [86]马正青,黎文献,王日初,等.铝合金阳极在碱性介质中的电化学性能[J].电源技术,2002,26(5):365-368.
    [87]Khoshnaw F M, Gardi R H. Effect of aging time and temperature on exfoliation corrosion of aluminum alloys 2024-T3 and 7075-T6[J]. Materials and Corrosion, 2007,58(5):345-347.
    [88]Ponchel B M, Horst R. Performance of Al-Zn-Sn alloy anodes in sea water service[J]. Materials Protection,1968,7(3):38-41.
    [89]祁洪飞,梁广川,李国禄,等.均匀化退火对铝合金阳极活化性能的影响[J].材料工程,2005,(10):27-30.
    [90]张林森,王双元,王为,等.热处理对铝合金电极性能的影响[J].电源技术,2006,30(12):1000-1002.
    [91]龙萍,李庆芬.固溶处理对Al-Zn-In-Si-Sn阳极电化学性能的影响分析[J].装备环境工程,2005,2(2):12-16.
    [92]齐公台,郭稚弧,林汉同,等.固溶处理对含RE铝阳极组织与性能的影响[J].华中理工大学学报,2000,28(12):106-108.
    [93]Minh N Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society, 1993,76(3):563-588.
    [94]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:2-6.
    [95]Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs):a review of an environmentally clean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews,2002,6(5):433-455.
    [96]Badwal S P S, Foger K. Solid oxide electrolyte fuel cell review[J]. Ceramics International,1996,22(3):257-265.
    [97]Williams M C, Strakey J P, Surdoval W A. The US department of energy, office of fossil energy stationary fuel cell program[J]. Journal of Power Sources,2005, 143(1-2):191-196.
    [98]Yamamoto O. Solid oxide fuel cells:fundamental aspects and prospects[J]. Electrochimica Acta,2000,45(15-16):2423-2435.
    [99]Singhal S C. Solid oxide fuel cells for stational, mobile, and military applications[J]. Solid State Ionics,2002,152-153:405-410.
    [100]Weber A, Ivers-Tiffee E. Materials and concepts for solid oxide fuel cells(SOFCs) in stationary and mobile applications[J]. Journal of Power Sources, 2004,127(1-2):273-283.
    [101]张尚权.流延法制备固体氧化物燃料电池关键材料研究[D].合肥:中国科学技术大学,2010.
    [102]Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons [J]. Journal of Catalysis,2003,216(1-2):477-486.
    [103]Jacobson A J. Materials for solid oxide fuel cells[J]. Chemistry of Materials, 2010,22(3):660-674.
    [104]Singhal S C, Kendall K. High temperature solid oxide fuel cells:fundamentals, design, and applications[M], Oxford:Elsevier,2003:1-19.
    [105]Kharton V V, Marques F M B, Atkinson A. Transport properties of solid oxide electrolyte ceramics:a brief review[J]. Solid State Ionics,2004,174(1-4): 135-149.
    [106]Xin X S, Lu Z, Huang X Q, et al. Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process[J]. Journal of Power Sources,2006,160(2):1221-1224.
    [107]Bao W T, Chang Q B, Yan R Q, et al. The novel combination of electrostatic powder coating with suspension coating for fabricating the dense YSZ thin film on porous anode substrate[J]. Journal of Membrane Science,2005,252(1-2): 175-181.
    [108]Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics,2000, 129(1-4):63-94.
    [109]Steele B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃[J]. Solid State Ionics,2000,129(1-4):95-110.
    [110]Zhang T S, Ma J, Cheng H, et al. Ionic conductivity of high-purity Gd-doped ceria solid solutions[J]. Materials Research Bulletin,2006,41(3):563-568.
    [111]Dalslet B, Blennow P, Hendriksen P V, et al. Assessment of doped ceria as electrolyte[J]. Journal of Solid State Electrochemistry,2006,10(8):547-561.
    [112]Ishihara T Ishikawa S, Hosoi K, et al. Oxide ionic and electronic conduction in Ni-doped LaGaO3-based oxide[J]. Solid State Ionics,2004,175(1-4):319-322.
    [113]Khorkounov B A, Nafe H, Aldinger F. Relationship between the ionic and electronic partial conductivities of Co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity [J]. Journal of Solid State Electrochemistry,2006,10(7):479-487.
    [114]Ishikawa H, Enoki M, Ishihara T, et al. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3-6 for electrolyte of solid oxide fuel cells[J]. Journal of Alloys and Compounds,2007,430(1-2):246-251.
    [115]Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science,2004,39(14):4405-4439.
    [116]Goodenough J B, Huang Y H. Alternative anode materials for solid oxide fuel cells[J]. Journal of Power Sources,2007,173(1):1-10.
    [117]Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells[J]. Materials Science and Engineering:A,2003,362(1-2):228-239.
    [118]Itoh H, Yamamoto T, Mori M, et al. Configurational and electrical behavior of Ni-YSZ cermet with novel microstructure for solid oxide fuel cell anodes [J]. Journal of the Electrochemical Society,1997,144(2):641-646.
    [119]Lee J H, Moon H, Lee H W, et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet[J]. Solid State Ionics, 2002,148(1-2):15-26.
    [120]Koide H, Someya Y, Yoshida T, et al. Properties of Ni/YSZ cermet as anode of SOFC[J]. Solid State Ionics,2000,132(3-4):253-260.
    [121]Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons[J]. Journal of Catalysis,2003,216(1-2):477-486.
    [122]Mclntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews,2004,104(10):4845-4866.
    [123]Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nature Materials,2004,3:17-27.
    [124]Park S D, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cells[J]. Nature,2000,404:265-267.
    [125]Jiang S P, Chen X J, Chan S H, et al. La0.75Sr0.25Cr0.5Fe0.503-δ/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics,2006,177(1-2):149-157.
    [126]Hui S Q, Petric A. Electrical properties of yttrium-doped strontium titanate under reducing conditions [J]. Journal of the Electrochemical Society,2002, 149(1):J1-J10.
    [127]Marina O A, Canfield N L, Stevenson J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ionics,2002,149(1-2):21-28.
    [128]Hui S Q, Petric A. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells[J]. Journal of the European Ceramic Society,2002,22(9-10): 1673-1681.
    [129]Huang Y H, Dass R I, Xing Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science,2006,312(5771):254-257.
    [130]Zhang P, Huang Y H, Cheng J G, et al. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels[J]. Journal of Power Sources,2011,196(4): 1738-1743.
    [131]Xiao G L, Liu Q, Dong X H, et al. SraFe/3Mo2/3O6 anodes for solid oxide fuel cells[J]. Journal of Power Sources,2010,195(24):8071-8074.
    [132]Hou S E, Aguadero A, Alonso J A, et al. Fe-based perovskites as electrodes for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2011,196(13):5478-5484.
    [133]Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells:a review[J]. Journal of Solid State Electrochemi,2010,14(7):1125-1144.
    [134]Maguire E, Gharbage B, Marques F M B, et al. Cathode materials for intermediate temperature SOFCs[J]. Solid State Ionics,2000,127(3-4): 329-335.
    [135]Hart N T, Brandon N P, Day M J, et al. Functionally graded composite cathodes for solid oxide fuel cells[J]. Journal of Power Sources,2002,106(1-2):42-45.
    [136]Yoon S, Han J, Nam S, et al. Performance of anode supported solid oxide fuel cell with Lao.85Sro.i5Mn03 cathode modified by sol-gel coating technique[J]. Journal of Power Sources,2002,106(1-2):160-166.
    [137]Gao J F, Liu X Q, Peng D K, et al. Electrochemical behavior of Ln0.6Sr0.4Co0.2Fe0.8O3-δ (Ln=Ce, Gd, Sm, Dy) materials used as cathode of IT-SOFC[J]. Catalysis Today,2003,82(1-4):207-211.
    [138]Murrray E P, Sever M J, Barnett S A. Electrochemical performance of (La Sr)(Co, Fe)O3-(Ce, Gd)O3 composite cathodes[J]. Solid State Ionics,2002, 148(1-2):27-34.
    [139]Aguadero A, Perez-Coll D, De La Calle C, et al. SrCo1.xSbxO3-δ perovskite oxides as cathode materials in solid oxide fuel cells [J]. Journal of Power Sources, 2009,192(1):132-137.
    [140]Zhou W, Shao Z P, Ran R, et al. Novel SrSco.2Coo.8O3-δ as a cathode material for low temperature solid-oxide fuel cell[J], Electrochemistry Communications, 2008,10(10):1647-1651.
    [141]Wang F, Zhou Q J, He T M, et al. Novel SrCo1-yNbyO3-δ cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2010,195(12):3772-3778.
    [142]Shao Z, Halle S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature,2004,431:170-173.
    [143]Fergus J W. Materials challenges for solid oxide fuel cells[J]. JOM Journal of the Minerals, Metals and Materials Society,2007,59(12):56-62.
    [144]Yang Z G Recent advances in metallic interconnects for solid oxide fuel cells [J]. International Materials Reviews,2008,53(1):39-54.
    [145]Singh P, Minh N Q. Solid oxide fuel cells:technology status[J]. International Journal of Applied Ceramic Technology,2004,1(1):5-15.
    [146]Williams M C, Singhal S C. Mass-produced ceramic fuels for low-cost power: the solid state energy conversion alliance[J]. Fuel Cells Bulletin,2000,3(24): 8-11.
    [147]Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells[J]. Materials Science and Engineering:A,2003,348(1-2):227-243.
    [148]Singhal S C. Science and technology of solid oxide fuel cells[J]. MRS Bulletin, 2000,25(3):16-21.
    [149]Badwal S P S. Stability of solid oxide fuel cell components[J]. Solid State Ionics, 2001,143(1):39-46.
    [150]Yokokawa H, Sakai N, Horita T, et al. Recent development in solid oxide fuel cell materials[J], Fuel Cells,2001,1(2):117-131.
    [151]Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics,2004,171(1-2):1-15.
    [152]Mori M, Yamamoto T, Itoh H, et al. Compatibility of alkaline earth metal(Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells[J]. Journal of Materials Science,1997, 32(9):2423-2431.
    [153]Rivas-Vazquez L P, Rendon-Angeles J C, Rodriguez-Galicia J L, et al. Preparation of calcium doped LaCrO3 fine powers by hydrothermal method and its sintering[J]. Journal of the European Ceramic Society,2006,26(1-2):81-88.
    [154]Mori M, Sammes N M. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the pechini method[J]. Solid State Ionics,2002,146(3-4):301-312.
    [155]Azegami K, Yoshinaka M, Hirota K, et al. Formation and sintering of LaCrO3 prepared by the hydrazine method[J]. Materials Research Bulletin,1998,33(2): 341-348.
    [156]Liu X M, Su W H, Lu Z. Study on synthesis of Pr1-xCaxCrO3 and their electrical properties[J]. Materials Chemistry and Physics,2003,82(2):327-330.
    [157]Kunifusa Y, Yoshinaka M, Hirota K, et al. Formation and electrical conductivity of air-sinterable Nd(Cr1-xMgx)O3[J]. Solid State Ionics,2002,149(1-2):107-113.
    [158]Zhong H H, Zhou X L, Liu X Q, et al. Synthesis and electrical conductivity of perovskite Gd1-xCaxCrO3(0≤x≤0.3)by auto-ignition process[J]. Solid State Ionics, 2005,176(11-12):1057-1061.
    [159]Tachiwaki T, Kunifusa Y, Yoshinaka M, et al. Formation, powder characterization and sintering of YCrO3 prepared by a sol-gel technique using hydrazine[J]. International Journal of Inorganic Materials,2001,3(2):107-111.
    [160]Hirota K, Io M, Hatta H, et al. Formation, sintering, and electrical conductivity of perovskite Sm(Cr1-xMgx)O3(0≤x≤0.23) prepared by the hydrazine method[J]. Journal of Solid State Chemistry,2003,174(1):80-86.
    [161]De Souza S, Visco S J, De Joughe L C. Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte [J]. Journal of the Electrochemical Society,1997,144(3):L35-L37.
    [162]Feng M, Goodenough J B. A superior oxide-ion electrolyte[J]. European Journal of Solid State and Inorganic Chemistry,1994,31(8-9):663-672.
    [163]Huang P N, Petric A. Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium[J]. Journal of the Electrochemical Society, 1996,143(5):1644-1648.
    [164]Simwonis D, Naoumidis A, Disa F J, et al. Material characterization in support of the development of an anode substrate for solid oxide fuel cells[J]. Journal of Materials Research,1997,12(6):1508-1518.
    [165]Huang K Q, Tichy R S, Goodenough J B. Superior perovskite oxide-ion conductor; Strontium-and magnesium-doped LaGaO3:I, phase relationships and electrical properties [J]. Journal of the American Ceramic Society,1998, 81(10):2565-2575.
    [166]Okumura K, Aihara Y, Ito S, et al. Development of thermal spraying-sintering technology for solid oxide fuel cells [J]. Journal of Thermal Spray Technology, 2000,9(3):354-359.
    [167]Quadakkers W J, Piron-Abellan J, Shemet V, et al. Metallic interconnects for solid oxide fuel cells-a review[J]. Materials at High Temperature,2003,20(2): 115-127.
    [168]Fergus J W. Metallic interconnects for solid oxide fuel cells[J]. Materials Science and Engineering:A,2003,397(1-2):271-283.
    [169]Yang Z G, Weil K S, Paxton D M, et al. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications[J]. Journal of the Electrochemical Society,2003,150(9):A1188-A1201.
    [170]Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells:a status on contact resistance[J]. Materials Research Bulletin,2003,38(6): 957-972.
    [171]Kofstad P, Bredesen R. High temperature corrosion in SOFC environments[J]. Solid State Ionics,1992,52(1-3):69-75.
    [172]Holt A, Kofatad P. Electrical conductivity and defect structure of Cr2O3. Ⅱ. Reduced temperatures (<1000℃) [J]. Solid State Ionics,1994,69(2):137-143.
    [173]Badwal S P S, Deller R, Foger K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells[J]. Solid State Ionics,1997,99(3-4):297-310.
    [174]Huang K, Hou P Y, Goodenough J B. Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells[J]. Solid State Ionics, 2000,129(1):237-250.
    [175]Wu J W, Liu X B. Recent development of SOFC metallic interconnect[J]. Journal of Materials Science and Technology,2010,26(4):293-305.
    [176]Quadakkers W J, Greiner H, Hansel M, et al. Compatibility of perovskites contact layers between cathode and metallic interconnector plates of SOFCs[J]. Solid State Ionics,1996,91(1-2):55-67.
    [177]Quadakkers W J, Hansel M, Rieck T. Carburization of Cr-based ODS alloys in SOFC relevant environments [J]. Materials and Corrosion,1998,49(4):252-257.
    [178]Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskites cathodes by the ODS alloy Cr5FelY2O3 and the high chromium ferritic steel Crofer 22 APU[J]. Journal of the Electrochemical Society,2006,153(4): A765-A773.
    [179]Li J, Pu J, Xiao J Z, et al. Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments [J]. Journal of Power Sources,2005,139(1-2): 182-187.
    [180]Li J, Pu J, Xie G Y, et al. Heat resistant alloys as interconnect materials of reduced temperature SOFCs[J]. Journal of Power Sources,2006,157(1): 368-376.
    [181]Geng S J, Zhu J H, Lu Z G. Evaluation of Haynes 242 alloy as SOFC interconnect material[J]. Solid State Ionics,2006,177(5-6):559-568.
    [182]Geng S J, Zhu J H, Lu Z G Investigation on Haynes 242 alloy as SOFC interconnect in simulated anode environment[J]. Electrochemical and Solid-State Letters,2006,9(4):A211-A214.
    [183]Yang Z G, Xia G G, Stevenson J W. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications[J]. Journal of Power Sources,2006,160(2): 1104-1110.
    [184]Yang Z G, Singh P, Stevenson J W, et al. Investigation of modified Ni-Cr-Mn base alloys for SOFC interconnect applications[J]. Journal of the Electrochemical Society,2006,153(10):A1873-A1879.
    [185]Zhu J H, Geng S J, Ballard D A. Evaluation of several low thermal expansion Fe-Co-Ni alloys as interconnect for reduced-temperature solid oxide fuel cell[J]. International Journal of Hydrogen Energy,2007,32(16):3682-3688.
    [186]Yang Z G, Stevenson J W, Singh P. Solid oxide fuel cells[J]. Advanced Materials and Processes,2003,161(6):34-37.
    [187]Horita T, Xiong Y P, Kishimoto H, et al. Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction oxidation behavior of alloys in methane fuel[J]. Journal of Power Sources,2004,131(1-2):293-298.
    [188]Yang Z G, Hardy J S, Walker M S, et al. Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications[J]. Journal of the Electrochemical Society,2004,151(11):A1825-A1831.
    [189]Toji A, Uehara T. Stability of oxidation resistance of ferritic Fe-Cr alloy for SOFC interconnects[J]. ECS Transactions,2007,7(1):2117-2124.
    [190]Brylewski T, Nanko M, Maruyama T, et al. Application of Fe-16Cr feritic alloy to interconnector for a solid oxide fuel cell[J]. Solid State Ionics,2001,143(2): 131-150.
    [191]Alman D E, Jablonski P D. Effect of minor elements and a Ce surface treatment on the oxidation behavior of an Fe-22Cr-0.5Mn (Crofer 22 APU) ferritic stainless steel[J]. International Journal of Hydrogen Energy,2007,32(16): 3743-3753.
    [192]Geng S J, Zhu J H. Promising alloys for intermediate-temperature solid oxide fuel cell interconnect application[J]. Journal of Power Sources,2006,160(2): 1009-1016.
    [193]Yang Z G, Xia G G, Maupin G D, et al. Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications [J]. Journal of the Electrochemical Society,2006,153(10):A1852-A1858.
    [194]Yang Z Q, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions[J]. Journal of the Electrochemical Society,2004,151(12):B669-B678.
    [195]Kurokawa H, Kawamura K, Maruyama T. Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient[J]. Solid State Ionics, 2004,168(1-2):13-21.
    [196]Horita T, Xiong Y P, Yamaji K, et al. Characterization of Fe-Cr alloys for reduced operation temperature SOFCs[J]. Fuel Cells,2003,2(3-4):189-194.
    [197]Yang Z G, Xia G G, Walker M S, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient[J]. International Journal of Hydrogen Energy,2007,32(16):3770-3777.
    [198]Pu J, Li J, Hua B, et al. Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere [J]. Journal of Power Sources, 2006,158(1):354-360.
    [199]Deng X H, Wei P, Bateni M R, et al. Cobalt plating of high temperature stainless steel interconnects[J]. Journal of Power Sources,2006,160(2):1225-1229.
    [200]Shaigan N, Ivey D G, Chen W X. Metal-oxide scale interfacial imperfections and performance of stainless steels utilized as interconnects in solid oxide fuel cells[J]. Journal of the Electrochemical Society,2009,156(6):B765-B770.
    [201]Gindorf C, Singheiser L, Hilpert K. Chromium vaporisation from Fe, Cr base alloys used as interconnect in fuel cells [J]. Steel Research,2001,72(11-12): 528-533.
    [202]Paulson S C, Birss V I. Chromium poisoning of LSM-YSZ SOFC cathodes[J]. Journal of the Electrochemical Society,2004,151(11):A1961-A1968.
    [203]Matsuzaki Y, Yasuda I. Dependence of SOFC Cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes [J]. Journal of the Electrochemical Society,2001,148(2):A126-A131.
    [204]Kim J Y, Sprenkle V L, Canfield N L, et al. Effects of chrome contamination on the performance of La0.6Sr0.4Co0.2Fe0.8O3 cathode used in solid oxide fuel cells [J]. Journal of the Electrochemical Society,2006,153(5):A880-A886.
    [205]Yokokawa H, Horita T, Sakai N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes[J]. Solid State Ionics,2006,177(35-36): 3193-3198.
    [206]Fergus J W. Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2007,32(16):3664-3671.
    [207]Qi H B, Lees D G. The effect of surface-applied oxide films containing varying amounts of yttria, chromia, or alumina on the high temperature oxidation behavior of chromia-forming and alumina-forming alloys [J]. Oxidation of Metals,2000,53(5-6):507-527.
    [208]Hou P Y. Effect of surface-applied reactive elements oxide on the oxidation of binary alloys containing Cr[J]. Journal of the Electrochemical Society,1987, 134(7):1836-1849.
    [209]Hou P Y. The effect of surface-applied reactive metal oxides on the high temperature oxidation of alloys[J]. Materials Science and Engineering,1987,87: 295-302.
    [210]Pint B A. Experimental observation in support of the dynamic-segregation theory to explain the reactive-elements effect[J]. Oxidation of Metals,1996, 45(1-2):1-37.
    [211]Ramanarayanan T A, Ayer R, Petkovic-Luton R, et al. The influence of yttrium on oxide scale growth and adherence[J]. Oxidation of Metals,1988,29(5-6): 445-472.
    [212]Biegun T, Danielewski M, Skrzypek Z. The reactive-element effect in the high-temperature oxidation of Fe-23Cr-5Al commercial alloys[J]. Oxidation of Metals,1992,38(3-4):207-215.
    [213]Hamid A U. TEM study of the effect of Y on the scale microstructure of Cr2O3-and Al2O3-forming alloys[J]. Oxidation of Metals,2002,58(1-2):23-40.
    [214]Fox P, Lees D G, Lorimer G W. Sulfur segregation during the high-temperature oxidation of chromium[J]. Oxidation of Metals,1991,36(5-6):491-494.
    [215]Qu W, Li J, Ivey D G Sol-gel coatings to reduce oxide growth in interconnects used for solid oxide fuel cells[J]. Journal of Power Sources,2004,138(1-2): 162-173.
    [216]Cabouro G, Caboche G, Chevalier S, et al. Opportunity of metallic interconnects for ITSOFC:reactivity and electrical property[J]. Journal of Power Sources, 2006,156(1):39-44.
    [217]Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects[J]. Journal of Power Sources,2010,195(6): 1529-1542.
    [218]Gaillard F, Joly J P, Boreave A, et al. Intermittent temperature-programmed desorption study of perovskites used for catalytic purposes[J]. Applied Surface Science,2007,253(13):5876-5881.
    [219]Johnson C, Gemmen R, Orlovskaya N. Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect materials[J]. Composites Part B:Engineering,2004,35(2):167-172.
    [220]Orlovskaya N, Coratolo A, Johnson C, et al. Structural characterization of lanthanum chromite perovskite coating deposited by magnetron sputtering on an iron-based chromium-containing alloy as a promising interconnect material for SOFCs[J]. Journal of American Ceramic Society,2004,87(10):1981-1987.
    [221]Belogolovsky I, Zhou X D, Kurokawa H, et al. Effects of surface-deposited nanocrystalline chromite thin films on the performance of a ferritic interconnect alloy[J]. Journal of the Electrochemical Society,2007,154(9):B976-B980.
    [222]Zhu J H, Zhang Y, Basu A, et al. LaCrO3-based coatings on ferritic stainless steeel for solid oxide fuel cell interconnect applications[J]. Surface and Coatings Technology,2004,177-178:65-72.
    [223]Elangovan S, Balagopal S, Hartvigsen J, et al. Selection and surface treatment of alloys in solid oxide fuel cell systems[J]. Journal of Materials Engineering and Performance,2006,15(4):445-452.
    [224]Yang Z G, Xia G G, Maupin G D, et al. Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications[J]. Surface and Coatings Technology,2006,201(7):4476-4483.
    [225]Lee C, Bae J. Oxidation-resistant thin film coating on ferritic stainless steel by sputtering for solid oxide fuel cells[J]. Thin Solid Films,2008,516(18): 6432-6437.
    [226]Brylewski T, Przybylski K, Morgiel J. Microstructure of Fe-25Cr/(La,Ca)CrO3 composite interconnector in solid oxide fuel cell operating conditions [J]. Materials Chemistry and Physics,2003,81(2-3):434-437.
    [227]Fujita K, Ogasawara K, Matsuzaki Y, et al. Prevention of SOFC cathode degradation in contact with Cr-containing alloy[J]. Journal of Power Sources, 2004,131(1-2):261-269.
    [228]Choi J J, Lee J H, Park D S, et al. Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process[J]. Journal of the American Ceramic Society,2007,90(6):1926-1929.
    [229]Wei W F, Chen W X, Ivey D G Anodic electrodeposition of nanocrystalline coatings in the Mn-Co-O system[J]. Chemistry of Materials,2007,19(11): 2816-2822.
    [230]Bateni M R, Wei P, Deng X H, et al. Spinel coatings for UNS 430 stainless steel interconnects[J]. Surface and Coatings Technology,2007,201(8):4677-4684.
    [231]Garcia-Vargas M J, Zahid M, Tietz F, et al. Use of SOFC metallic interconnect coated with spinel protective layers using the APS technology [J]. ECS Transactions,2007,7(1):2399-2405.
    [232]Montero X, Tietz F, Sebold D, et al. MnCo1.9Feo.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells[J]. Journal of Power Sources,2008,184(1):172-179.
    [233]Yang Z G, Xia G G, Li X H, et al. (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications [J]. International Journal of Hydrogen Energy,2007,32(16):3648-3654.
    [234]Yang Z G, Xia G G, Simner S P, et al. Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects[J]. Journal of the Electrochemical Society,2005,152(9): A1896-A1901.
    [235]蔡年生.电池用铝合金的开发应用[J].铝加工,1996,19(4):44-46.
    [236]唐有根,黄伯云,卢凌彬,等.金属燃料电池[J].物理学与新能源材料专题,2004,33(2):85-89.
    [237]El Shayeb H A, Abd El Wahab F M, Zein El Abedin S. Electrochemical behaviour of Al, Al-Sn, Al-Zn, and Al-Zn-Sn alloys in chloride solution containing stannous ions[J]. Corrosion Sicience,2001,43(4):655-669.
    [238]Choi J J, Ryu J, Hahn B D, et al. Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation[J]. Journal of Materials Science,2009,44(3): 843-848.
    [239]Xie Y S, Qu W, Yao B S, et al. Dense protective coatings for SOFC interconnect deposited by spray pyrolysis[J]. ECS Transactions,2010,26(1):357-362.
    [240]Alvarez E, Meier A, Weil K S, et al. Oxidation kinetics of manganese cobaltite spinel protection layers on sanergy HT for solid oxide fuel cell interconnect applications[J]. International Journal of Applied Ceramic Technology,2011,8(1): 33-41.
    [241]Mardare C C, Asteman H, Spiegel M, et al. Investigation of thermally oxidized Mn-Co thin films for application in SOFC metallic interconnects[J]. Applied Surface Science,2008,255(5):1850-1859.
    [242]Brinker C J, Frye G C, Hurd A J, et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films,1991,201(1):97-108.
    [243]Xu H, Shapiro I P, Xiao P. The influence of pH on particle packing in YSZ coatings electrophoretically deposited from a non-aqueous suspension[J]. Journal of the European Ceramic Society,2010,30(5):1105-1114.
    [244]Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD) [J]. Progress in Materials Science,2007,52(1):1-61.
    [245]吴荫顺.金属腐蚀研究方法[M].北京:冶金工业出版社,1993:48-49.
    [246]Wu J W, Li C M, Johnson C, et al. Evaluation of SmCo and SmCoN magnetron sputtering coatings for SOFC interconnect applications[J]. Journal of Power Sources,2008,175(2):833-840.
    [247]贾铮,张翠芬,周德瑞.二次碱性锌电极的复合缓蚀剂[J].电池,2004,34(2):111-113.
    [248]El Shayeb H A, Abd El Wahab F M, Zein El Abedin S. Role of indium ion on the action of aluminum[J]. Journal of Applied Electrochemistry,1999,29(5): 601-609.
    [249]许刚,曹楚南,林海潮.阴离子对铝电极电化学行为的影响[J].中国腐蚀与防护学报,1998,18(3):209-213.
    [250]Zaromb S. The use and behavior of aluminum anodes in alkaline primary batteries[J]. Journal of the Electrochemical Society,1962,109(12):1125-1130.
    [251]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003:62-67.
    [252]Talati J D, Modi R M. P-substituted phenols as corrosion inhibitors for aluminium-copper alloy in sodium hydroxide[J]. Corrosion Science,1979,19(1): 35-48.
    [253]Shuquan L, Yong Z, Yan T, et al. Corrosion behavior improvement of high active aluminum alloy anode in alkaline solution by adding inhibitors[J]. Materials Science Forum,2007,546-549:1153-1158.
    [254]Keir D S, Pryor M J, Sperry P R. Galvanic corrosion characteristics of aluminum alloys with group IV metals[J]. Journal of the Electrochemical Society,1967,114(8):777-782.
    [255]廖海星,朱鸿赫,齐公台,等.温度对铝合金牺牲阳极活化溶解行为的影响[J].华中科技大学学报(自然科学版),2004,32(2):114-116.
    [256]赵月红,林乐耕,刘增才,等.铝合金牺牲阳极微观组织的不均匀性对其腐蚀的影响[J].稀有金属,2000,24(5):341-344.
    [257]马正青,黎文献,肖丁德,等.新型铝合金阳极电化学性能与组织研究[J].材料保护,2002,35(5):10-12.
    [258]吴益华.合金元素在铝基牺牲阳极活化过程中的作用[J].中国腐蚀与防护学报,1989,9(2):113-120.
    [259]丰崇友,唐普洪.固溶温度对Al-Zn-Mg-Cu-Cr合金组织与性能的影响[J].热加工工艺,2010,39(10):183-186.
    [260]Kassner M E, Myshlyaev M M, Mcqueen H J. Large-strain torsional deformation in aluminum at elevated temperatures [J]. Materials Science & Engineering(A),1989, A108:45-61.
    [261]Zhu Q, Mcqueen H J, Blum W. Comparison of substructures in high temperature deformed aluminum alloys by polarized optical, scanning and transmission electron microscopes[J]. High Temperature Materials and Processes,1998,17(4): 289-297.
    [262]Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures[J]. Journal of the American Ceramic Society,2007,90(5): 1515-1520.
    [263]Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals,1992,37(1-2):81-93.
    [264]Chen L, Sun E Y, Yamanis J, et al. Oxidation Kinetics of Mn1.5Co1.5O4-coated Haynes 230 and Crofer 22 APU for solid oxide fuel cell interconnects [J]. Journal of the Electrochemical Society,2010,157(6):B931-B942.
    [265]Wang J, Shaw L L. Morphology-enhanced low-temperature sintering of nanocrystalline hydroxyapatite[J]. Advanced Materials,2007,19(17): 2364-2369.
    [266]Belaroui K, Rapillard G, Bowen P, et al. Nanocrystalline coating by electrophoretic deposition (EPD) [J]. Key Engineering Materials,2002,206-213: 519-522.
    [267]Konig K, Novak S, Boccaccini A R, et al. The effect of the particle size and the morphology of alumina powders on the processing of green bodies by electrophoretic deposition[J]. Journal of Materials Processing Technology,2010, 210(1):96-103.
    [268]Naka S, Inagaki M, Tanaka T. On the formation of solid-solution in Co3-xMnxO4 system[J]. Journal of Materials Science,1972,7(4):441-444.
    [269]Abdoli H, Zarabian M, Alizadeh P, et al. Fabrication of aluminum nitride coatings by electrophoretic deposition:effect of particle size on deposition and drying behavior[J]. Ceramics International,2011,37 (1):313-319.
    [270]Kishigawa K, Hirata Y. Packing density and consolidation energy of flocculated aqueous SiC suspension[J]. Journal of the European Ceramic Society,2006, 26(1-2):217-221.
    [271]Kuang X, Carotenuto G, Nicolais L. A review of ceramic sintering and suggestions on reducing sintering temperatures [J]. Advanced Performance Materials,1997,4 (3):257-274.
    [272]Acchar W, Ramalho E G Effect of MnO2 addition on sintering behavior of tricalcium phosphate:preliminary results[J]. Materials Science and Engineering: C,2008,28 (2):248-252.
    [273]Zhang T S, Hing P, Huang H T, et al. Sintering study on commercial CeO2 powder with small amount of MnO2 doping[J]. Materials Letters,2002,57 (2): 507-512.
    [274]Liu X B, Johnson C, Li C M, et al. Developing TiAIN coatings for intermediate temperature solid oxide fuel cell interconnect applications [J]. International Journal of Hydrogen Energy,2008,33(1):189-196.
    [275]Yang Z G, Xia G G, Stevenson J W. Mn1.5Co1.5O4 spinel protection layers on ferritic stainless steels for SOFC interconnect applications [J]. Electrochemical and Solid-State Lettrers,2005,8 (3):A168-A170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700