用户名: 密码: 验证码:
火山流体对烃源岩生烃效应的评价及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烃源岩与火山岩沉积接触的组合关系对油气成藏尤为重要,岩浆活动带来的火山物质对有机质的生烃及油气的成藏有重要的影响。火山岩在形成过程中或之后伴有一定量的火山流体存在,火山流体对周围地层化学性质的影响十分显著。火山流体对烃源岩的生排烃有复杂的作用过程,包括加氢作用、加热作用、催化作用等。由于火山流体的成分复杂,模拟实验难于操作和定量分析,其对烃源岩生烃影响的热模拟实验较少。本文将从火山流体的热模拟的实验着手,研究火山流体对烃源岩生烃的影响,建立火山流体运动演化的数学模型,并以松辽盆地徐家围子断陷为例,对区域内的火山流体运动演化进行了解剖,预测了徐家围子断陷火山流体的流动趋势并圈定火山流体的影响范围。
     具体的研究内容和认识包括以下3个方面:
     (1)不同火山流体对烃源岩生烃影响的讨论
     本研究经过168次实验,首次实现了酸性和基性火山流体对烃源岩生烃产物的半定量-定量评价。实验结果显示,300-350℃酸性流体对非烃和烃类气均具有促进作用;基性流体抑制非烃气体产生,对烃类气体有先促进、后抑制的作用。400-450℃两种火山流体对烃类气体均呈明显抑制作用,对非烃气体呈促进作用。基性流体影响了液态饱和烃产物成分,使碳数范围有缩小趋势;酸性流体对液态饱和烃成分无影响。300℃-350℃酸性流体对液态烃产量有促进作用,基性流体对液态烃产量有抑制作用;400℃-450℃酸性、基性流体对液态烃产量均具有促进作用。
     (2)热模拟数据多元分析的讨论
     将实验数据进行经验正交函数分析,分析结果表明温度与CH4、C2、C3、iC4-nC5、总烃、总非烃和总气体产量呈正相关,而与CO2、CO、H2S气体产量呈负相关。热模拟实验存在临界温度,当实验温度小于临界温度时,产气量随温度的升高而增大,当实验温度大于临界温度时,产气量随温度的升高而降低。干燥体系的临界温度存在于350℃-400℃之间。流体体系的临界温度存在于400℃-450℃之间,酸性和基性火山流体均使产气临界温度升高,火山流体条件下的烃源岩生气窗口变宽,增加了天然气生成量。
     (3)火山流体运动演化数值模拟研究及典型实例解剖
     火山流体的运动演化取决于火山流体本身的成分、温度和压力等因素。一般来说,火山流体中SiO2和Al2O3含量越高,粘度越高,而火山流体的中的挥发性物质却可以降低火山流体的粘度。火山流体的粘度、围岩的孔渗特征、地层的压力等条件决定了火山流体的分布范围。本文以松辽盆地徐家围子断陷为例,利用火山岩的全岩成分,计算特定温压条件下火山流体的密度、粘度等参数。同时,依据现今地层的物性和物探数据恢复徐家围子断陷的古埋深、古孔隙度和古地层压力。在此基础上将流体势的概念引入到火山流体的运动演化的数值模拟中,利用以上数据首次计算徐家围子断陷的古火山流体势,并最终圈定徐家围子营一段火山流体对沙河子烃源岩的影响范围约628km2,徐家围子营三段火山流体对沙河子烃源岩的影响范围约161km2。
Combination of source rocks and volcanic sedimentary contact is particularlyimportant for hydrocarbon accumulation. The volcanic materials brought by magmationhave important implications for hydrocarbon generation and formation reservoir. Duringor after the volcanic rocks forms together with a quantity of volcano fluids which has asignificant influence on the chemical properties of surrounding strata. The process ofvolcano fluids effect on source rocks is very complex which includes hydrogenation,heating effect, catalysis, and so on. The simulation experiment about volcano fluids effecton sources rocks is hard to operate and the data are difficult to achieve quantitativeanalysis caused by complex composition of volcano fluids. Based on thermal simulationexperiment, the impact of volcanic fluids on source rocks is studied, the mathematicalmodel of the motion evolution of the volcanic fluids is builded and the motion evolutionlaw of volcanic fluids is analyzed in Xujiaweizi Fault Depression of Songliao Basin.Themigration of volcanic fluids is marked.The areas influenced by volcanic fluids aredelineated by using the Laplacian operator. In a summary, the research contents andconclusions basically including the following three points:
     (1) The discussion about different kinds of volcanic fluids effect on different kinds ofsource rocks hydrocarbon generation.
     In this study, after168experiments, it is the first time for the semi-quantitative andquantitative evaluation of acidic and basic volcanic fluids effect on hydrocarbongeneration of source rocks. The results of experimental show that in the range of300℃-350℃, acidic volcanic fluids plays both a role in promoting for non-hydrocarbon andhydrocarbon gas. The basic volcanic fluids have an inhibition for non-hydrocarbon gasesgeneration, to hydrocarbon gases show that firstly promoting, then inhibition effect. In the range of400℃-450℃, both volcanic fluids show a significant inhibition to hydrocarbongases, while a promoting to the non-hydrocarbon gases. The basic volcanic fluids effect onthe component of liquid saturated hydrocarbon by narrowing its carbon number range.And there is no effect on the acidic volcanic fluids doing to the component of liquidsaturated hydrocarbon. In the range of300℃-350℃, acidic volcanic fluids play a role inpromoting effect for liquid hydrocarbon generation, and the basic volcanic fluids play arole in inhibiting the quantity of liquid hydrocarbon generation. In the range of400℃-450℃, both acidic and basic volcanic fluids have a role in promoting effect for liquidhydrocarbon production.
     (2) The discussed on the multivariate analysis of thermal simulation experimentaldata.
     The experimental data are analyzed through empirical orthogonal function.Theresults show that the temperatures have a positive correlation with CH4、C2、C3、iC4-nC5,total hydrocarbons and total non-hydrocarbon and total gas yield, while have a negativecorrelation with CO2、CO、H2S gas yield. There is a critical temperature in the thermalsimulation experiment, when the experimental temperature is below critical temperature,gas production increases with increasing temperature, when the experimental temperatureisabove critical temperature, the gas production decreases with increasing temperature.The critical temperature of the dry system is exist in350℃-400℃. while the fluids systemin400℃-450℃which shows that acidic and basic volcanic fluids make the criticaltemperature go up.
     (3) The numerical simulation of volcanic fluids evolution and typical examplesanalysis.
     The mobility of volcanic fluids is depended on many factors, but primarily oncomposition, temperature, and pressure. Generally, a higher content of SiO2and Al2O3inthe volcanic fluids can result in an increased viscosity. However, volatiles contained in thevolcanic fluids can reduce its viscosity. Factors such as viscosity, porosity, permeabilitycharacteristics of surrounding rocks and formation pressure, determine the distribution range of the volcanic fluids. This article takes Xujiaweizi Fault Depression in Songliaobasin as an example, using the whole-rock compositions of volcanic rocks to calculatevolcanic fluids parameters such as density, viscosity under the specific temperature andpressure conditions. At the same time, according to physical property of present formationand geophysical data, ancient burial depth, ancient porosity and ancient formation pressurewere recovered. On this basis, concept of volcanic fluids potential is introduced into thenumerical simulation of evolution of volcanic fluids. All above the data are used tocalculate volcanic fluids potential for the first time in Xujiaweizi Fault Depression.Ultimately, we concluded the results in Xujiaweizi that the influence area of volcanicfluids in Yingcheng Formation I to the source rocks of the Shahezi Formation is about628km2, while Yingcheng Formation III influences161km2.
引文
[1]Allan U.S.. Model for hydrocarbon migration and entrapment within faultedstructures[J]. AAPG Bulletin.1989,73:803-811.
    [2]Anderson R.N.,Flemings P.,Losh S.,Austin J.,WoodhamsR..Gulf of Mexico growthfault drilled, seen as oil, gas migration pathway[J].Oil and Gas Journal.1994,94(3):97-102.
    [3]Azmy K., Blamey N.J.F.. Source of diagenetic fluids from fluid-inclusion gas ratios[J].Chemical Geology.2013,347:246-254.
    [4]Bazhenova1O.K., Arefiev O.A., Frolov E.B.. Oil of the volcano Uzon caldera,Kamchatka. Organic Geochemistry.1998,29(1-3):421–428.
    [5]Behar F., Vandenbroucke M., Tang Y., Marquis F., Espitalie J.. Thermal cracking ofkerogen in open and closed system: Determination of kinetic parameters andstoichiometric coefficient for oil and gas generation[J]. Org Geochemistry.1997,26(5/6):321-339.
    [6]Bergman S., Talbot J.P., Thompson P.R.. The Kora Miocene submarine andesitestratovolcano hydrocarbon reservoir, northern Taranaki Basin, New Zealand. NewZealand oil exploration conference monograph [C].1991,178-206.
    [7]Bethke C.M., Reed J.D., Oltz D.F.. Long range petroleum migration in the illinoisbasin[J]. AAPG bulletin.1991,(75):925-945.
    [8]Bredehoeft J.D., Wesley J.B., Fouch T.D.. Simulation of the origin of fluid Pressure,fraeture generation, and the movement of fluids in the Uinta basin[J]. AAPGbulletin.1994,(78):1729-1747.
    [9]Bottinga Y., Weill D.F.. Densities of liquid silicate systems calculated from partialmolar volumes of oxide components[J]. American Journal of Science.1970,269(9):169-182.
    [10]Bottinga Y., Weill D.F..The viscosity of magmatic silicate liquids; a modelcalculation[J]. American Journal of Science.1972,272:438-476.
    [11]Braun R.L, Burnham A.K.. Methamatical model of oil generation, degradation andexpulsion[J]. Energy and Fuels.1990,4:132-146.
    [12]Carr A.D., Snape C.E., MeredithW.,Uguna C.,Scotchman I.C.,Davis R.C.. The effectof water pressure on hydrocarbon generation reations:some inferences fromlaboratory experiments[J]. Petroleum Geoscience.2009,15:17-26.
    [13]Chen Z.Y., Yan H., Li J.S., Zhang G., Zhang Z.W., Liu B.Z.. Relationship BetweenTertiary Volcanic Rocks and Hydrocarbons in the Liaohe Basin, People's Republic ofChina[J]. AAPG Bulletin.1999,83(6):1004-1014.
    [14]Chepurov A.I., Tomilenko A.A., Zhimulev E.I., Sonin V.M., Chepurov A.A.,Kovyazin S.V., Timina T.Y., Surkov N.V.. The conservation of an aqueous fluid ininclusions in minerals and their interstices at high pressures and temperatures duringthe decomposition of antigorite[J]. Russian Geology and Geophysics.2012,53(3):234-246.
    [15]Conliffe J.,Wilton D.H.C.,BlameyN.J.F., Archibald S.M..Paleoproterozoic MississippiValley Type Pb–Zn mineralization in the Ramah Group,Northern Labrador:Stableisotope, fluid inclusion and quantitative fluid inclusion gas analyses[J].ChemicalGeology.2013,362:211-223.
    [16]Cramer B, Faber E, Gerling P,Krooss B.M.. Reaction kinetics of stable carbon isotopein natural gas-insights from dry, open system pyrolysis experiments[J]. Energy andFuels.2001,15:517-532.
    [17]Dembicki H.J.,Anderson M.J.. Secondary migration of oil: Experiments supportingefficient movement of separate, buoyant oil phase along limited conduits[J]. AAPGBulletin.1989,73(8):1018-1021.
    [18]Garven G.. A hydrogeologic model for the formation of the giant oil sands deposits, ofthe western Canada sedimentary basin[J].Ameriean Journal of Scienee.1989,(289):105-166.
    [19]Hall H. N..Compressibility of reservoir rocks[J].Journal of Petroleum Technology.1953,5(1):17-19.
    [20]Henderson W.,Eglinton G.. Thermal alteration as a contributory process to the genesisof petroleum[J]. Nature.1968,219(5158):1012-1016.
    [21]Herzer, R.H.. Northland, New Zealand and implications for Neogene subduction[J].Marine Petroleum Geology.1995,(12):511–531
    [22]Hubbert M. K..EntraPment of Petroleum under Hydrodynamie Conditions[J]. AAPGBulletin.1953,37(8):1954-2026.
    [23]Hunt M.J..Petroleum geochemistry and geology [M]. Sanfrancisco, Calif., UnitedStates, W. H. Freeman and Co..1979:1-615.
    [24]Hooper E.C.D..Fluid migration along growth faults in compacting sediments[J].Journal of Petroleum Geology.1991,14(2):161-180.
    [25]Ishibash J.. Wakita H., Okamura K., Nakayama E., Feely R.A., Lebon G.T., BakerE.T., Marumo K.. Hydrothermal methane and manganese variation in the plume overthe superfast-spreading southern east Pacificrise[J]. Geochim Cosmochim Acta.1997,61(4):485-500.
    [26]Jin Z.J., Zhang L.P., Yang L., Hu W.X.. A preliminary study of mantle-derived fluidsand their effects on oil/gas generation in sedimentary basins[J]. Journal of PetroleumScience and Engineering.2004,41:45-55.
    [27]Johns W. D.,Shimoyama A.. Clay minerals and petroleum forming reaction duringburial and diagenesis[J]. AAPG Bull.1972,56(11):2160-2167.
    [28]Kamel M.H., Mohamed M.M.. Effective porosity determination in clean/shalyformations from acoustic logs with applications[J]. Journal of Petroleum Science andEngineering.2006,51(3-4):267-274.
    [29]Lewan M.D.. Experiments on the role of water in petroleum formation[J]. Geochimicaet Cosmochimica Acta.1997,61,(17):3691–3723.
    [30]Li N.,Wu H.L., Feng Q.F.,Wang K.W.,Shi Y.J.,Li Q.F.,Luo X.P.. Matrix Porositycalculation in volcanic and dolomite reservoirs and its application[J]. AppliedGeophysics.2009,6(3):287-298
    [31]Lowenstein T.K.,Spencer R.J., Zhang P.X..Origin of ancient potash evaporates: cluesfrom the modern nonmarine Qaidam Basin of western China[J]. Science.1989,245:1090-1092.
    [32]Mango F.D.. Transition mental catalysis in the generation of petroleum and naturalgas[J]. Geochimica et Cosmochimica Acta.1992,56(3):535-555.
    [33]Mamgo F.D.,Hightower J.W.,James A.T.. Role of transition-metal catalysis in thegeneration of natural gas[J].Nature.1994,(7):536-538.
    [34]Mamgo.F.D..Transition metal catalysis in the generation of natural gas[J]. Geochimicaet Cosmochimica Acta.1996,24(10):977-984.
    [35]Muramatsu Y., Sawaki T., Arai F.. Geochemical study of fluid inclusions from thewestern upflow zone of the Matsukawa geothermal system, Japan[J]. Geothermics.2006,35(2):123-140.
    [36]Peuter J. H., Perdue E. M.. Importance of heavy metal-organic matter interactions innature water[J]. Geochimica et Cosmochimica Acta.1977,41(2):325-333.
    [37]Schimmelmann A.,Lewan M.D., Wintsch R.P.. D/H isotope ratios of kerogen, bitumen,oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS,and III[J]. Geochimica et Cosmochimica Acta.1999,63(22):3751-3766.
    [38]Schimmelmann A., Boudou J.P., Lewan M.D., Wintsch R.P.. Experimental controls onD/H and13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis[J].Organic Geochemistry.2001,32(8):1009-1018.
    [39]Schutter S.R.. Occurrences of hydrocarbons in and around igneous rocks[J]. TheGeological Society of London.2003,214:35-68.
    [40]Seewald J.S.. Organic-inorganic interactions in petroleum producing sedimentarybasins[J]. Nature.2003,426(20):327-333.
    [41]Sekine K., Bignall G., Tsuchiya N.. Application of synthetic fluid inclusions tosimultaneous temperature–pressure logging in high-temperature (sub-to supercritical)geothermal systems[J]. Geothermics.2004,33(6):775-793.
    [42]Shan X.L., Li J.Y., Wang M.Y., Chen G.B.. A thermal simulation of the influence ofvolcanic fluids on source rock[J]. Petroleum Science and Technology.2013,31(18):1842-1849.
    [43]Shan X.L., Li J.Y.,, Chen S.M., Ran Q.C., Chen G.B., Liu C.. Subaquatic volcaniceruptions in continental facies and their influence on high quality source rocks shownby the volcanic rocks of a faulted depression in Northeast China[J]. Science ChinaEarth Science.2013,56(11):1926-1933.
    [44]Shaw H.R..Viscosities of magmatic silicate liquids; an empirical method ofprediction[J]. American Journal of Science.1972,272(9):870-893.
    [45]Tannenbaum E., Kaplan I.R.. Role of mineral in the thermal alteration of organicmatter-Ⅰ, generation of gases and condensates under dry conditions[J]. OrgGeochem.1985,49(12):2589-2604.
    [46]Tannenbaurm E.,Huizinga B.J.,Kaplan I.R.. Role of mineral in the thermal alterationof organic matter-Ⅱ,amaterial balance[J]. AAPG Bull.1986,70(9):1156-1165.
    [47]Tolkova E.. EOF analysis of a time series with application to tsunami detection[J].Dynamics of Atmospheres and Oceans.2010,50(1):35-54.
    [48]Tokunaga T., Mogi K., Matsubara O., Tosaka H., Kojima K.. Buoyancy and interfacialforce effects on two-phase displacement patterns: An expeimental study[J]. AAPGBulletin.2000,84(1):65-74.
    [49]Tomlinson E.L., McMillan P.F., Zhang M., Jones A.P., Simon A.T., Redfern S.A.T..Quartz-bearing C-O-H fluid inclusions diamond: Retracing the pressure-temperaturepath in the mantle using calibrated high temperature IR spectroscopy[J]. Geochimicaet Cosmochimica Acta.2007,71(24):6030-6039.
    [50]Wilks D.S.. Chapter12–Principal Component (EOF) Analysis[J]. InternationalGeophysics,2011,(100):519-562.
    [51]Wyllie M.R.J., Gregory A.R., Gardner G.H.F.. An experimental investigation offactors affecting elastic wave velocities in porous media[J]. Geophysics.1958,23,459-493.
    [52]Yagi M., Ohguch T., Akiba F., Yoshida T., Tiba T.. The Fukuyama volcanic rocks:Submarine composite volcano in the Late Miocene to Early Pliocene Akita–Yamagata back-arc basin, northeast Honshu, Japan[J]. SedimentaryGeology.2009,(220):243-255.
    [53]Zerbini S., Raicich F., Errico M., Cappello G.. An EOF and SVD analysis ofinterannual variability of GPS coordinates, environmental parameters and spacegravity data[J]. Journal of Geodynamics.2013,67:111-124.
    [54]Bear J..多孔介质流体动力学[M](.中译本)北京:中国建筑工业出版社,1983,473..
    [55]蔡东梅,孙立东,齐景顺,董景海,朱映康.徐家围子断陷火山岩储层特征及演化规律[J].石油学报,2010,03:400-407
    [56]曹青.新疆三塘湖盆地流体包裹体研究[D].西北大学,2005.
    [57]陈建文,王德发,张晓东,李长山.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘.2000,7(4):371-379.
    [58]陈凯,刘震,朱文奇,周心怀,张荣辉.辽东湾断陷金县1-1低凸起东斜波沙三段泥岩古地层压力恢复及应用[J].现代地质,2012,03:540-546.
    [59]陈树民,张元高,姜传金.徐家围子断陷火山机构叠置关系解析及其数字化模型参数建立[J].地球物理学报,2011,02:499-507.
    [60]陈勇,周瑶琪,章大港,颜世永.山东昌乐—临朐火山岩流体包裹体成分研究及其意义[J].吉林大学学报(地球科学版),2003,04:413-418.
    [61]陈振岩,仇劲涛,王璞珺,李湃,张培先,刘鑫,郝涛,聂桂民.主成盆期火山岩与油气成藏关系探讨[J].沉积学报,2011,04:798-808.
    [62]陈振岩,李军生,张戈,阎火,张占文.辽河坳陷火山岩与油气关系[J].石油勘探与开发,1996,03:1-5+97.
    [63]戴金星.中国含油气盆地的无机成因气及其气藏[J].天然气工业,1995,03:22-27+106.
    [64]代诗华,姜淑云,王军.准噶尔盆地石西油田火山岩储集层的测井描述[J].新疆石油地质,1997,02:125-129+5.
    [65]杜金虎,冯志强,赵志魁,邹才能,何海清,魏国齐,焦鬼浩,孙丰,赵泽辉,罗霞.松辽盆地中生界火山岩天然气勘探[M].北京:石油工业出版社,2010.
    [66]房玄,雷怀彦.粘土矿物对生物-热催化过渡带有机质热解影响的研究[J].天然气地球科学,1993,06:80-85.
    [67]冯庆付.大庆徐家围子地区深层火成岩气藏测井解释方法研究[D].中国海洋大学,2007.
    [68]冯子辉,任延广,王成,李景坤,王雪,关秋华.松辽盆地深层火山岩储层包裹体及天然气成藏期研究[J].天然气地球科学,2003,14(6):436-442.
    [79]付广,张超群.气源断裂与盖层时空匹配关系及对天然气成藏的控制作用——以徐家围子断陷为例[J].岩性油气藏,2013,01:51-55+68.
    [70]付少英,彭平安,彭平安,刘金钟,张文正,李剑峰,昝川莉.鄂尔多斯盆地上古生界煤的生烃动力学研究[J].中国科学(D),2002,32(10):812-818.
    [71]耿新华,耿安松,熊永强,刘金钟,张海祖,赵青芳.海相碳酸盐岩烃源岩热解动力学研究:全岩和干酪根的对比[J].地球化学,2005,06:74-80.
    [72]韩登林,张昌民,林小云,张尚锋,何幼斌.含油气系统中粘土岩所扮演的角色[J].贵州地质,2005,01:50-53.
    [73]何千里.压实,流体压力和势系统及其应用.江汉石油学院学报[J].1992,14(4):14-19.
    [74]侯贵廷,冯大晨,王文明,杨默涵.松辽盆地的反转构造作用及其对油气成藏的影响
    [J].石油与天然气地质,2004,25(1):49-53.
    [75]黄玉龙,王璞珺,冯志强,邵锐,郭振华,许中杰.松辽盆地改造残留的古火山机构与现代火山机构的类比分析[J].吉林大学学报(地球科学版),2007,01:65-72.
    [76]黄玉龙,王璞珺,门广田,唐华风.松辽盆地营城组火山岩旋回和期次划分——以盆缘剖面和盆内钻井为例[J].吉林大学学报(地球科学版),2007,06:1183-1191.
    [77]惠荣耀.中国中国西部主要沉积盆地成烃地质特征[J].新疆石油地质.1999,20(1):10-14.
    [78]霍秋立.松辽盆地徐家围子断陷深层天然气来源与成藏研究[D].大庆石油学院,2007.
    [79]姜峰,杜建国,王万春,曹正林.高温超高压模拟实验研究—温压条件对有机质成熟作用的影响[J].沉积学报,1998,16(3):153-155.
    [80]姜振学,庞雄奇,曾溅辉,王洪玉,罗群.油气优势运移通道的类型及其物理模拟实验研究[J].地学前缘,2005,12(4):507-516.
    [81]焦大庆,梁志刚,王长青,任来义.含油气盆地流体演化研究[M].北京:石油工业出版社.1998,285.
    [82]金爱民,楼章华,朱蓉,孙毛明,张文正,魏新善.地下水动力场的形成,演化及其流体特征分析——以鄂尔多斯盆地上古生界为例[J].浙大学报,2003,30(3):337-343.
    [83]金博,刘震,何汉漪,李绪深.莺歌海盆地流体势场演化对天然气运聚的控制[J].新疆石油地质,2005,01:25-28.
    [84]金春爽,乔德武,淡伟宁.渤海湾盆地中、新生代火山岩分布及油气藏特征[J].石油与天然气地质,2012,01:19-29+36.
    [85]金强,荣启宏,万丛礼.有机与无机混合成因的天然气藏[J].矿物岩石,1999,17(4):332-337.
    [86]金强,万丛礼.裂谷盆地火山活动与油气聚集[M].北京:地质出版社,2011.
    [87]金强,熊寿生,卢培德.中国断陷盆地主要生油岩中的火山活动及其意义[J].地质论评,1998,44(2):136-142.
    [88]冷成彪,张兴春,王守旭,秦朝建,吴孔文,任涛.岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J].地质论评,2009,01:100-112.
    [89]李斌,孟自芳,夏斌,宋岩,李相博.含铀矿物对烃源岩生烃影响的热模拟研究[J].岩石矿物学杂志,2008,01:52-58.
    [90]李立武,王先彬,张铭杰.橄榄石热解氢释放过程的分析[J].地球化学,1998,27(5):514~515
    [91]李善鹏,邱楠生,尹长河.利用流体包裹体研究沉积盆地古压力[J].矿产与地质,2003,17(2):161-165.
    [92]李贤庆,冯松宝,李剑,王萌,黄孝波,王康东,孔龙玺.鄂尔多斯盆地苏里格大气田天然气成藏地球化学研究[J].岩石学报,2012,03:836-846.
    [93]李延钧,陈又才,杨远聪,朱江,张茂林,梅海燕,于志海,杨池银,廖前进.板桥凹陷古流体势与油气运移聚集史研究[J].沉积学报.1996,14(4):94-101.
    [94]李玉敏.工业催化原理[M].天津:天津大学出版社,1992.72-142.
    [95]李忠.试论油气生成过程中粘土矿物的催化作用[J].石油实验地质,1992,14(1):59-63.
    [96]林如锦,徐克定.浙闽粤东部中生代火山岩分布区油气远景探讨[J].石油学报,1995,16(4):23-30.
    [97]刘斌.利用流体包裹体及其主矿物共生平衡的热力学方程计算形成温度和压力[J].中国科学(B辑),1987,(3):303-310.
    [98]王海波.大庆徐家围子超深井提速技术研究[D].东北石油大学,2013.
    [99]刘惠民,谢忠怀.渤海湾盆地济阳坳陷第三系火成岩岩石化学特征及成因分析[J].石油实验地质,2003,04:385-389.
    [100]刘嘉麒,孟凡超,崔岩,张玉涛.试论火山岩油气藏成藏机理[J].岩石学报,2010,01:1-13.
    [101]刘洛夫,李术元.烃源岩催化生烃机制研究进展[J].地质论评,2000,05:491-498.
    [102]刘全有,刘文汇,秦胜飞,孟仟祥,王万春.煤岩及煤岩加不同介质的热仿真地球化学实验—气态和液态产物的产率以及演化特征[J].沉积学报,2001,19(3):465-468.
    [103]刘全有,刘文汇,孟仟祥.塔里木盆地煤岩在不同介质条件下热模拟实验中烷烃系列有机质地球化学特征[J].天然气地球化学,2006,17(3):313-318.
    [104]刘秋宏.英买力地区古近系末期流体势场空间分布特征及其对成藏的影响[D].大庆石油学院,2010.
    [105]刘伟.大庆徐家围子地区水性分布规律及预测[D].浙江大学,2010.
    [106]刘文汇,宋岩,刘全有,秦胜飞,王晓锋.煤岩及其主显微组份热解气碳同位素组成的演化[J].沉积学报,2003,01:183-190.
    [107]刘洋.徐家围子断陷沙河子组储层特征研究[D].东北石油大学,2013.
    [108]柳益群,刘斌,荐军.吐哈盆地二叠系—侏罗系流体包裹体研究[J].石油勘探与开发,2001,01:48-50+12-4.
    [109]刘震,金博,韩军等.准噶尔盆地东部流体势场演化对油气运聚的控制[J].石油勘探与开发,2000,27(4):59-63.
    [110]刘震,张万选,曾宪斌,邵新军.含油气盆地地温-地压系统浅析[J].天然气地球科学,1996,01:34-38.
    [111]卢焕勇,袁佩芳,祝总祺,刘文荣,苗建宇.胜利油田下第三系沙河街组烃源岩热解产物初析[J].西北大学学报(自然科学版),1996,06:515-518.
    [112]卢焕章.流体包裹体[M].北京:科学出版社.2004
    [113]卢龙飞,蔡进功,刘文汇,腾格尔,王杰.泥岩与沉积物中粘土矿物吸附有机质的三种赋存状态及其热稳定性[J].石油与天然气地质,2013,01:16-26.
    [114]卢双舫,薛海涛,钟宁宁.地史过程中烃源岩有机质丰度和生烃潜力变化的模拟计算[J].地质论评,2003,03:292-297.
    [115]卢双舫,付晓泰,李启明,刘晓艳,冯亚丽.塔里木盆地熟化有机质成烃动力学模型原始参数的恢复及意义[J].地质论评,2000,05:556-560.
    [116]吕炳全,张彦军,王红罡,张玉兰.中国东部中、新生代火山岩油气藏的现状与展望[J].海洋石油,2003,23(4):9-13.
    [117]吕军,莫宣学,赵志丹,韩振哲.黑龙江省黑河市北大沟金矿床流体包裹体研究[J].现代地质,2009,03:456-464.
    [118]吕希学.济阳坳陷第三系火成岩油气藏成藏机理及成藏模式[D].浙江大学,2007.
    [119]罗群,白新华.断裂控烃理论与实践——断裂活动与油气聚集研究[M].武汉:中国地质大学出版社,1998:61-75.
    [120]马昌前.硅酸盐熔体的粘度、密度及其计算方法[J].地质科技情报,1987,6(2):142-150.
    [121]毛光周.铀对烃源岩生烃演化的影响[D].西北大学,2009.
    [122]毛光周,刘池洋,张东东,邱欣卫,王建强,刘宝泉,刘静江,曲少东,张参,邓煜,王飞飞.铀对(Ⅱ型)低熟烃源岩生烃演化的影响[J].地质学报,2012,11:1833-1840.
    [123]毛光周,刘池洋,刘宝泉,张东东,邱欣卫,王建强.铀对Ⅰ型低熟烃源岩生烃演化的影响[J].中国石油大学学报(自然科学版),2012,02:172-181.
    [124]米敬奎,张水昌,王晓梅.不同类型生烃模拟实验方法对比与关键技术[J].石油实验地质,2009,04:409-414.
    [125]宁占武,王卫华,温美娟,李剑.过渡金属对有机质热解生烃过程的影响[J].天然气地球科学,2004,03:317-319.
    [126]裴东洋.松辽盆地徐家围子断陷沙河子组沉积相研究[D].中国地质大学(北京),2013.
    [127]单秀琴,胡国艺,高嘉玉.鄂尔多斯盆地中部奥陶系方解石脉中包裹体流体势研究[J].岩石学报,2003,19(2):355-355.
    [128]单玄龙,刘青帝,任利军,赵玉婷.松辽盆地三台地区下白垩统营城组珍珠岩地质特征与成因[J].吉林大学学报(地球科学版),2007,06:1146-1151.
    [129]单玄龙,高璇,徐汉梁.松辽盆地安达地区营城组中基性火山岩成藏主控因素[J].吉林大学学报(地球科学版),2012,05:1348-1357.
    [130]单玄龙,衣健,李建忠,罗洪浩,张洋洋.松辽盆地三台地区营城组珍珠岩地球化学特征及地质意义[J].岩石学报,2010,01:93-98.
    [131]盛继福,张德全,李岩.大兴安岭中南段金属矿床流体包裹体研究[J].地质学报,1995,01:56-66.
    [132]石卫,郭绍辉,秦匡宗.烃源岩在水介质下热压模拟的研究[C].第五届全国有机地球化学会议论文集,南京:江苏科学出版社,1994:238.
    [133]宋岩,徐永昌.天然气成因类型及其鉴别[J].石油勘探与开发,2005,04:24-29.
    [134]宋占东.阳信洼陷火成岩对烃源岩生烃作用机理研究[D].中国石油大学,2009.
    [135]谈迎,刘德良,杨晓勇,方国庆,张交东,李振生.应用流体包裹体研究古流体势及油气运移[J].中国科学技术大学学报,2002,32(4):470-450.
    [136]唐华风,王璞珺,李瑞磊,黄晨,白冰.松辽盆地断陷层火山机构类型及其气藏特征[J].吉林大学学报(地球科学版),2012,03:583-589.
    [137]唐华风,边伟华,王璞珺,姜传金,王莹.松辽盆地下白垩统营城组火山岩喷发旋回特征[J].天然气工业,2010,03:35-39+128-129.
    [138]万丛礼,金强,翟庆龙.东营凹陷滨南地区水下火山喷溢对烃源岩形成及生烃演化的作用[J].石油大学学报(自然科学版),2003,27:17-21.
    [139]万丛礼,翟庆龙,金强.生油岩与火成岩的相互作用研究初探—有机酸对火成岩的蚀变及过渡金属对有机质演化的催化作用[J].地质地球化学,2001,02:46-51.
    [140]王存武,邹华耀.利用流体包裹体获取含气盆地古地层压力的新方法[J].天然气勘探与开发,2013,36(1):28-32.
    [141]王德义.铀(238)在催化中的应用及防护[J].现代化工,1955(1):59-45.
    [142]王华田.浙西南金矿床矿物包裹体地球化学和矿床成因[J].地质地球化学,1995,03:63-69+49.
    [143]王经.传热学与流体力学基础[M].上海:上海交通大学出版社,2007:3-15.
    [144]王可勇,任云生,程新民,代军治.黑龙江团结沟金矿床流体包裹体研究及矿床成因[J].大地构造与成矿学,2004,28(2):171-178.
    [145]王玲,靳久强,张研.松辽盆地徐家围子断陷营城组一三段火山喷发期次划分及意义[J].中国石油勘探.2009,2:6-13.
    [146]王民.有机质生烃动力学及火山作用的热效应研究与应用[D].东北石油大学,2010.
    [147]王民,卢双舫,薛海涛,武静,刘大为.岩浆侵入体对有机质生烃(成熟)作用的影响及数值模拟[J].岩石学报,2010,01:177-184.
    [148]王民,卢双舫,刘大为,刘杨,武静.岩浆侵入体热传导模型优选及应用[J].吉林大学学报(地球科学版),2011,01:71-78.
    [149]汪名友.松辽盆地火山流体与烃源岩相互作用的模拟实验研究[D].长春:吉林大学,2010.
    [150]王宁,吴春燕,贾朋涛,王娟,何静.烃源岩有机质生烃过程中的粘土矿物催化作用研究进展[J].内蒙古石油化工,2011,05:3-7.
    [151]王璞珺,冯志强等.盆地火山岩[M].北京:科学出版社.2008.
    [152]王璞珺,庞颜明,唐华风,黄玉龙,郑常青.松辽盆地白垩系营城组古火山机构特征[J].吉林大学学报(地球科学版),2007,06:1064-1073.
    [153]王社教,胡圣标,汪集晠.塔里木盆地沉积层放射性生热的热效应及其意义[J].石油勘探与开发,1999,05:36-38+5.
    [154]王铁冠.生物标志物地球化学研究[M].武汉:中国地质大学出社.1990:55~66.
    [155]王兴谋,邱隆伟,姜在兴,郭栋.济阳坳陷火山活动和CO2气藏的关系研究[J].天然气地球科学,2004,04:422-427.
    [156]王行信,蔡进功,包于进.粘土矿物对有机质生烃的催化作用[J].海相油气地质,2006,03:27-38.
    [157]王振亮,陈荷立.有效运移通道的提出与确定初探[J].石油试验地质,1999,21(1):71-75.
    [158]王治朝,米敬奎,李贤庆,颉保亮,李学专.生烃模拟实验方法现状与存在问题[J].天然气地球科学,2009,04:592-597.
    [159]吴越.催化化学[M].北京:科学出版社,1999.120-189.
    [160]肖骏.徐家围子断陷营城组火山岩流体包裹体发育特征及其地质意义[D].浙江大学,2011.
    [161]肖骏,陈汉林,杨树锋,章凤奇,林秀斌,余星,庞彦明,舒萍.松辽盆地北部深层火山岩气藏的充注:来自流体包裹体的证据[J].石油学报,2011,06:968-975.
    [162]熊寿生.火山喷溢-喷流活动与半无机成因天然气的形成和类型[J].石油实验地质,1996.18(1)13-35.
    [163]徐松年.浙江中生代酸性火山岩柱状节理构造的发现及其地质意义[J].岩石学报,1995(03):325-332.
    [164]涂光炽,刘英俊,祁思敬.矿床地球化学[M].北京:地质出版社,1997.235.
    [165]薛国刚,高渐珍.东濮凹陷古近系沙河街组火山作用与盐岩成因[J].石油天然气学报,2011,01:53-56+75+166.
    [166]叶聪聪.镇北—环县地区长6-长8油气成藏动力研究和有利目标预测[D].长江大学,2013.
    [167]袁见齐.矿床学[M].北京:地质出版社,1984.
    [168]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1993.96-98.
    [169]袁鹏,刘红梅,刘冬,吴大清.油气形成过程中粘土矿物的催化作用:几点思考矿物学报.2012年全国矿物科学与工程学术研讨会论文集[C].2012:70-71.
    [170]曾广策,王方正,郑和荣,付瑾平.东营凹陷新生代火山岩及其与盆地演化、油藏的关系[J].地球科学,1997,02:43+45+44+46-50.
    [171]翟庆龙.火山热液活动对烃源岩生排烃的作用——以东营凹陷西部沙三段为例[J].油气地质与采收率,2003,10:11-13.
    [172]张光亚,邹才能,朱如凯,袁选俊,赵霞.我国沉积盆地火山岩油气地质与勘探[J].中国工程科学,2010,05:30-38.
    [173]张嵩松.岩浆热液成矿系统的数值模拟[D].中国地质大学(武汉),2011.
    [174]张树林,白新华,马凤荣.流体势场在三肇地区天然气运聚规律研究中的应用[J].大庆石油地质与开发,1996,02:14-18+75-76.
    [175]张天孙,卢改林.传热学[M].北京:中国电力出版社,2006:2-3.
    [176]张元高,陈树民,张尔华,姜传金.徐家围子断陷构造地质特征研究新进展[J].岩石学报,2010,01:142-148.
    [177]张元高,刘继莹,辛朝坤,包丽.徐家围子断陷火山间歇期沙河子组发育特征及其存在火山机构的探讨[J].地球物理学报,2011,02:474-480.
    [178]张子枢,吴邦辉.国内外火山岩油气藏研究现状及勘探技术调研[J].天然气勘探与开发,1994,01:1-26.
    [179]赵文智,邹才能,李建忠,冯志强,张光亚,胡素云,匡立春,张研.中国陆上东、西部地区火山岩成藏比较研究与意义[J].石油勘探与开发.2009,(1):1-11.
    [180]郑伦举,何生,秦建中,马中良.近临界特性的地层水及其对烃源岩生排烃过程的影响[J].地球科学(中国地质大学学报),2011,01:83-92.
    [181]周立宏,刘国芳.利用泥岩声波时差估算地层压力[J].石油实验地质,1996,18(2):195-199+154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700