用户名: 密码: 验证码:
碳纳米材料的可控制备及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以富勒烯、碳纳米管和石墨烯为家族成员的碳纳米材料是近年来纳米科技发展的一面旗帜,是众多科学家竞相研究的热点。随着研究工作的不断深入,从理论探讨到制备工艺开发都取得了一系列重大的突破。而碳纳米材料低成本规模化可控制备、生长机制至今仍然是限制其工业化应用的主要瓶颈。本论文工作以不同组成和结构特征的碳源为前驱体,系统研究了富勒烯和碳纳米管的可控制备和分离提纯,并对碳原子数60以下的低碳富勒烯加氢、卤化生成机制进行了理论研究。
     主要研究结果如下:
     (1)优化电弧放电工况条件及固体碳源组成和结构,成功获得了高产率的富勒烯。采用12脉冲可控硅整流电源减小整流电压波动,改善直流放电质量和放电电弧平稳性,粗富勒烯收率明显优于6脉冲整流放电之结果;无烟煤、针状焦、石墨、膨胀石墨均是合成富勒烯的合适原料,其中以膨胀石墨为碳源,富勒烯产率最高,表明前驱体的结构与富勒烯产率之间有内在的关联。
     (2)将模拟移动床色谱分离技术应用于粗富勒烯的分离提纯,获得了高纯度/高提取率的富勒烯。以粒径20μm-30μm、孔径12nm的球形ODS为固定相,一定比例的甲苯、甲醇混合溶剂为淋洗液,在模拟移动床色谱分离系统上可实现C60、C70与其他杂质的高效分离,从而获得高纯度、高产率的产品,其中C60纯度大于98%,提取率95.7%,C70的纯度大于98%,提取率达到98%。
     (3)以煤、针状焦为碳源,可控制备得到了多种不同形貌和结构特征的碳纳米材料。采用直流电弧放电技术,在0.020MPa氦气气氛下,以白杨树煤(无烟煤)为原料,制备得到了大量管径50nm左右的开口竹节状碳纳米管和以绒毛球状组装结构存在的直径20nm-30nm的碳纳米纤维;以高度光学各向异性的针状焦为碳源,铁粉为催化剂,直流电弧放电获得了表面修饰铁纳米粒子(5nm-10nm)、长度达微米尺度、直径20nm-50nm的一维碳纳米棒结构;以针状焦为碳源,FeCl3作为催化剂前躯体,通过直流电弧放电制备出了高质量和高产率的双壁碳纳米管,表明针状焦是制备双壁碳纳米管的理想原料。
     (4)利用密度泛函理论开展了富勒烯与H、F、Cl原子相互作用机理研究,为研究碳纳米材料的微观形成机制提供了有价值的信息。通过势能面分析和异构体之间转化活化能计算,对C28(Td)、C40(Td)的氢化与卤化机制进行了理论预测,发现C28(Td)、C40(Td)更容易与X(X=H、F、Cl)原子发生反应,生成更加稳定的C28(Td)X4和C40(Td)X4化合物。对C28(Td)X、C40(Td)X各自异构体相互转化的研究表明,它们之间的反应都是一步反应,由于反应通道的能垒较高,在室温下它们之间的相互转化难以实现。
Nanocarbon materials including fullerenes, carbon nanotubes and graphene, have become the hot topics in recent years and play a leading role in the nanoscience and nanotechnology. Many breakthroughs have been accomplished both in the synthesis technique and theoretical research. However, the insolubilities of controllable fabrication in large-scale and growth mechanism still act as the main bottle-necks and limitations to their application widely in industry world. This work in the dissertation used various starting materials with different structures and compositions and investigated the controllable preparation, separation and purification of fullerene and carbon nanotubes based materials, meanwhile the mechanisms of hydrogenation and halogenation of the fullerenes with less carbon atoms than 60 have been studied theoretically.
     The main results are summarized as following:
     (1) By means of optimizing the operating conditions, the compositions and structures of the solid carbon starting materials, high yields of fullerene have been achieved in the process of arc discharge. Silicon-controlled rectifier with twelve-pulses has been used to minimize the fluctuation of direct-current (DC) wave for the stabilization of the arc discharge. Higher yield of fullerenes has been accomplished compared with that in the case of six-pulses. Anthracite, needle-coke, exfoliated graphite as well as graphite can be used as the starting materials for the production of fullerenes in the arc discharge, and the exfoliated graphite give rise to the highest yield of fullerene. Therefore, this suggests that there is an inherent relationship between the yield of fullerenes and structures of carbon precursors.
     (2) High purity of fullerene has been achieved by means of simulated moving bed (SMB) chromatography technology from the raw fullerenes obtained by arc discharge. Ball-like ODS with diameter of 20-30μm and pore size of 12nm is used as the stationary phase and the mixture of methanol and toluene as the eluent for the separation of fullerene. High purity (98% for both C60 and C70) and high extraction yield (95.7%,98% for C60 and C70, respectively) have been obtained. This demonstrates that the SMB chromatography technology is a high efficient approach to the purification of fullerenes.
     (3) Coal and needle-coke are used as the carbon source for the production of carbon nano-materials with various morphologies. With Baiyangshu coal (anthracite) as starting materials and He (0.020MPa) as discharge atmosphere, bamboo-like carbon nanotubes with diameter of 20-30nm and open end, as well as fluffy ball-like assemblies composed of carbon nanofibers with diameter of 20-30nm are grown in large-scale. Needle-coke with high optical anisotropy is used as carbon source and iron powder as catalyst, nanorods decorated with Fe nanoparticles (5-10 nm) on the surface and length of micrometer size are obtained with arc discharge method; While double-walled carbon nanotubes with high yield and high quality rather than Fe decorated nanorods are prepared with FeCl3 replacing of Fe powder as the catalyst precursor. This indicates that the needle-coke is the appropriate precursor for the production of double-walled carbon nanotubes.
     (4) Density functional theory is used to predict the fullerenes interacted with H, F and Cl atom for the purpose of pursuing valuable information for the growth mechanism of nanocarbon materials. Through the analysis of the potential energy surface and calculation of activation energy for the conversion between different isomers, the hydrogenation and halogenation mechanism of C2s(Td), C40(Td) are predicted with this theory. It demonstrates that the reaction between C28(Td), C4o(Td) and X(X=H,F,Cl) is easy and give rise to stable compounds of C2s(Td)X4 and C4o(Td)X4, respectively. It is shown that the conversion between isomers of C28(Td)X, C40(Td)X is a one step reaction, which become impossible at the room temperature because of the high energy barrier in the reaction channel.
引文
[I]Kroto H W, Heath J R, O'Brien S C et al. C60:Buckminsterfullerene[J]. Nature,1985,318:162-163.
    [2]Kratshmer W, Lame L D, Fortiropoulos K, Huffmen D R. Solid C60:a new form of carbon[J]. Nature, 1990,347:354-357.
    [3]Iijima S, Helical microtubes of graphitic carbon[J].Nature,1991,354:56-58.
    [4]Xie S Y, Gao F, Lu X et al. Capturing the labile fullerene[50] as C50C110[J]. Science,2004,304:699.
    [5]日本炭素材料学会编 中国金属金属学会碳材料专业委员会编译新炭材料入门[M]2000:1-4.
    [6]王利峡,赵峰,赵中华,陈镇宝等.球笼烯(C60)的研究及应用新进展[J].青岛化工学院学报,1997,18(2):115-122.
    [7]刘祖武.现代无机合成[M].北京:化学工业出版,1999,142-55.
    [8]Fagan P J, Calabrese J C, Malone B. The chemical nature of Buckminsterfullerene(C60) and the characterization of a platinum derivative[J]. Science,1991,252:1160-1161.
    [9]Olah G A, Bucsi I, Aniszfeld R et al. Chemical reactivity and functionalization of C60 and C70 fullerenes[J]. Carbon,1992,30(8):1203-1211.
    [10]Taylor R, Walton D R M. The chemistry of fullerenes[J]. Nature,1993,363:685-693.
    [11]Khan S 1, Oliver A M, Poddon M N et al. Synthesis of a rigid "ball-and-chain" donor-acceptor system through Diels-Alder functionalization of buckminsterfullerene (C60) [J]. J. Am. Chem. Soc.,1993, 115(11):4919-4920.
    [12]Hirsch A, Li Q, Wudl F. Globe-trotting hydrogens on the surface of the fullerene compound C60H6(N(CH2CH2)2O)6 [J]. Argew. Chem. int. Ed. Engl.,1991,30(10):1309-1310.
    [13]Hwkins J M, Meyer A, Levds T A et al. Regiochemistry of the bisosmylation of fullerene C60:ortho, meta and para in three dimensions [J]. J.Am.Chem.Soc.,1992,114(20):7954-7955.
    [14]Fagan P J, Chase B, Calabrese J C et al. Some well characterized chemical reactivities of buckminsterfullerene (C60) [J]. Carbon,1992,30(8):1213-1226.
    [15]Chai Y, Guo T, Jin C M et al. Fullerenes with metals inside[J]. J.Phys.Chem.,1991,95(20): 7564-7568.
    [16]Alvarez M M, Gillan E G, Holczer K et al. Lanthanum carbide (La2C80):a soluble dimetallofullerene[J]. J.Phys.Chem.,1991,95(26):10561-10563.
    [17]Pradeep T, Kulkarni G U, Kannan K R et al. A novel iron fullerene (FeC60) adduct in the solid state[J]. J. Am. Chem. Soc.,1992,114(6):2272-2273.
    [18]Piskoti C, Yarger J, Zettl A. C36:a new carbon solid[J]. Nature,1998,393:771-774.
    [19]Prinzbach H, Weiler A, Landenberger P et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene C20[J]. Nature,2000,407:60-63.
    [20]Jarrold M F. The smallest fullerene[J]. Nature,2000,407:26-27.
    [21]Heath J R. C60's Smallest Cousin[J]. Nature,1998,393:730-731.
    [22]徐正,锁志勇,魏先文等.富勒烯的生物活性研究进展[J].生物化学与生物物理进展,1998,25(2):130-135.
    [23]Diederich F, Ettl R, Rubin Y et al. The Higher Fullerenes:Isolation and Characterization of C76, C84, C90, C94, and C70O, and Oxide of D5h-C70[J]. Science,1991,252:548-551.
    [24]Wood J M, Kahr B, Hoke S H et al. Oxygen and methylene adducts of C60 and C70[J]. J.Am.Chem.Soc.,1991,113:5907-5908.
    [25]Kalsbeck W A, Thorpe H H. Electrochemical reduction of fullerenes in the presence of O2 and H2O: Polyoxygen adducts and fragmentation of the C60 framework[J]. J. Electroanal. Chem.,1991, 314:363-370.
    [26]Creegan K M, Robbins J L, Win K et al. Synthesis and characterization of C60O, the first fullerene epoxide[J]. J.Am.Chem.Soc.,1992,114(3):1103-1105.
    [27]Balch A L, Costa D A, Lee J W et al. Directing effects in a fullerene epoxide addition:formation and structural characterization of (η2-C60O)Ir(CO)Cl(P(C6H5)3)2[J]. Inorg. Chem.,1994,33:2071-2072.
    [28]Heymann D, Bachilo S M, Weisman R B et al. C60O3, a Fullerene Ozonide:Synthesis and Dissociation to C60O and O2[J]. J.Am.Chem.Soc.,2000,122(46):11473-11479.
    [29]Weisman R B, Heymann D, Bachilo S M, Synthesis and Characterization of the "Missing" Oxide of C60:[5,6]-Open C60O[J]. J.Am.Chem. Soc.,2001,123(39):9720-9721.
    [30]Deng J P, Mou C Y, Chan C, Electrospray and Laser Desorption Ionization Studies of C60O and Isomers of C60O2[J]. J.Phys.Chem.,1995,99(41):14907-14910.
    [31]Tanaka H, Takeuchi K, Negishi Y et al. Highly oxygenated fullerene anions C60On-formed by corona discharge ionization in the gas phase[J]. Chem. Phys. Lett.,2004,384:283-287.
    [32]Escobedo J O, Frey A. E, Strongin R M. Investigation of the photooxidation of fullerene for the presence of the [5,6]-open oxidoannulene C60O isomer[J]. Tetrahedron Lett.,2002,43:6117-6119.
    [33]Barrow M P, Tower N J, Taylor R et al. Matrix-assisted laser-induced gas-phase aggregation of C60 oxides[J].Chem. Phys. Lett.,1998,293:302-308.
    [34]Tsyboulski D, Heymann D, Bachilo S M et al. Reversible Dimerization of [5,6]-C60O[J]. J. Am. Chem. Soc.,2004,126:7350-7358.
    [35]Shang Z, Pan Y, Wang H et al. Theoretical study of C60O2 molecular properties[J]. J. Mol. Struct.Theochem.,1997,392:217-221.
    [36]Wang B C, Chen L, Chou Y M, Theoretical studies of C60/C70 fullerene derivatives:C60O and C70O[J]. J. Mol. Struct.Theochem.,1998,442:153-158.
    [37]Curry N P, Doust B, Jelski D A. A computational study of the combinatorial addition of Oxygen to buckminsterfullerene[J]. J. Cluster Sci.,2000,12:385-390.
    [38]Shang Z, Pan Y, Cai Z et al. An AM1 Study of the Reaction of Ozone with C60[J]. J. Phys. Chem. A., 2000,104:1915-1919.
    [39]Xu X, Shang Z, Wang G et al. Theoretical Study on the Rearrangement between the Isomers of C60X (X=O and S) [J]. J. Phys. Chem. A.,2002,106:9284-9289.
    [40]Guo T, Diener M D, Chai Y et al. Uranium stabilization of C28:A tetravalent fullerene[J]. Science, 1992,257:1661-1664.
    [41]Kent P R C, Towler M D, Needs R J et al. Carbon clusters near the crossover to fullerene stability[J]. Phys.Rev.B,2000,62:15394-15397.
    [42]Kroto H W. The Post-Buckminsterfullerene graphite horizon[J]. Nature,1987,329:529-532.
    [43]Cote M, Grossman J C, Cohen M L et al. Electron-Phonon Interactions in Solid C36[J]. Phys. Rev. Lett.,1998,81:697-700.
    [44]Bylander D, Kleinman L. Calculated properties of polybenzene and hyper-diamond[J]. Phys. Rev. B, 1993,47:10967-10969.
    [45]Kaxiras E, Zeger L M, Antonelli A et al. Electronic properties of a cluster based solid form of carbon: C28 hyperdiamond[J]. Phys. Rev. B,1994,49:8446-8453.
    [46]Jackson K, Kaxiras E, Pederson M R. Electronic states of group-IV endohedral atoms in C28[J].Phys. Rev. B,1993,48:17556-17561.
    [47]Kroto H W. The stability of the fullerenes Cn, with n=24,28,32,36,50,60 and 70[J]. Nature,1987, 329:529-531.
    [48]Feyereisen M, Gutowski M, Simons J et al. Relative stabilities of fullerene, cumulene and polyacetylene structures for Cn:n=18-60[J]. J. Chem. Phys.,1992,96:2926-2932.
    [49]Guo T, Smalley R E, Scuseria G J et al. Ab initio theoretical predictions of C28, C28H4, C28F4, (TiC28)H4, and MC28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn) [J]. J.Chem. Phys.,1993, 99:352-359.
    [50]黄春晖,李俊迁M@C28(M=Ti,Zr,Hf)内裹配合物的电子结构及其稳定性[J].物理学报,1999,48(4):633-641.
    [51]Jime' nez-Va' zquez H A. Tamariz J. Cross R J. Binding energy and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20[J]. J. Phys. Chem. A.,2001, 105:1315.
    [52]Wahl F, Worth J, Prinzbach H. Functionalizations-Does C20-Fullerene Exist[J]? Angew Chem.Int Ed Engl.,1993,32(12):1722-1726.
    [53]Prinzbach H, Weber K. From an Insecticide to Plato's Universe-The Pagodane Route to Dodecahedranes:New Pathways and New Perspectives[J]. Angew Chem.Int Ed Engl.,1994,33(22): 2239-2257.
    [54]曹保鹏,掺杂B4C对电弧法制备的富勒烯的影响[J].河北师范大学学报,1998,22(2):75-77.
    [55]Chibante L P F, Andreas T, Alford J M et al. Solar generation of the fullerenes [J]. J. Phys. Chem., 1993,97(34):8696-8700.
    [56]Peter G, Jansen M. A new fullerene synthesis[J]. Angew, Chem. Int. Ed. Engl.,1992,31(2):223-224.
    [57]Howard J.B, McKinnon T, Makarovsky Y et al. Fullerenes C60 and C70 in flames[J]. Nature,1991, 352,139-141.
    [58]Goel A, Hebgen P, Sande J B V et al. Combustion synthesis of fullerenes and fullerenic nanostructures. Carbon,2002,40:177-182.
    [59]Takehara H, Fujiwara M, Arikawa M et al. Experimental study of industrial scale fullerene production by combustion synthesis[J]. Carbon,2005,43:311-319.
    [60]Taylor R, Langley G J, Kroto H W et al. Formation of C60 by pyrolysis of naphthalene [J]. Nature, 1993,366:728-731.
    [61]Goeres A, Sedlmayr E. On the nucleation mechanism of effective fullerite condensation [J]. Chem.Phys.Lett.,1991,184(4):310-317.
    [62]Crowley C, Taylor R, Kroto H W et.al. Pyrolytic production of fullerenes [J]. Synth. Met.,1996, 77(1-3):17-22.
    [63]Armand X, Herlin N, Voicu I et al. Fullerene synthesis by laser pyrolysis of hydrocarbons [J]. J. Phys. Chem. Solids,1997,58(11):1853-1859.
    [64]Parker D H, Wurz P, Chatterjec K et al. High-yield synthesis, separation and mass-spectrometric characterization of fullerenes C60 to C266[J]. J.Am.Chem.Soc.,1991,113(20):7499-7503.
    [65]Scrirens W A, Bedworth P V, Tou J M. Purification of gram quantities of C60:A new inexpensive and facile method[J]. J.Am.Chem.Soc.,1992,114(20):7917-7919.
    [66]宋礼成,延卫,胡青梅.富勒烯C60的柱色谱分离方法研究[J].无机化学学报,1995,11(2):176-179.
    [67]Herren D, Calzaferri G., Diederich F et al. Preparative separation of higher fullerenes by high-performance liquid chromatography on a tetrachlorophthalimidopropyl-modified silica column [J]. J. Chromatogr. A,1993,644(1):188-192.
    [68]Yamamoto K, Funasaka H, Takahashi T et al. Isolation of an ESR-Active Metallofullerene of La@C82[J]. J.Phys.Chem.,1994,98(8):2008-2011.
    [69]Naoki K, Toshiyuki O, Kazumi M. A highly improved method for purification of fullerenes applicable to large-scale production [J]. Carbon,2004,42:163-167.
    [70]Jakes P, Dinse K P, Meyer C et al. Purification and optical spectroscopy of N@C60. Phys[J]. Chem. Chem. Phys.,2003,5:4080-4083.
    [71]Areritt R D, Alford J M, Halas N J. High-purity vapor phase purification of C60[J]. Appl. Phys. Lett., 1994,65(3):374-376.
    [72]Coustel N, Bernier P, Aznar R et al. Purification of C60 by a Simple crystallization procedure[J]. J.Chem.Soc.Chem.Commun.,1992,17(19):1402-1403.
    [73]顾镇南,周锡煌,金朝霞等.分离、提纯富勒烯碳60的方法.中国,CN1084502A[P].1994.
    [74]蔡瑞芳,黄祖恩,陈健.碳60和碳70混合物的非色谱分离纯化.中国,CN1080275A[P].1994.
    [75]Baum R M. Fullerenes Broaden Scientists'View of Molecular Struture[J]. Chem. Eng. News, 1993(1):29-34.
    [76]Hebard A F, Rosseinsky M J, Haddon R C et al. Superconductivity at 18 K in potassium-doped C60[J]. Nature,1991,350:600-601.
    [77]Alleman P, Khemani K C, Koch A et al. Organic molecular soft ferromagnetism in a fullerene C60[J]. Sience,1991,253:301-303.
    [78]MollA A, Jang S K, Paul A V et al. Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus[J]. Nature,1992,356:255-257.
    [79]Nagashima H, Nakoka A, Saito Y et al. C60Pdn:the first organometallic polymer of buckmisterfullernene[J]. J. Chem. Soc. Chem. Commun.,1992,4:377-378.
    [80]Regueiro M N, Monceau P, Rassat A et al. Absence of a metallic phase at high pressures in C60[J]. Nature,1991,354:289-291.
    [81]Liu C, Cong H T, Li F et al. Semi-continuous synthesis of single-wall carbon nanotubes by a hydrogen arc discharge method[J]. Carbon,1999,37:1865-1868.
    [82]Liu C, Fan Y Y, Liu M et al. Hydrogen storage in single-wall carbontubes at room temperature[J]. Science,1999,286:1127-1129.
    [83]Ebbesen T W, Ajayan P M. Large-scale sythesis of carbon nanotube[J]. Nature,1992,358:220-222.
    [84]Jones J M, Malcolm R P, Thomas K M et al. The anode deposit formed during the carbon-arc evaporation of graphite for the synthesis of fullerenes and carbon nanotubes [J].Carbon,1996, 34(2):231-237.
    [85]Xu X, Wang Y, Li W. High yield sythesis and HRTEM study of fullerene tubules and fullerene onions[J]. Solid State Commun.1994,89:89-92.
    [86]Seraphin S, Zhou D, Jiao J et al. Effect of processing conditions on the morphology and yield of carbon nanotubes[J]. Carbon,1993,31:685-689.
    [87]Colbert P T, Zhang J, McClure S M. Growth and sintering of fullerene nanotubes[J]. Science,1994, 266:1218-1222.
    [88]Wang X K, Lin X W, Dravid V P et al. Carbon nanotubes synthesized in a hydrogen arc discharge[J]. Appl.Phys.Lett.,1995,66(18):2430-2436.
    [89]Wang X K, Lin X W, Mesleh M et al. The effect of hydrogen on the formation of carbon nanotubes [J]. J.Mater.Res.,1995,10(8):1977-1983.
    [90]Shi Z J, Zhou X H, Jin Z X et al. High-yield synthesis and growth mechanism of carbon nanotubes[J]. Solid State Commun.,1996,97(5):371-375.
    [91]Iijima S. Growth of carobn nanotube[J]. Mater. Sci. Eng. B.,1993,19(2):172-180.
    [92]Endo M, Kroto H W. Formation of carbon nanofibers[J]. J. Phys. Chem.,1992,96(17):6941-6944.
    [93]Ajayan P M, Iichihashi T, Iijima S. Distribution of pentagons and shapes in carbon nanotubes and nanoparticles[J]. Chem.Phys.Lett.,1993,202:384-388.
    [94]Saito Y, Toshikawa T, Inagaki M. Growth and structure of graphitic tubules and polyhedral particles in arc discharge[J]. Chem.Phys.Lett.,1993,204(3-4):277-282.
    [95]Saito R, Fujita M, Dresselhaus G et al. Electronic structure and growth mechanism of carbon tubules[J]. Mater. Sci. Eng. B,1993,19:185-191.
    [96]Byszewski P, Sluzewski P, Diduszko R. The formation of fullerenes and nanotubules[J]. J.Mater.Res., 1993,8(1):118-120.
    [97]Amelinckx S, Bernaerts D, Zhang X B et al. A structure model and growth mechanism for multishell carbon nanotubes[J]. Science,1995,267:1334-1338.
    [98]Dravid V P, Lin X, Wang Y et al. Bucky tubes and derivatives:their growth and implications for bucky-ball formation[J]. Science,1993,259:1601-1604.
    [99]朱艳秋,梁吉,吴德海.巴基管的生长与结构分析[J].人工晶体学报,1994,23(2):120-125.
    [100]Baker R. Catalytic growth of carbon filaments [J]. Carbon,1989,27(3):315-323.
    [101]Yacaman M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubules with fullerene structure[J]. Appl.Phys.Lett.,1993,62:202-204.
    [102]Dai H, Wong W, Lu Y et al. Synthesis and characterization of carbide nanorods[J]. Nature,1995, 375:769-772.
    [103]Endo M, Takeuchi K, Kroto H W. The production and structure of pyrolytic carbon nanotubes (PCNT) [J]. J.Phys.Chem.Solid,1993,54:1841-1846.
    [104]Endo M, Takeuchi K, Kroto H W. Pyrolytic carbon nanotubes from vapor-grown carbon fibers [J]. Carbon,1995,33(7):873-880.
    [105]Alvergnat H, Bonnanry S, Hamvi A et al. Elaboration characterization and structural modifications of catalytic carbon nanotubes[C]. The European Carbon Conference "Carbon96"-Newcastle, UK, July, 1996:715.
    [106]Guo T, Nikolaev P, Thess A et al. Catalytic growth of single-walled nanotubes by laser vaporization[J].Chem.Phys.Lett.,1995,243:49-54.
    [107]Guo T, Nikolaev P, Rinzle r A et al. Self-assembly of tubular fullerenes[J]. J. Phys.Chem.,1995, 99(27):10694-10697.
    [108]Thess A, Lee R, Smalley R E et al. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996, 273(5274):483-487.
    [109]Cho W S, Hamada E, Kondo Y et al. Synthesis of carbon nanotubes from bulk polymer[J]. Appl.Phys.Lett.,1996,69(2):278-279.
    [110]Kukovitskii E F, Chernozatonskii L A, Lvov S G et al. Carbon nanotubes of polyethylene[J]. Chem.Phys.Lett.,1997,266(3-4):323-328.
    [111]Sen R, Govindaraj A, Rao C N R. Carbon nanotubes by the metallocene route[J]. Chem.Phys.Lett., 1997,267(3-4):276-280.
    [112]Richter H, Hernadi K, Caudano R et al. Formation of nanotubes in low pressure hydrocarbon flames[J]. Carbon,1996,34(11):427-429.
    [113]Daschowdhury K, Howard J B, Vandersande J B. Fullerenic nanostructures in flames[J]. J. Mater.Res.,1996,11(2):341-347.
    [114]Chernozatonskii L A, Kosakovskaja I J, Fedorov E A et al. New carbon tubelite-ordered film structure of multilayer nanotubes [J]. Phys. Lett. A,1995,197(1):40-45.
    [115]Yamamoto K, Koga Y, Fujiwara S et al. New method of carbon nanotube growth by ion-beam irradiation[J]. Appl.Phys.Lett.,1996,69(27):4174-4175.
    [116]Hsu W K, Terrones M, Hare J P et al. Electrolytic formation of carbon nanostructures[J]. Chem.Phys.Lett.,1996,262(1-2):161-166.
    [117]Chernozatonskii L A, Val chuk K P, Kiselev N A et al. Synthesis and structure investigations of alloys with fullerence and nanotube inclusions[J]. Carbon,1997,35(6):749-753.
    [118]Kyotani F, Tsai L F, Tomita A. Preparation of ultra-fine carbon tubes in nanochannels of an anodic aluminum oxide film[J].Chem. Mater.1996,8(8):2109-2113.
    [119]Dillon A C, Jones K M, Bekkedahl T A et al. Storage of hydrogen in single walled carbon nanotubes[J]. Nature,1997,3886(27):377-379.
    [120]Chen P, Wu X, Lin J et al. High H2 uptake by alkali doped carbon nanotubes under ambient pressure and moderate temperatures [J]. Science,1999,285:91-93.
    [121]Dresselhaus M S, Williams K A, Eklund P C. Hydrogen adsorption in carbon materials[J]. MRS Bulletin,1999,24(11):45-50.
    [122]陈桉,毛宗强,朱宏伟等.平衡压力对碳纳米材料储氢的影响[J].清华大学学报(自然科学版),2002,42(5):659-661.
    [123]刘芙,张孝彬,涂江平等.碳纳米管的球磨处理及其对储氢性能的影响[J].太阳能学报,2003,24(1):116-120.
    [124]Lamari D F, Malbrunot P, Tartaglia G P. Review of hydrogen storage by adsorption in carbon nanotubes[J]. Inter. J. Hydrogen Energy,2002,27:193-202.
    [125]凌涛,范守善.碳纳米管储氢[J].真空科学与技术,2001,21(5):372-375.
    [126]刘政,毛卫民.碳纳米管在军事上的应用前景[J].兵器材料科学与工程,2004,27(4):68-72.
    [127]沈曾民,赵东林.镀镍碳纳米管的微波吸收性能研究.新型碳材料,2001,16(1):1-3.
    [128]曹茂盛,高正娟,朱静CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003,2:24-26.
    [129]孙晓刚,碳纳米管/聚合物复合吸波材料性能研究[J].塑料,2004,33(5):66-69.
    [130]Dufresne A, Paillet M, Pjtaux J L. Processing and characterization of carbon nanotube/poly (styrene-co-butylacrylate) nanocomposites[J]. J.Mater.Sci.,2002,37(18):3915-3923.
    [131]Sandler J, Shaffer M S P, Prasse T et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer,1999,40:5967-5971.
    [132]Wong M, Paramsothy M, Xu X T et al. Physical interactions at carbon nanotube-polymer interface[J]. Polymer,2003,44:7757-7764.
    [133]Carole A C, Diana R, David L et al. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix[J]. Comp. Sci. Tech.,2002,62:1105-1112.
    [134]Meincke O, Kaempfer D, Weickmann H et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene[J]. Polymer, 2004,45:739-748.
    [135]Luo J Z, Gao L Z, Leng Y L et al. The decomposition of NO on CNTs and lwt% Rh/CNTs[J]. Catal.Lett.,2000,66(1-2):91-97.
    [136]董鑫,张鸿斌,林国栋等.碳纳米管促进Cu基高效甲醇合成催化剂[J].厦门大学学报(自然科学版),2002,41(2):135-140.
    [137]Planeix J M, Constel N, Coq B et al. Application of Carbon nanotubes as supports in heterogenous catalysi[J]s. J.Am.Chem.Soc.,1994,116(17):7935-7936.
    [138]张宇,吴范,张鸿斌.碳纳米管负载铑膦催化剂上丙烯氰甲酰化[J].物理化学学报,1997,13(12):1057-1060.
    [139]Gulyaev Y V, Sitsyn N I, Torgashov G V et al. Work function estimate for electrons emitted from nanotube carbon cluster films[J]. J.Val.Sci.Technol. B.,1997,15(2):422-424.
    [140]Bonard J M, Psalvetat J, Stockli T et al. Field emission from carbon nanotubes:perspectives for application and clues to the emission mechanism [J]. Appl.Phys.,1999,69:245-254.
    [141]Hwang Q, Corrigan T D, Dai J Y et al. Field emission from nanotube bundle emitters at low fields[J]. Appl.Phys.Lett.,1997,70(24):3308-3310.
    [142]Frackowiak E, Jurewicz K, Delpeux S et al. Nanotube materials for supercapacitors[J]. J. Power Sources,2001,97-98:822-825.
    [143]Emmenegger C H, Mauron P, Sudan P et al. Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials[J]. J. Power Sources, 2003,124(1):321-329.
    [144]Frackowiak E, Delpeux S, Jurewicz K et al. Enhanced capacitance of carbon nanotubes through chemical activation[J]. Chem. Phys. Lett.,2002,361(1-2):35-41
    [145]Kratshmer W, Lame L D, Huffmen D R et al. Solid C60:a new form of carbon[J]. Nature,1990, 347:354.
    [146]王其平,电器电弧理论[M].北京.机械工业出版社.1982,1-97.
    [147]邱介山,周颖,王琳娜等.煤基富勒烯的制备研究[J].大连理工大学学报,Vol.40.2000:42-44
    [148]邱介山,王琳娜,周颖,由脱灰煤制备富勒烯[J].化工学报,2002,(53)11:1117-1121.
    [149]Louis S K Pang, Michael A Wilson, Nanodubes from coal[J]. Energy & Fuel,1993,7:436-437.
    [150]Yoshida A, Hishiyama Y, Inagaki M, Exfoliated graphite from various intercalation compounds[J]. Carbon,1991,29(8):1227-1231.
    [151]林炳昌,模拟移动床色谱技术[M].北京.化学工业出版社.2008.
    [152]蔡宇杰,丁彦蕊,张大兵等.模拟移动床色谱技术及其应用[J].色谱,2004,(22)2:111-115.
    [153]Pais L S, Rodrigues A E. Design of simulated moving bed and Varico processes for preparative separation with a low number of columns[J]. Chroatography A,2003,1006:33-44.
    [154]Shuji Adachi. Simulated moving-bed chromatography for continuous separation of two components and its application to bioreactors[J]. J.Chromatogr.A,1994,658:271-282.
    [155]高丽娟,张玉松,白文鹏等.精品茄尼醇低成本生产新技术.现代化工,2006,26-30.
    [156]Li Y F, Qiu J S, Zhao Z B et al. Synthesis of Bamboo-shaped Carbon Tubes[J]. Chem. Phys. Lett., 2002,366:544-550
    [157]Li W Z, Wen J G,Ren Z F. Straight carbon nanotube Y-junctions[J]. Appl.Phys.Lett.,2001, Vol.79(12):1879-1881
    [158]Martel R, Sea H R, Avouris P. Ring Formation in single-wall carbon nanotubes[J]. J. phys. Chem. B, 1999, Vol.103(36):7551-7556
    [159]Mitchell D R, Brown Jr. R M, Spires T L et al. The synthesis of megatubes:New Dimensions in Carbon Materials[J]. Inrg. Chem.,2001,40:2751-2755
    [160]Pang L S K,Wilson M A. Nanotubes from coal[J]. Energy & Fuels,1993,7:436-437.
    [161]Qiu J S, Zhou Y, Wang L N st al. Formation of carbon nanotubes and encapsulated nanoparticales from coals with moderate ash contents[J]. Carbon,1998,36 (4):465-467.
    [162]Zhang G Y, Jiang X, Wang E G. Tubular graphite cones [J]. Science.2003, Vol.300:472-474.
    [163]Liu J W, Chen X Y et al. Fabrication of hollow carbon cones[J]. Carbon,2004,42:669-671.
    [164]Liu Y F, Shen Z M. Preparation of carbon microcoils and nanocoils using activated carbon nanotubes as catalyst suppor[J]t. Carbon,2005,43:1574-1577.
    [165]Li Y F, Qiu J S, Wang Y P et al. Novel iron-decorated carbon nanorods from fullerene soot[J]. Chem. Commun.,2004,656-657.
    [166]Hutchison J L, Kiselev N A, Krinichnaya E P et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method[J]. Carbon,2001,39:761-770.
    [167]Yahachi Saito, Takanori Nakahira, Sashiro Uemura. Growth Conditions of Double-Walled Carbon Nanotubes in Arc Discharge[J]. J. Phys. Chem. B,2003,107:931-934.
    [168]Houjin Huang, Hisashi Kajiura, Shigemitsu Tsutsui et al. High-Quality Double-Walled Carbon Nanotube Super Bundles Grown in a Hydrogen-Free Atmosphere[J]. J. Phys. Chem. B,2003,107: 8794-8798.
    [169]Qiu H X, Shi Z J, Guan L H et al. High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter[J]. Carbon,2006,44:516-521.
    [170]Qiu J S, Li Y F, Wang Y P et al. High-purity single-wall carbon nanotubes synthesized from coal by arc discharge[J]. Carbon,2003 41:2170-2173.
    [171]朱宏伟,吴德海,徐才录.碳纳米管[M].北京.机械工业出版社,2003,11-12)
    [172]Kuznetsov V L, Chuvilin A L, Moroz E M et al. Effect of explosion conditions on the structure of detonation soots:ultradisperse diamond and onion carbon[J], Carbon,1994,32(5):873-882.
    [173]陈萍,张鸿斌,林国栋等.催化裂解CH4或CO制碳纳米管结构性能的谱学表征[J].高等学校化学学报,1995,19(5):7652769.
    [174]Zhang X X, Li Z Q, Wen G H et al. Microstructure and growth of bamboo-shaped carbon nanotubes[J]. Chem.Phys.Lett.,2001,333:509-514.
    [175]Liu C, Cong H M, Li F et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge-method[J]. Carbon,1999,37:1865-1868.
    [176]Duesberg G, Loa I, Burghaard M, et al, Polarized Raman spectroscopy on isolated single-wall carbon nanotubes[J]. Phys Rev Lett 2000;85:5436-9
    [177]Laurent Alvarez, Ariete Righi, Tony Guillard, et al, Resonant Raman study of structure and electronic properties of single-wall carbon nanotubes[J]. Chem. Phy. Lett.316(2000)186-190
    [178]Saito Y, Nakahira T, Uemura S, Growth conditions of double-walled carbon nanotubes in discharge[J]. J Phys Chem B 2003;107;931-934.
    [179]Liu H, Weng H, Dong J. Electronic structure and symmetry of small clusters C28[J].J.Mol. Struct. (Theochem),2004,671:93-95.
    [180]Li Y, Huang Y, Du S et al. Structures and stabilities of C60-rings[J]. Chem. Phys. Lett.,2001, 335:524-532.
    [181]Xiao J, Lin M, Chiu Y et al. The structures of fullerene C40 and its derivatives [J]. J. Mol. Sturct. (Theochem.),1998,428:149-154.
    [182]Bakowies D, Th iel W. MNDO study of large carbon clusters[J]. J. Am. Chem. Soc.,1991,113(10): 3704-3714.
    [183]Salcedo R, Sansores L E. Electronic structure of C40 possible structures [J]. J. Mol. Struct. (Theochem) 1998,422,245-252.
    [184]Gao Y D, Herndon W C. Fullerenes with four-membered rings[J]. J.Am.Chem.Soc.,1993,115: 8459-8460.
    [185]Adams G B, O'Keefe M, Ruoff R S. Van Der Waals Surface Areas and Volumes of Fullerenes[J]. J.Phys.Chem.,1994,98:9465-9469.
    [186]Albertazzi E, Domene C, Fowler P W et al. Pentagon adjacency as a determinant of fullerene stability [J]. Phys.Chem.Chem.Phys.,1999, (1):2913-2918.
    [187]刘桂霞,张红星,孙家钟等.C40异构体的结构和稳定性的理论研究[J].高等学校化学学报,2003,24(1):105.
    [188]Chen Z, Jiao H, Buhl M et al. Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues[J].Theor.Chem.Acc.,2001,106:352-363.
    [189]Lu Li-HWA, Chen Cheng, Sun Kuang-Chung.Theoretical study of fullerene derivatives:C40H4 and C40X4 cluster molecules[J]. Int. J. Quan. Chem.,1998,68:273-284.
    [190]Dewar M J S, Zoebish E G, Healey E F et al. Development and use of quantum mechanical molecular models.76. AM1:a new general purpose quantum mechanical molecular model[J]. J. Am. Chem. Soc.,1985,107:3902-3909.
    [191]Becke A D. Density-functional thermochemistry III:The role of exact exchange[J]. J. Chem. Phys., 1993,98:5648-5652.
    [192]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision B.05; Gaussian[CP], Inc.:Pittsburgh, PA,2003.
    [193]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1988,37:785-789.
    [194]Hehre W J, Ditchfield R, Pople J A. Self-Consistent Molecular Orbital Methods XII:Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecule[J]s. J. Chem. Phys.,1972,56:2257-2261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700