用户名: 密码: 验证码:
水岩作用下金川二矿区深部矿岩时效力学特性和稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金川二矿区目前已开采至850米水平,距地表已接近或超过1000米。随着开采进入深部以来,开采中各种问题接踵而来,如巷道断面收敛、地下水的影响突出、上部充填体的稳定性等都严重影响矿区深部的安全生产,为此,金川集团公司设立了第一个以深部岩石为研究对象的科技攻关项目——《金川二矿区高强度采掘条件下的深部岩石力学研究》,研究金川二矿区深部岩石干燥和饱水两种状态下基础力学特性及其应用,本文结合此科技攻关项目,开展了金川二矿区深部岩体力学参数取值、岩石亚临界裂纹扩展、岩石粘弹塑性及水影响的研究。主要研究内容如下:
     (1)统计以往地应力资料,提出了深部地应力预测的拟合方程,根据已有850—1000米水平地质资料,采用有限元软件Midas-GTS模拟分析了850—1000米水平的地应力;根据深部岩石力学实验及深部地质调查结果,将现有岩体力学参数取值方法结合,给出了金川二矿区深部岩体力学参数建议值。
     (2)针对深部存在的较完整岩体巷道,围岩裂纹的扩展、贯通造成破坏的特点,选取大理岩与花岗岩作为研究对象,采用双扭试件常位移松弛法研究了两种岩石饱水与干燥状态下亚临界裂纹扩展规律,分析了水对亚临界裂纹扩展及门槛值的影响;在断裂力学基础理论与应力腐蚀基础上,进行了亚临界裂纹扩展理论工程应用的初步研究。
     (3)深部巷道断面收敛严重,具有很强的流变特性,且水的存在对其影响巨大,为此,选取了含辉橄榄岩及斜长角闪岩试样,采用分级增量循环加卸载的流变试验方案,研究了两种岩石在干燥和饱水状态下粘弹塑性,分析了水对两种岩石的粘弹塑性的影响。依据试验结果,选取了广义开尔文模型模拟试验结果,确定了其流变参数,分析了水对流变参数的影响。
     (4)对广义开尔文模型进行了改进,使其能适应岩石的破坏特点;基于流固耦合理论,推导了流固耦合作用下岩石有限元流变模型,为进一步程序开发研究提供了理论基础。
     (5)利用有限元软件Midas-GTS模拟分析了850米水平深部巷道的稳定性,依据分析结果,给出了巷道位置及断面选择的建议;利用有限差分法软件Flac3D,模拟分析了深部巷道断面收敛的时效性,依据模拟结果,给出了各个阶段支护重点部位;利用有限元软件Midas-GTS从应力和接触面等方面模拟分析了上部充填体稳定性。
     本文立足于金川二矿区实际工程,通过现场工程地质调查,运用试验、理论分析与数值分析等研究方法,对金川二矿区深部典型岩石和深部岩体工程稳定性问题进行了研究,其研究成果对金川二矿深部安全生产具有较重要的理论和实际意义。
Jinchuan2th Mine has been mined to the level of850meters, its about1000meters to the ground surface. With mining, the deep mining problem was gradually revealed, for example, the roadway section convergence, groundwater, the stability of the upper part of backfill body,they seriously affect the deep mine safety production. Therefore, Jinchuan Group Company set up a science and technology key project for the study of the deep rock mechanics---to study the basic mechanical properties application of deep rock uder the dry or water-saturated environment. Basing on science and technology key project, the author has studied the parameter of rock mechanics, the propagation of rock subcritical crack, rock elasto-viscoplastic and the effect of water. The main contents are as follows:
     (1) According to statisticsing the previous ground stress data, a fitting equation has been given to predict the deep groud stress. According to the existing850-1000m level geological data, the ground stress of850-1000m level was simulated and analyzed; According to the the deep rock mechanics experiment and the deep geological findings, the parameter of deep rock mechanics was given by synthesis of existing rock mechanics parameter values.
     (2) The cracks of relatively complete surrounding rock in deep tunnels was propagated and coalesced to the damage of tunnels. The marble and granite samples were chosed to study the law of subcritical crack growth under dry and water-saturated environments and effect of water on subcritical crack growth was analyzed. On the basis of the basic theory of fracture mechanics and stress corrosion, a preliminary study of the engineering applications of subcritical crack propagation theory was conducted.
     (3) The deep roadway section seriously convergences with a strong rheological properties and convergence displacement was affected seriously by water. Therefor the lherzolite and amphibolites rock samples were selected to study its elasto-viscoplastic properties uder the dry or water-saturated environment by rheological test experiments of a circular incremental step load and unload method. The generalized Kelvin model was chosen to simulate rheological properties according to the experimental results, key parameters were obtained and effect of water was analyzed.
     (4) The Generalized Kelvin model has been improved to simulate the characteristics of rock destruction; Based on Fluid-solid Coupling Theory, the finite element rheological model of rock under the fluid-structure interaction effect was derivated and a theoretical basis was provided for further program development research.
     (5) The deep tunnel of850m level was simulated by the finite element software-Midas GTS and it's stability was analyzed. According to the results of analysis, the recommendations were given to choose tunnel position and cross-section shape; the rheological property of deep tunnels cross-section convergence was simulated by Flac3D. According to the simulation results, the various stages of supporting key positions were given. From the stress and the contact surface, the upper backfill was simulated to analyze its stability by the finite element software Midas-GTS.
     Based on the actual project of Jinchuan2th Mine, the deep typical rock and the deep rock engineering stability has been studied by engineering geological survey, test, the theoretical analysis and numerical analysis. The result of research has important theoretical and practical significance to safety production of Jinchuan2th Mine.
引文
[1]王思敬.中国岩石力学与工程的世纪成就与历史使命究[J].岩石力学与工程学报,2003,22(6):867-871.
    [2]何满潮.深部开采工程岩石力学现状及其展望[A].中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004,88-94.
    [3]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [4]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [5]朱珍德,郭海庆.裂隙岩体水力学[M].北京:科学出版社,2006.
    [6]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [7]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-310.
    [8]P. A. Rebinder, L. A. Shreiner, K. F. Zhigach. Hardness reducers in drilling:a physico-chemical method of facilitating the mechanical destruction of drilling rocks during [M], Council for Scientific and Industrial Research,1948.
    [9]L. S. Burshtein. Effect of moisture on the strength and deformability of sandstone[J]. Journal of Mining Seienee,1969,5(5):573-576.
    [10]B. Atkinson. Stress corrosion cracking of quartz:a note on the influence of chemical environment [J]. Tectonophysics,1981,77(1-2):Tl-T11.
    [11]J. M. Logan, M. I. Blackwell. The influence of chemically active fluids on the frictional behavior of sandstone [J]. EOS, Transactions, American Geophysical Union,1983,64(2):835-837.
    [12]J. D. Dunning, M. E. Miller. Effects of pore fluid chemistry on stable sliding of Berea sandstone[J]. Pure and Applied Geophysics,1984,122(2):447-462.
    [13]耿乃光,郝晋异,李纪汉,等.断层泥力学性质与含水量关系初探[J].地震地质,1986,3:58-62.
    [14]C. G. Dyke, L. Dobereiner. Evaluating the strength and deformability of sandstones [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1991,24(1):123-134.
    [15]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J]. 地球物理学报,1991,34(3):335-342.
    [16]L. J. Feucht, J. M. Logan. Effects of chemically active solutions on shearing behavior of a sandstone[J]. Tectonophysics,1990,175(1-3):159-176.
    [17]M. G Karfakis, M. Akram. Effects of chemical solutions on rock fracturing[J]. International Journal of Rock Mechanics and Mining Sciences,1993,30(7): 1253-1259.
    [18]A. B. Hawkins, B. J. McConnell. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1992,25(2):115-130.
    [19]康红普.水对岩石的损伤[J].水文地质工程地质,1994,3:39-41.
    [20]朱珍德,邢福东,王思敬,等.地下水对泥板岩强度软化的损伤力学分析[J].岩石力学与工程学报,2004,23(S2):4739-4743.
    [21]T. Heggheim, M. V. Madland, R. Rimes, et al. A chemical induced enhanced weakening of chalk by seawater[J]. Journal of Petroleum Science and Engineering,2005,46(3):171-184.
    [22]周翠英,邓毅梅,谭祥韶,等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):394-400.
    [23]汤连生,张鹏程,王洋.岩体复合型裂纹的扩展规律Ⅱ.有水作用条件下[J].中山大学学报(自然科学版),2003,42(1):90-94.
    [24]汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报,2004,23(19):3337-3341.
    [25]汤连生.水-岩土反应的力学与环境效应研究[J].岩石力学与工程学报,2000,19(5):681-682.
    [26]汤连生.水-岩土化学作用的环境效应[J].中山大学学报(自然科学版),2001,40(5):103-107.
    [27]汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.
    [28]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学版),2000,39(5):126-128.
    [29]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.
    [30]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性-第一部分:试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [31]冯夏庭,丁梧秀.应力-水流-化学藕合下岩石破裂全过程的细观力学试验 [J].岩石力学与工程学报,2005,24(9):1465-1473.
    [32]冯夏庭,潘鹏志,丁梧秀,等.结晶岩开挖损伤区的温度-水流-应力-化学耦合研究[J].岩石力学与工程学报,2008,27(4):656-663.
    [33]X. T. Feng, W. X. Ding. Experimental study of limestone micro-fracturing under a coupled stress, fluid flow and changing chemical environment[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(3): 437-448.
    [34]X. T. Feng, W. X. Ding, D. X. Zhang. Multi-crack interaction in limestone subject to stress and flow of chemical solutions[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(1):159-171.
    [35]崔强,冯夏庭,程昌炳,等.化学腐蚀下岩土体力学特性变化的定量描述[J].东北大学学报(自然科学版),2008,29(12):1778-1781.
    [36]崔强,冯夏庭,薛强,等.化学腐蚀下砂岩孔隙结构变化的机制研究[J].岩石力学与工程学报,2008,27(6):1209-1216.
    [37]崔强.化学溶液流动-应力祸合作用下砂岩的孔隙结构演化与蠕变特征研究[D].沈阳:东北大学博士学位论文,2009.
    [38]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究[J].岩石力学与工程学报,2004,23(21):3571-3576.
    [39]丁梧秀,冯夏庭.灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J].岩石力学与工程学报,2005,24(8):1283-1288.
    [40]丁梧秀.水化学作用下岩石变形破裂全过程实验与理论分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所)博士学位论文,2005.
    [41]丁梧秀,冯夏庭.化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[[J1.岩土工程学报,2009,31(6):899-904.
    [42]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284-287.
    [43]陈四利,冯夏庭,李邵军.化学腐蚀下三峡花岗岩的破裂特征[J].岩土力学,2003,24(5):817-821.
    [44]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报(自然科学版),2003,24(3):292-295.
    [45]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J].岩土力学,2004,25(9):1363-1367.
    [46]姚华彦,冯夏庭,崔强,等.化学溶液及其水压作用下单裂纹灰岩破裂的细观试验[J].岩土力学,2009,30(1):59-66.
    [47]姚华彦,冯夏庭,崔强,等.化学侵蚀下硬脆性灰岩变形和强度特性的试验研究[J].岩土力学,2009,30(2):338-344.
    [48]姚华彦.化学溶液及其水压作用下灰岩破裂过程宏细观力学试验与理论分析[D].中国科学院研究生院(武汉岩土力学研究所)博士学位论文,2008.
    [49]谭卓英,刘文静,闭历平,等.岩石强度损伤及其环境效应实验模拟研究[J].中国矿业,2001,10(4):50-53.
    [50]谭卓英,柴红保,刘文静,等.岩石在酸化环境下的强度损伤及其静态加速模拟[J].岩石力学与工程学报,2005,24(14):2439-2448.
    [51]杨慧,曹平,江学良.水-岩化学作用等效裂纹扩展细观力学模型[J].岩土力学,2010,31(7):2104-2110.
    [52]Louis C. Rock Hydraulics in rock mechanics, edited by L. Muller, Verlay Wien New York,1974.
    [53]Louis C. A study of groundwater flow in jointed rock and its influence on the stability of rock mass. Rock Mech. Res. Rep.10-90 Imp Coll., London,1969.
    [54]Louis C, Maini Y N. Determination of in situ hydraulic parameters in jointed rock. Proceedings, Second Congress on Rock Mechanics, Paper 1-2,1970.
    [55]Witherspoon A et al. New approaches of fluid flow in fractured rock masses. Proc.U.S.Symp. Rock Mech.22nd,1981.
    [56]Raven T G, Gale J E. Water flow in a natural rock fracture as a function of stress and sample size[J]. Int. J. Rock Mech. Min. Sci. and Geomech.Abstr., 1985,22(4):198-223.
    [57]Zimmerman B W. A numberical dual-porosity model with semianalytical treatment of fracture matrix flow, Water Rosour, Res.,1993,29(7): 2127-2137.
    [58]周志芳,钱考量.地基各向异性岩体内渗透力的三维边界元分析[J].岩土工程学报,1992,114(2).
    [59]Warren J E, Root P J. The behavior of naturally fractured reservoirs [J]. Soc. Pet. Eng.J.,1963(5).
    [60]Streltsova T D. Hydrodynamics of groundwater flow in a fractured formation[J]. Water Resources Research,1976,12(3):405-414.
    [61]王恩志.裂隙网格地下水流模型的研究与应用[D].西安:西安地质学院博士学位论文,1991.
    [62]Duguid J O, et al. Flow in fractured porous media[J]. Water Resources Research,1977,13(3):558-566.
    [63]Huyakorm P S, et al. An efficient finite element techniques for modeling ground water flow in fractured aquifers[J]. Water Resources Research,1983, 19(5):1286-1296.
    [64]Neretnieks I et al. An approach to modeling radionuclide migration in medium with strongly varying velocity and block sizes along the flow path[J]. Water Resources Research,1984,20(12):1823-1836.
    [65]Dykhuizen R C.A new coupling term for double-porosity models[J]. Water Resources Research,1990,26(2):351-356.
    [66]Wittke W., Louis C. Berechnung des einfluses der Bergwasser-stromung auf die Standsicherheit von Boschungen and Bauwerken in zer kluftetem Fels, proc.Intl[J]. Cong. ISRM.,1966.
    [67]Wilson, C. R., and P. A. Witherspoon. Steady state flow in rigid networks of fractures[J]. Water Resour. Res.,1974,10(2):328-335.
    [68]Snow D T. Anisotropic permeability of fractured media[J]. Water Resources Research,1969,5(6):1273-1289.
    [69]Marulander A P, Breke T C. Hazzardous water inflow in some tunnels in sedimentary rock. Proc. Rapid Excavation and Tunneling Canf.,1981,1.
    [70]段小宇.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报,1992,32(6):712-717.
    [71]梁尧篪.裂隙岩体中的渗流与变形[J].岩土力学,1988,9(3):50-56.
    [72]殷有泉,郑顾团.断层地震的尖角型突变模型[J].地球物理学报,1988,31(6):657-663.
    [73]郑顾团,殷有泉.有渗透作用的断裂带破裂机理的研究[J].科学通报,1990,15:1167-1170.
    [74]周维垣,杨延毅.节理裂隙岩体损伤—断裂力学模型及其在岩体工程中应用[J].岩石力学与工程学报,1991,10(1):43-54.
    [75]周维垣.岩体力学数值方法的现状与展望[J].岩石力学与工程学报,1993,12(1):84-88.
    [76]K.G.斯塔格,O.C.晋基维茨主编.工程实用岩石力学[M].北京:地质出版社,1978.
    [77]Walsh C. B.. Effect of pore pressure and confining pressure on fracture permeability[J]. Int. J. Rock Mech. and Min. Sci.,1981,18:429-435.
    [78]Morrow C. A.. Effective pressure law for permeability of westly granite under cyclic loading[J]. J.Geophy. Res.,1986,91:3870-3876.
    [79]Robin P. Y. F.. Note on effective pressure[J]. J.Geophy. Res.,1973, 78(14):2434-2437.
    [80]Skempton A. W.. Effective stress in soils, concrete and suetion in soils. Butorworth, London,1960:4-16.
    [81]Maslia M. L.. Regional and local tensor components of a fracture carbonate aquifer. Proc.28th U.S.Symp. Rock Mec., Tueson, AZ,1987:441-450.
    [82]Priest S. D.A. Critical review of the data requirements for fluid flow models through fractured rock. Report submitted to the Department of the Environment report Do/Rw/86/54. London, Imperial College,1986.
    [83]周创兵,熊文林.不连续面渗流与应力耦合的机理研究[J].水文地质工程,1996,23(3):14-17.
    [84]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1998,19(2):59-62.
    [85]赵阳升,杨栋,郑少河,等.三维应力作用下岩石裂缝渗流规律的试验研究[J].中国科学(E辑),1999,29(1):82-86.
    [86]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5.
    [87]赵延林,曹平,文有道,等.渗透压作用下压剪岩石裂纹损伤断裂机制[J].中南大学学报(自然科学版),2008,39(4):838-845.
    [88]赵延林,曹平,林航,等.渗透压作用下压剪岩石裂纹流变断裂贯通机制及破坏准则[J].岩土工程学报,2008,30(4):511-517.
    [89]黄润秋,徐德敏.高渗压下水—岩相互作用试验研究[J].工程地质学报,2008,16(4):489-495.
    [90]沈荣喜,刘长武,刘晓斐.压力水作用下碳质页岩三轴流变特征及模型研究[J].岩土工程学报,2010,32(7):1031-1034.
    [91]阎岩,王恩志,王思敬,胡昱.岩石渗流—流变耦合的试验研究[J].岩土力学,2010,31(7):2095-2103.
    [92]申林方,冯夏庭,潘鹏志,等.单裂隙花岗岩在应力-渗流-化学耦合作用下的试验研究[J].岩石力学与工程学报,2010,29(7):1379-1388.
    [93]周创兵,陈益峰,姜清辉,卢文波.复杂岩体多场广义耦合分析导论[M].北京:中国水利水电出版社,2008.
    [94]刘汉东,姜彤,黄志全,马莎,王宝恩,霍润科.岩体力学参数优选理论及应用[M].郑州:黄河水利出版社,2006.
    [95]Bieniawski Z.T.. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp.,1976,1:97-106.
    [96]Bieniawski ZT. Engineering rock mass classifications:a complete manual for engineers and geologists in mining, civil and petroleum engineering. New York:Wiley,1989,251p.
    [97]Hoek E, Brown E T. Empirical strength criterion for rock masses. J. Geotech. Engng Div.,1980, ASCE 106 (GT9),1013-1035.
    [98]Hoek E, Brown E T.1980. Underground Excavations in Rock, London, Instn Min. Metall.
    [99]Hoek E, Torres C C, Corkum, B. Hoek-Brown failure criterion-2002 edition. Proc. NARMS-TAC Conference, Toronto,2002,1,267-273.
    [100]N. Barton R. Lien and J Lunde. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mech.,1974,6(4):189-236.
    [101]Serafim J L, Pereira JP. Considerations of the geomechanics classification of Bieniawski. Proceedings of the International Symposium Eng. Geology and Undergroud Construction. LNEC, Lisbon,1983. p.1.Ⅱ-33-Ⅱ-42.
    [102]Palmstrom A.. Rmi-a rock mass characterization system for rock engineering purposes [D], Norway:Oslo University,1995.
    [103]Hoek E., Kaiser P. K. and Bawden W. F. Support of underground excavations in hard rock.1995, Rotterdam:Balkema.
    [104]E. Hoek, P. Marinos, V. Marinos. Characterization and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(2):277-285.
    [105]E Hoek, M S Diederichs. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences,2006, 43:203-205.
    [106]Sonmez H, Ulusay R. Modifications to the geological strength index (GSI) and their applicability to stability of slopes assessment of the in-situ shear strength of rock masses and discontinuities [J]. Int. J. Rock Mech. and Min. Sci.,1999,36(5):743-760.
    [107]Kendorski F S, Cumming R A. Rock mass classification for block caving mine drift support[A]. In:Proc. the 5th Int. Rock Mech. ISRM[C]. [s.1.]:[s. n.],1983.51-63.
    [108]张建海,何江达,范景伟.小湾工程岩体力学参数研究[J].云南水力发电,2000,16(2):26-27.
    [109]闫长斌,徐国元.对Hoek-Brown公式的改进及其工程应用[J].岩石力学与工程学报,2005,24(22):4031-4035.
    [110]宋恒,曹平.对Hoek-Brown强度准则的改进及工程应用[J].有色矿冶,2008,24(3):7-10.
    [111]苏永华,封立志,李志,等.Hock-Brown准则中确定地质强度指标因素的量化[J].岩石力学与工程学报,2009,28(4):679-686.
    [112]中华人民共和国水利部等.工程岩体分级标准((GB50218-94)[S].北京:中国计划出版社,1995.
    [113]赵文,曹平等编.岩石力学[M].长沙:中南大学出版社,2010.
    [114]周火明,盛谦,熊诗湖.复杂岩体力学参数取值研究[J].岩石力学与工程学报,2002,21(s):2045-2048.
    [115]彭鹏.朱矿东山头岩体力学特性研究[D].硕士学位论文,昆明:昆明理工大学,2001.
    [116]徐海清.贵州省鱼简河水库坝基岩体力学参数研究[D].武汉:中国地质大学硕士学位论文,2004.
    [117]胡卸文,黄润秋,徐志文.西南某电站坝区岩体强度参数选取的工程地质研究[J].水文地质工程地质,1996,1:1-5.
    [118]万林海.工程岩体抗剪强度参数的可靠度分析[J].中国矿业,2003,12(1):55-57.
    [119]吴起星,刘文连,阎鼎熠.机场高填方压实土的强度试验[J].暨南大学学报(自然科学版),2006,27(5):664-669.
    [120]李江龙.机场压实填土抗剪强度的试验研究[J].有色金属设汁,2007,34(2):48-52.
    [121]汪亦显.节理岩体力学参数测定及处理方法研究[D].硕士学位论文,长沙:中南大学,2007.
    [122]黄志全,李日运.岩体力学参数试验数据可靠性检验方法[J].水文地质工程地质,2004,5:88-90.
    [123]马莎,吴林峰,赵明献.偏最小二乘回归在岩体力学参数取值中的应用[J].华北水利水电学院学报,2005,23(1):51-53.
    [124]杜景灿,陆姚溱.加权位移反演法确定岩体结构面的力学参数[J].岩土工程学报,1999,21(2):209-212.
    [125]高玮,郑颖人.岩体参数的进化反演[J].水利学报,2000,1:1-5.
    [126]刘玉静,刘颖,郑大为.岩石力学参数反演分析的优化算法[J].辽宁工程技术大学学报(自然科学版),2000,19(2):142-144.
    [127]乔春生,张清,黄修云.岩石工程数值分析中选择岩体力学参数的神经元网络方法[J].岩石力学与工程学报,2000,19(1):64-67.
    [128]王登刚,刘迎曦,李守臣.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000,19(s):979-982.
    [129]薛廷河,何满潮.复杂岩体力学参数的确定方法[J].有色金属(矿山部分),2001,5:26-29.
    [130]何满潮,薛廷河,彭延飞.工程岩体力学参数确定方法的研究[J].岩石力学与工程学报,2001,20(2):225-229.
    [131]刁心宏,王永嘉.用人工神经网络方法辨识岩体力学参数[J].东北大学学报(自然科学版),2002,23(1):60-63.
    [132]丁德馨,杨仕教,孙钧.岩体弹塑性模型力学参数对位移的影响度研究[J].岩石力学与工程学报,2003,22(5):697-701.
    [133]赵洪波,冯夏庭.位移反分析的进化支持向量机研究[J].岩石力学与工程学报,2003,22(10):1618-1622.
    [134]杨志双,潘懋.基于遗传算法(GA)的地应力有限元反演研究[J].水文地质工程地质,2006,2:80-83.
    [135]金长宇,马震岳,张运良,等.神经网络在岩体力学参数和地应力场反演中的应用[J].岩土力学,2006,27(8):1263-1266.
    [136]许传华,任青文,郑治,肖德.索风营水电站地下洞室岩体力学参数的位移反分析[J].岩土工程学报,2006,28(11):1981-1985.
    [137]张志增,高永涛,张晓平.边坡岩体力学参数反分析方法[J].北京科技大学学报,2006,28(12):1106-1110.
    [138]杜小凯,任青文,郑治,等.基于APSO-BP耦合算法的岩体力学参数反馈研究[J].中国矿业大学学报,2008,37(6):756-762.
    [139]刘仲秋,章青,束加庆.ABAQUS软件在岩体力学参数和初始地应力场反演中的应用[J].水力发电,2008,34(6):35-37.
    [140]魏云杰,陶连金,许模.基于TBA法的地下厂房围岩力学参数位移反分析[J].北京工业大学学报,2008,34(10):1072-1076.
    [141]鲁志强.岩质高边坡稳定性数值模拟与岩体力学参数反分析[D].硕士学位论文,武汉:武汉理工大学,2009.
    [142]帅春,何江达,谢红强,等.某水电站枢纽区边坡天然稳定性及岩体力学参数反演[J].成都理工大学学报,2009,36(5):511-515.
    [143]邹海,王桂梁,桂和荣,等. 岩体力学参数的损伤反分析优化性研究[J].长春科技大学学报,1999,29(2):1-8.
    [144]刘高,韩文峰,李雪峰.金川矿山围岩动态演化及其力学参数研究[J].岩石力学与工程学报,2003,22(s2):2588-2594.
    [145]巫德斌,徐卫亚.岩石边坡力学参数取值的GSMR法[J].岩土力学,2005,26(9):1421-1426.
    [146]周创兵,陈益峰,姜清辉.岩体表征单元体与岩体力学参数[J].岩土工程学报,2007,29(8):1135-1142.
    [147]张福初等译.断裂力学[M].北京:中国建筑工业出版社,1982.
    [148]罗礼.机械式压力机柔度对双扭常位移松弛试验的影响[J].长沙矿山研究院季刊(矿业研究与开发),1990,10(4):22-28
    [149]Wiederhorn S M, Johnson H. Fracture of glass in vacuum[J]. J. Am. Ceram Soc,1974,57(8):336-341.
    [150]Anderson OL, Grew PC. Stress corrosion theory of crack propagation with application to geophysics[J]. Rev Geophys Space Phys,1977,15:77-104.
    [151]袁海平.诱导条件下节理岩体流变断裂理论与应用研究[D].博士学位论文,长沙:中南大学,2006.
    [152]Y. Nara, K. Kaneko. Study of subcritical crack growth in andesite using the Double Torsion test [J]. International Journal of Rock Mechanics & Mining Sciences,2005,42:521-530.
    [153]Freiman SW. Effects of chemical environments on slow crack growth in glasses and ceramics[J]. J Geophys Res,1984,89:4072-4076.
    [154]Lajtai, E Z and Bielus, L.P.. Stress corrosion cracking of Laodu Bonnet granite in tension and compression[J]. Rock Mechanics and Rock Engineering,1986,19(1):71-87.
    [155]Wiederhorn, S M, Bolz, L H. Stress corrosion and static fatigue of glass[J]. J. Am. Ceram Soc,1970,53:543-547.
    [156]Atkinson, B K. Subcritical crack growth in geological materials [J]. Journal of Geophysical Research,1984,89:4077-4114.
    [157]吴智敏,徐世娘,王金来.混凝土断裂韧度及临界裂缝尖端张开位移—基于虚拟裂缝模型的分析[J].三峡大学学报(自然科学版),2002,24(1):29-34.
    [158]鞠杨,刘彩平,谢和平.混凝土断裂及亚临界扩展的细观机制[J].工程力学,2003,20(5):1-9.
    [159]吴智敏,杨树桐,郑建军.混凝土等效断裂韧度的解析方法及其尺寸效应[J].水利学报,2006,37(7):795-800.
    [160]何满潮,胡江春,王红芳,段庆全.砂岩断裂及其亚临界断裂的力学行为和细观机制[J].岩土力学,2006,27(11):1959-1962.
    [161]段庆全,刘彩平,鞠杨,谢和平.混凝土亚临界裂纹扩展的分形效应[J].中国矿业大学学报,2006,35(1):70-74.
    [162]包亦望,王毅敏,金宗哲.脆性材料的亚临界裂纹扩展和双向应力的影响[J].硅酸盐通报,2000,1:20-22.
    [163]Williams D. P., Evans A. G.. A simple method for studying slow crack growth. Journal of Testing and Evaluation,1973,1 (2):264-270.
    [164]肖洪天,杨若琼,周维垣.三峡船闸花岗岩亚临界裂纹扩展试验研究[J].岩石力学与工程学报,1999,18(4):447-450.
    [165]李江腾,曹平,袁海平.岩石亚临界裂纹扩展试验及门槛值研究[J].岩土工程学报,2006,28(3):415-418.
    [166]袁海平,曹平,周正义.金川矿岩亚临界裂纹扩展试验研究[J].中南大学学报(自然科学版),2006,37(2):381-384.
    [167]Y. Nara, K. Kaneko. Study of subcritical crack growth in andesite using the Double Torsion test [J]. International Journal of Rock Mechanics & Mining Sciences,2005,42,521-530.
    [168]Y. Nara, K. Kaneko. Sub-critical crack growth in anisotropic rock[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43, 437-453.
    [169]罗礼.用双扭方法测试岩石的亚临界裂纹扩展速度和断裂韧度[D].硕士学位论文,长沙:中南工业大学,1988.
    [170]王红洁,王永兰,金志浩,周惠久.恒应力速率下陶瓷材料的亚临界裂纹扩展模型[J].西安交通大学学报,1998,32(12):81-84.
    [171]Griggs D T. Creep of rocks[J]. Journal of Geology,1939,47:225-251.
    [172]梅剑云,付冰骏,康文法.中国岩石力学的发展与现状[J].岩石力学与工程学报,1983,1(2):22-32.
    [173]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312
    [174]Senseny P E. Specimen size and history effects on creep of rock salt[C].In Proc of the 1th Conference on the Mechanical Behaviour of salt.1981: 369-379.
    [175]Ito H, Sasajima S. A ten year creep experiment on small rock specimens[J]. Int J Rock Mech min Sci Geomech Abstr 1987,24(2):113-121.
    [176]Ito H. The phenomenon and examples of rock creep//Hudson, J A. comprehensive Rock Engineering, vol.3 Pergamon Press, Oxford, 1993:693-708.
    [177]Haupt M. A constitutive law for rock salt based on creep and elaxation tests[J]. Rock Mechanics and Rock Engineering,1991,24:179-206.
    [178]Okubo S, Nishimatsu Y, Fukui K. Complete creep curves under uniaxial compression[J]. Int J Rock Mech Min Sci Geomech Abstr,1991, 28(1):77-82.
    [179]Shin K, Okubo S, Fukui K, Hashiba K.Variation in strength and creep life of six Japanese rocks[J]. Int J Rock Mech Min Sci,2005,42(2):51-60.
    [180]Hashiba K, Okubo S, Fukui K. A new testing method for investigating the loading rate dependency of peak and residual rock strength[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43(2):894-904
    [181]Okubo S, Fukui K, Hashiba K. Long-term creep of water-saturated tuff under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47(3):1-6.
    [182]Korzenowski W. Rheological model of hard rock pillar[J]. Rock Mechanics and Rock Engineering,1991,21:155-166.
    [183]张晓龙,马文顶.三轴岩硐流变试验台[J].矿山压力与顶板管理,1994,1:60-63.
    [184]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,16(1):39-47.
    [185]Yongsheng Li, Caichu Xia. Time-dependent tests on intact rocks in uniaxial compression[J]. Int J Rock Mech Min Sci,2000,37:467-475.
    [186]Matsumoto M, Tatsuoka F. Study of rheological modeling of creep behavior for sedimentary soft rock[A]. In Proc of the 51th Annual Conference of the Japan Society of Civil Engineers [C],1996:660-667.
    [187]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报,1996,18(6):64-69.
    [188]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):63-67.
    [189]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J]. 岩石力学与工程学报,1996,15(4):312-322.
    [190]Malan D F,Uogler U W, Drescher K. Time-dependent behaviour of hard rock in deep level gold mines [J]. Journal of the South african Institute of Mining and Metallurgy,1997:135-147.
    [191]Malan D F. Time-dependent behaviour of deep level tabular excavations in hard rock[J]. Rock Mechanics and Rock Engineering,1999,32(2):123-155.
    [192]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299-303.
    [193]Maranini E, Brignoh M. Creep behaviour of a weak rock experimental characterization[J]. Int J Rock Mech Min Sci,1999,36(1):127-138.
    [194]Maranini E, Tsutomu Yamaguchi. A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J]. Mechanics of Materials, 2001,33:283-293.
    [195]彭苏萍,王希良,刘咸卫,赵森林.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报,2001,26(2):149-152.
    [196]曹树刚,鲜学福.煤岩蠕变损伤特性的试验研究[J].岩石力学与工程学报,2001,20(6):817-821.
    [197]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96-98.
    [198]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [199]陈沅江,潘长良,王文星.软岩流变的一种新的试验研究方法[J].力学与实践,2002,24(4):42-45.
    [200]赵法锁,张伯友,彭建兵,等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532.
    [201]赵法锁,张伯友,卢全中,等.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):478-480.
    [202]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [203]李铀,朱维申,白世伟,杨春和.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673-1677.
    [204]陈渠,西田和范,岩本健,龟谷裕志,板桥利昭.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报,2003,22(6):905-912.
    [205]Gasc-Barbier M, Chanchole S, Be'rest P. Creep behavior of Bure clayey rock[J]. Applied Clay Science,2004,26 (4):449-458.
    [206]刘光廷,胡昱,陈凤岐,徐增辉.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [207]张向东,李永靖,张树光,霍宝荣.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [208]巫德斌,徐卫亚,朱珍德,刘世君.泥板岩流变试验与粘弹性本构模型研究[J].岩石力学与工程学报,2004,23(8):1242-1246.
    [209]丁秀丽,付敬,刘建.软硬互层边坡岩体的蠕变特性研究及稳定性分析[J].岩石力学与工程学报,2005,24(19):3410-3408.
    [210]Be'rest P, BlumPA, Charpentier JP, Gharbi H, Vales F. Very slow creep tests on rock samples[J]. Int J Rock Mech Min Sci,2005,42(5):69-76.
    [211]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(5):693-698.
    [212]杨圣奇,徐卫亚,谢守益,邵建富.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报,2006,28(8):962-969.
    [213]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(5):1021-1025.
    [214]崔希海,李进兰,牛学良,王素华.岩石扰动流变规律和本构关系的试验研究[J].岩石力学与工程学报,2007,26(9):1875-1881.
    [215]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1273-1276.
    [216]范庆忠,李术才,高延法.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报,2007,26(7):1381-1385.
    [217]肖燕.软土蠕变特性研究及其在桥台桩基工程中的应用[D].硕士学位论文,长沙:湖南大学,2004.
    [218]赵延林,曹平,陈沅江,李江腾,袁海平.分级加卸载下节理软岩流变试验及模型[J].煤炭学报,2008,33(7):748-753.
    [219]熊良宵,杨林德,张尧,沈明荣,石振明.锦屏二级水电站绿片岩双轴压缩蠕变特性试验研究[J].岩石力学与工程学报,2008,27(S2):3928-3934.
    [220]卸载硬岩短时蠕变特性实验研究[J].实验力学,2009,24(5):459-466.
    [221]谌文武,原鹏博,刘小伟.分级加载条件下红层软岩蠕变特性试验研究[J].岩石力学与工程学报,2009,28(S1):3076-3082.
    [222]赵旭峰,孙钧.海底隧道风化花岗岩流变试验研究[J].岩土力学,2010,31(2):403-406.
    [223]范秋雁,阳克青,王渭明.泥质软岩蠕变机制研究[J].岩石力学与工程学报,2010,29(8):1555-1561.
    [224]郭臣业,鲜学福,姜永东,唐红梅,姚伟静.破裂砂岩蠕变试验研究[J].岩石力学与工程学报,2010,29(5):990-995.
    [225]王如宾,徐卫亚,王伟,张治亮,张玉.坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律[J].岩石力学与工程学报,2010,29(5):990-969.
    [226]阎岩,王恩志,王思敬,胡昱.岩石渗流—流变耦合的试验研究[J].岩土力学,2010,31(7):2095-2104.
    [227]张明,毕忠伟,杨强,程丽娟,李仲奎.锦屏一级水电站大理岩蠕变试验与流变模型选择[J].岩石力学与工程学报,2010,29(8):1530-1537.
    [228]刘建,李鹏,乔丽苹,朱杰兵.砂岩蠕变特性的水物理化学作用效应试验研究[J].岩石力学与工程学报,2008,27(12):2540-2550.
    [229]朱杰兵,汪斌,杨火平,胡建敏.页岩卸荷流变力学特性的试验研究[J].岩石力学与工程学报,2007,26(s2):4552-4556.
    [230]闫子舰,夏才初.锦屏大理岩卸荷流变变形特性试验[J].长江科学院院报,2008,25(5):11-15.
    [231]夏才初,闫子舰,王晓东,张春生,赵旭.大理岩卸荷条件下弹黏塑性本构关系研究[J].岩石力学与工程学报,2009,28(3):459-466.
    [232]张强勇,张建国,杨文东,贺如平.软弱岩体蠕变模型辨识与参数反演[J].水利学报,2008,39(1):66-72.
    [233]杨文东,张强勇,张建国,曾纪全,贺如平.刚性承压板下深部岩体压缩蠕变参数反演[J].岩土力学,2009,30(3):762-768.
    [234]陈卫忠,谭贤君,吕森鹏,等.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩石力学与工程学报,2009,28(9):1735-1744.
    [235]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [236]Cornelins R R, Scott P A. A materials failure relation of accelerating creep as empirical description of damage accululation[J]. Rock Mech and Rock Engng,1993,26(3):233-252.
    [237]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(5):99-103.
    [238]夏才初,王晓东,许崇帮,张春生.用统一流变力学模型理论辨识流变模型的方法和实例[J].岩石力学与工程学报,2008,27(8):1594-1600.
    [239]夏才初,王晓东,许崇帮,张春生.统一流变力学模型参数的确定方法[J].岩石力学与工程学报,2009,28(2):425-432.
    [240]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].工程力学,1991,8(2):101-109.
    [241]邓荣贵,周德培,张悼元,付小敏.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784.
    [242]韦立德,徐卫亚,朱珍德,邵建富.岩石粘弹塑性模型的研究[J].岩土力学,2002,23(5)58-586.
    [243]陈沅江,潘长良,曹平,王文星.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [244]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报,2005,24(15):2659-2665.
    [245]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ);模型分析[J].岩土力学,2005,26(5):693-698.
    [246]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433-447.
    [247]张贵科,徐卫亚.适用于节理岩体的新型黏弹塑性模型研究[J].岩石力学与工程学报,2006,25(s1):2894-2911.
    [248]周家文,徐卫亚,杨圣奇.改进的广义Bingham岩石蠕变模型[J].水利学报,2006,37(7):829-832.
    [249]殷德顺,任俊娟,和成亮,陈文.一种新的岩土流变模型元件[J].岩石力学与工程学报,2007,26(9):1899-1903.
    [250]杨圣奇,朱运华,于世海.考虑黏聚力与内摩擦系数的岩石黏弹塑性流变模型[J].河海大学学报(自然科学版),2007,35(3):291-298.
    [251]杨圣奇,倪红梅,于世海.一种岩石非线性流变模型[J].河海大学学报(自然科学版),2007,35(4):388-392.
    [252]蒋昱州,张明呜,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27(4):832-839.
    [253]罗润林,阮怀宁,朱昌星.基于塑性强化和粘性弱化的岩石蠕变模型[J].西南交通大学学报,2008,43(3):346-351.
    [254]冶小平,李曼,孙强.巷道软岩蠕变损伤模型[J].煤田地质与勘探, 2009,37(2):44-46.
    [255]熊良宵,杨林德,张尧.岩石的非定常Burgers模型[J].中南大学学报(自然科学版),2010,41(2):679-684.
    [256]熊良宵,杨林德.硬脆岩的非线性粘弹塑性流变模型[J].同济大学学报(自然科学版),2010,38(2):188-193.
    [257]浦奎英,范华林.流变损伤模型及其应用河海大学学报(自然科学版),2001,29(s):17-20.
    [258]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,12:33-37.
    [259]陈卫忠,王者超,伍国军,杨建平,张保.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2007,26(3):467-472.
    [260]伍国军,陈卫忠,曹俊杰,谭贤君.工程岩体非线性蠕变损伤力学模型及其应用[J].岩石力学与工程学报,2010,29(6):1184-1191.
    [261]王贵君.一种盐岩流变损伤模型[J].岩土力学,2003,24(s):81-84.
    [262]徐卫亚,周家文,杨圣奇,石崇.绿片岩蠕变损伤本构关系研究[J].岩石力学与工程学报,2006,25(s1):3093-3097.
    [263]任中俊,彭向和,万玲,杨春和.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报,2008,25(2):212-217.
    [264]佘成学.岩石非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报,2009,28(10):2006-2011.
    [265]C.Y. Zhou, F.X. Zhu. An elasto-plastic damage constitutive model with double yield surfaces for saturated soft rock[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47(2):385-395.
    [266]陈沅江,潘长良,曹平,王文星.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13(3):0735-0742.
    [267]宋飞,赵法锁.分级加载下岩土流变的神经网络模型[J].岩土力学,2006,27(7):1187-1190.
    [268]Weidinger P, Hampel A, Blum W, Hunsche U. Creep behaviour of natural rock salt and its description with the composite model [J]. Materials Science and Engineering,1997, A234-236:646-648.
    [269]马明军,钟时猷.一个软弱岩石的粘弹塑性流变力学模型[J].中南矿冶学院学报,1990,21(3):286-291.
    [270]Jishan Jin and N. D. Cristescu. An elastic/viscoplastic model for transient creep of rock salt[J]. International Journal of Plasticity,1998,14(3):85-107.
    [271]Zvonko Tomanovic. Rheological model of soft rock creep based on the tests on marl[J]. Mech Time-Depend Mater,2006,10:135-154.
    [272]刘同有主编.金川镍矿开采的工程地质与岩石力学问题[M].金昌:金川公司印刷厂,1996.
    [273]马宇.金川二矿区地应力场研究与地下工程稳定性[D].博士学位论文,北京:中国地质科学院,2006.
    [274]金川镍钻研究设计院.金川二矿区岩石物理力学参数研究报告[R].1986.
    [275]北京科技大学,金川镍钻研究设计院,金川二矿区.金川二矿区深部矿岩力学特性测试研究报告[R].1996.
    [276]金川镍钻研究设计院.二矿区深部岩石力学参数测试试验研究报告[R].1996.
    [278]谭文辉,周汝弟,王鹏.岩体宏观力学参数取值的GSI和广义Hock-Brown法[J].有色金属,2002,54(4):16-18.
    [279]廖秋林,李晓,张年学,等.E. Hock法在节理化岩体力学参数评价中的应用[J].岩土力学,2005,26(10):1641-1644.
    [280]王文星.岩体力学[M].湖南:中南大学出版社,2004.
    [281]中南大学.金川二矿区深部高强度采掘条件下的岩石力学研究[R].2011.
    [282]蒋青青,李江腾,胡毅夫,桂易林,赖伟明.水对亚临界裂纹扩展的影响[J].岩土力学,2008,29(9):2527-2530.
    [283]万琳辉,曹平,黄永恒,汪亦显.水对岩石亚临界裂纹扩展及门槛值的影响研究[J].岩土力学,2010,31(9):2737-2742.
    [284]Ciccotti M. A realistic finite-element model for the double torsion loading configuration[J]. Am Ceram Soc,2000,83 (11):2737-2744.
    [285]于骁中.岩石和混凝土断裂力学.长沙:中南工业大学出版社,1991,463-468.
    [286]缪协兴,安里千,翟明华等.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,28(2):114-117.
    [287]Staurt Crampin, Russ Evans, Barry K. Atkinson. Earthquake prediction:a new physical basis[J]. Geophysical Journal of the Royal Astronomical Society,1984.1(76):147-156.
    [288]Das, S.& Scholz, C. Theory of time-dependent rupture in the earth[J]. J. Geophys. Res.,1981,86:6039-6051.
    [289]Horri H, Nemat-Nasser S. Brittle failure in compression:splitting faulting and brittle-ductile transiton[J]. Phitrans R. Soc,1986, A319:337-374.
    [290]Kemeny, J.M. A model for nonlinear rock deformation under compression due to subcritical crack growth[J]. Int. J.RockMech. Min. Sci.,.1991,28: 459-467.
    [291]Kemeny, J.M., Cook, N.G.W., Crack models for the failure of rocks in compression, Constitutive laws for engineering materials:Theory and Applications[J].vol. II,Elsevier, New York,1987:879-887.
    [292]Myer L R, Kemeny J M. Extensile cracking in porous rock under differential compressive stress. Appl. Mech. Rve,1992,45(8):263-280.
    [293]中南大学.金川Ⅲ矿区高应力破碎矿岩条件下自然崩落法前期研究[R].2006.
    [294]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [295]杨彩红,王永岩,李春林.含水率变化对深部工程岩体蠕变规律的影响[J].化工矿产地质,2007,29(1):55-60.
    [296]杨彩红.水对深部工程软岩蠕变规律的影响[D].硕士学位论文,辽宁工程技术大学,2005.
    [297]周瑞光,杨计申,成彬芳等。糜棱岩流动变形与含水量的关系[J].工程勘察,1997,5:34-37.
    [298]周瑞光,成彬芳.水岩相互作用下金川露天矿F1断层泥破环特征[J].工程勘察,1996,3:26-29.
    [299]S. Okubo, K.Fukui, K.Hashiba. Long-term creep of water-saturated tuff under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences,2010,3:1-6.
    [300]陈沅江,潘长良,曹平,等.基于人工神经网络的岩土流变本构模型辨识[J].中国有色金属学报,2002,12(5):1027-1034.
    [301]左红伟,冯紫良,田玉静,等.岩石弹黏塑性时效模型的遗传算法多参数辨识[J].岩石力学与工程学报,2002,21(增刊2):2527-2531.
    [302]韩冰,王芝银.岩石流变参数鲁棒辨识方法研究[J].岩土力学,2008,29(9):2527-2530.
    [303]李志敬,朱珍德,周伟华.基于CPSO算法的岩石蠕变模型非定常参数反演分析[J].河海大学学报,2008,3(36):346-349.
    [304]封志军,周德培,周应华.Origin软件在岩土流变试验数据整理中的应 用[J].路基工程,2005,123(6):4-6.
    [305]袁海平,曹平,许万忠,等.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报,2006,28(6):796-799.
    [306]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [307]刘高,聂德新,韩文峰.高应力软岩巷道围岩变形破坏研究[J].岩石力学与工程学报,2000,19(6):726-730.
    [308]穆玉生,吉险峰.金川二矿区1178分段巷道变形规律研究[C].中国有色金属学会第二届青年论坛学术会议论文集.2005:392-395.
    [309]吴爱祥,韩斌,刘同有,等.金川镍矿不良岩层巷道变形与支护研究[J].岩石力学与工程学报,2003,22(增2):2595-2560.
    [310]中南大学,金川集团有限公司,金川集团有限公司二矿等.《金川二矿区深部高强度采掘条件下的岩石力学研究》研究报告.内部资料,2010
    [311]刘波,韩颜辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700