用户名: 密码: 验证码:
利用可控气氛热喷涂方法制备复合材料涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低度真空条件下进行热喷涂的技术(简称低压喷涂)是近年来才出现的一种新技术。利用这种新的热喷涂工艺可以制备出具有极低氧含量的涂层,在易氧化材料涂层和生物医学涂层制备等方面已经获得了一些成功的应用。
     本文设计了一种新型的低压喷涂装置,它可以同时利用两个相互独立的喷涂枪体来完成涂层的制备。采用这种方法可以灵活地设计并制备各种金属-金属复合涂层和陶瓷-金属复合涂层,不但为复合材料涂层的制备提供了一种新工艺,也为利用热喷涂制备块体复合材料提供了一种新的途径。
     首先,采用所研究的低压热喷涂方法制备了多种单一金属材料的涂层,分析了涂层中喷涂粒子的结合形态,测定了氧化物的含量和分布,并通过加压和加热等方法探讨了对涂层进行后处理的工艺,其目的在于探讨一种能使涂层中晶粒穿越先期氧化物边界生长,并形成冶金结合的工艺。在研究了低压喷涂基体金属形态的基础上,采用该种喷涂方法制备了具有极低含氧量的Ti涂层,分析了其中氧化物、氮化物的数量和分布,为其在耐腐蚀涂层和生物医学涂层方面的应用提供了一些有用的基础数据。
     采用低压环境下的双枪喷涂技术,成功地制备了多种金属-金属和陶瓷-金属复合涂层,研究了各种涂层中组织、成分和相组成的特点和规律,并对这些涂层进行了硬度、结合强度、耐磨性等方面的力学性能试验,分析了这些涂层组织和成分形成的过程和规律,为今后灵活设计各种复合材料涂层提供了理论依据。研究中还采用低压喷涂技术制备了梯度涂层,获得了组织、成分和性能连续变化的涂层结构,对其成形规律和工艺要素进行比较细致的分析,为梯度涂层的制备提供了一种新的思路。
Thermal spraying under low vacuum condition (i.e. low pressure spray) is one of the new technologies developed in recent several years. Take advantage of this new kind of thermal spray technology, coatings with very low oxygen can be prepared. Which has been successful applied in the materials with easy oxidation and biomedical properties.
     A new type of low-pressure spraying device has been designed in this work. Two separate spraying guns can simultaneously be used to complete the preparation of coating. These approaches can flexibly design and preparation of various metal-metal composite coating and ceramic-metal composite coatings. It has provided a new technology not only for composite coating, but also offers a new way for the preparation of bulk composite materials by using thermal spraying.
     First, many kinds of sole metallic material coatings were prepared by using the low pressure thermal spraying method we developed. The connected morphologies between the spraying granule, the oxide compound content and the distribution in the coating have been analyzed and determined. Furthermore, through methods of such as compression and heating, the post-processing to the coating was discussed in order to investigate the ability of crystal grains traversing the oxide compound boundary to grow in the coating as well as the technique of formation of metallurgical combination between the parent metal and coating. Based on the study of the morphology in the low pressure spraying, Ti coating with extremely low oxygen content was prepared. The oxide compound, nitride quantity and the distribution were analyzed, which has provided some useful essential data for its application in the anti-corrosive coating and the biomedicine coating.
     Second, many metal-metal and ceramic-metal composite coatings were successfully produced using twin gun spraying technology under low-voltage. The microstructure, the composition and the characteristics and distribution of the constituent phases of the coating were investigated. The mechanical testing, such as hardness, strength, wear resistance of the coating were carried out in order to analyze the mechanism related to the composition formation processes during thermal spraying, which provides the academic background and rules for the flexible design of various composite coating in the future. Research also focuses on gradient coating and its related properties such as the microstructure, composition and continuous changes in the mechanical properties of the coating obtained by using low pressure spraying. Detailed analysis was given access to the forming rules and technological essential. Which provides a new way of thinking for preparation of gradient coating.
引文
[1]吴子健.热喷涂技术与应用.北京:机械工业出版社,2007.
    [2]高荣发.热喷涂.北京:化工业出版社,1992.
    [3]Ahmed I, Bergman T L.Thermal Modeling of Plasma Spray Deposition of Nanostructured Ceramics. Thermal Spray Technology,1999,3(8):315-322.
    [4]王海军.热喷涂材料及应用.北京:国防工业出版社,2008.
    [5]武建军,曹晓明,温鸣.现代金属热喷涂技术.北京:化学工业出版社,2007.
    [6]薛家祥,黄石生.等离子喷涂技术的现状与展望.电焊机,1994,3:8-11.
    [7]Pekshev P Y, Ycherniako S V, Arzhakin N A. Plasma-sprayed multilayer protective coatings for gas tubine units.Surface and Coatings Technology,1994,64:5-9.
    [8]Vural Zeytin Ucisik. Plasma-Sprayed Oxide Ceramics on Steel ubstrates. Surface and Coatings Technology,1997,97(3):347-354.
    [9]王华仁.超音速火焰喷涂技术及应用.东方电机,2007,4:45-50.
    [10]王永兵,刘湘,祁文军.热喷涂技术的发展及应用.电镀与涂饰,2007,34(7):23-26.
    [11]温瑾林,张忠礼.电弧喷涂技术.沈阳工业大学学报,1994,6:52-59.
    [12]张忠礼,温瑾林,耿维生等.电弧喷涂技术应用两例.设备管理与维修,2005,3:14.
    [13]沈亚郯,洪伟,安云岐.电弧喷涂技术在电厂中的应用.有色金属,2006增刊:88-91.
    [14]潘海伟,刘海洋.电弧喷涂技术在转炉烟道上的应用.冶金标准化与质量,2006,44(3):42-45.
    [15]李德元,赵文珍,董晓强等.等离子技术在材料加工中的应用.北京:机械工业出版社,2005.
    [16]Kim H J, Kweon Y G. The application of thermal sprayed coatings for pig iron ingot molds. Journal of Thermal Spray Technology,1996,5(4):463-468.
    [17]W G Marijnissen, A van Lieshout. The evolution of thermal barrier coatings-status and upcoming solutions for today's key issues. Surface and Coatings Technology.1999,9(120-121):61-67.
    [18]Schlichting K W, Pature N P, Jordan E H et al. Failure modes in plasma-sprayed thermal barrier coatings. Materials Science and Engineering A,2003,342:120-130.
    [19]储凯,王艳,卢新江.等离子喷涂纳米Zr02陶瓷表面涂层的热震性能研究.热加工工艺,2006,35(23): 53-55.
    [20]王德朋,于朝霞,王旭东等.喷涂距离对热障涂层拉伸强度的影响.热加工工艺,2007,36(7):47-49.
    [21]高凡,池田浩二,武信弘一等.固体电解质型燃料电池发电技术开发.三菱重工技报,1999,36(1):34-37.
    [22]Takenori S, Kadokawa N, Koseki K. Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying. Thermal Spray Technology,2000,7(8): 360-366.
    [23]Chang-Jiu Li, Cheng-Xin Li, Xian-Jin Ning. Performance of YSZ electrolyte layer deposited by atmospheric plasma spraying for cermet cermet-supported tubular SOFC. Thermal Spray Technology.2004,73(3-4):699-733.
    [24]王茂才,段绪海.激光熔覆(焊)技术在航空发动机生产中的应用.机械工人(热加工),2007,6: 1-4.
    [25]张凤赢,马跃进.热喷涂技术及其在汽车行业中的应用.热加工艺,2007,36(19):84-85.
    [26]贾永吕.热喷涂技术在冶金工业中的应用.粉末冶金工业,2000,6(10):12-14.
    [27]Anders Nylund. Surface reactions during atomization handling and consolidation of Al-powders. Postgraduate Programme in Engineering Metals. USA:School of Mechanical and Vehicular Engineering Department of Engineering Metals,1993.
    [28]Steffens, H D, Dvorak, M. Structure and electrochemical behavior of vacuum-plasma sprayed Titanium and plasma-beam alloyed Titanium coatings. Materials Science and Engineering.1995, 2(3):151-157.
    [29]戴达煌,周克崧,袁镇海.现代材料表面技术科学.北京:冶金工业出版社,2004.
    [30]Hubert Hody, Jean-Jacques Pireaux, Patrick Choquet. Plasma functionalization of silicon carbide crystalline nanoparticles in a novel low pressure powder reactor. Surface and Coatings Technology. 2010,205(1):22-29.
    [31]许萧萧,马金昌,魏季和.低碳下高铬钢液脱碳和脱氮的实验研究.上海金属,2009,31(1):34-38.
    [32]Brzezinski T, Cavasin A. Vacuum sprayed ZrO? barrier coatings for aerospace application.15th International Thermal Spray Conference, France,1998,1645-1650.
    [33]Gruner H. Vacuum sprayed composite coatings.11th International Thermal Spraying Conference, Canada,1986,73-82.
    [34]Jiansirisomboon S, Roberts S G, Grant P S. Low pressure plasma spraying Al2O3 and Al2O3/SiC nanocomposite coatings from differnt feedstock powers. Thermal Spray Technology.2003,23(6): 961-967.
    [35]H.Hamatani, N Shimoda and S kitaguchi. Effect of the composition profile and density of LPPS sprayed functionally graded coating on thermal shock resistance. Science and Technology of Advanced Materials,2003,4(2):197-203.
    [36]J H Ouyang, S Sasaki and K Umeda, Microstructure and tribological properties of low-pressure plasma sprayed ZrO2-CaF2-Ag2O composite coating at elevated temperature, Wear,2001,249(5-6): 440-451.
    [37]J E Doring, R Vassen,G pintsuk and D stover. The processing of vacuum plasma-sprayed tungsten-copper composite coatings for high flux components. Fusion Engineering and Design, 2003,66-68:259-263.
    [38]徐滨士.表面工程的应用与展望.中国科技前沿(中国工程院版).北京:高等教育出版社,2000.
    [39]赵文珍.超音速火焰喷涂一热喷涂领域的最新技术.材料保护,1997,30(12):19-21.
    [40]李长久.超音速火焰喷涂及涂层性能简介.表面工程杂志,1996,4:9-33.
    [41]TomLinson W j, Bransden A S. Cavitation ersion of laser surface alloyed coation on A1-12%Si. Wear,1995,185(1-2):59-65.
    [42]王引真,李方坡,孙永兴.超音速火焰喷涂TiC-TiB2增强Ni基涂层的研究.材料保护,2008,41(6):8-11.
    [43]张建生,黄强.小浪底水轮机抗磨蚀应用研究.水力发电学报,2007,26(1):129-134.
    [44]潘继岗,樊自拴,孙冬梅.超音速火焰喷涂Fe基非晶合金涂层的性能研究.材料保护,2005,9: 53-55.
    [45]Hangong Wang, Bailin Zha. Technique and application of high velocity arc spraying. Proceedings of the Thermal Spray Conference,2001,1:467-469.
    [46]查柏林,王汉功,苏勋家.超音速喷涂技术在再制造中的应用.中国表面工程,2006,19(5):174-177.
    [47]王志健,田欣利,胡仲翔等.超音速火焰喷涂理论与技术的研究发展.兵器材料科学与工程,2002,25(3):63-66.
    [48]王国荣.复合材料概论.哈尔滨:哈尔滨.工业大学出版社,1998.
    [49]李强,王富耻,雷廷权等.激光熔覆Ni-Cr-B-Si-C合金的组织及其摩擦磨损特性.中国有色金属学报,1998,8(2):201-205.
    [50]李刚,夏延秋,王彦芳等.激光熔覆Zr-Al-Ni-Cu复合涂层组织及其摩擦磨损性能.摩擦学学报,2002,22(5):343-346.
    [51]刘均波,王立梅,黄继.等离子熔覆Cr7C3/γ-Fe金属陶瓷复合材料涂层的耐磨性.机械工程材料,2006,30(2):42-45.
    [52]刘秀波,王华明.TiAl合金激光熔覆硅化物复合材料涂层组织研究.材料热处理学报,2005,26(6): 127-130.
    [53]Yoshikzll Nakamura, Shigekazu Hirayma. Effeet of liquid Lubricants on the wear of grev cast iron against Sialon ceramics, wear,1990,137:91-97.
    [54]Frangini S, MasciA, Di Bartolomeo A. Cr7C3-based cermet coating deposited on stainless steel by electro-spark process: structural characteristics and corrosion behavior. Surface and Coatings Technology,2002,149:279-286.
    [55]乔玉林,徐滨士,马世宁等.电弧喷涂7Crl3涂层的组织结构及摩擦学机理.中国机械工程,2002,13(19):1649-1651.
    [56]刘秀波,余利根,王华明.γ-TiAl合金激光表面合金化γ-NiCrAl/TiC/Cr7C3复合材料涂层组织与性能.稀有金属材料与工程,2001,30(3):224-227.
    [57]欧阳洁,赵海云,渠通洋.激光合成TiC/Ni-Al复合材料涂层组织及耐磨性研究.材料保护,2007,40(10):5-9.
    [58]李丽光,谭业发,储伟俊.Ni-SiC/铁氧体复合涂层的制备及其吸波性能.机械工程材料,2009,33(3):90-94.
    [59]张维平,刘中华.激光熔覆原位合成TiC-Cr7C3-Ti-N金属复合材料涂层.中国激光,2008,35(7):1091-1094.
    [60]Yong qing Fu, Andrew W, Batchelor et al. Fretting wear behaviors of thermal sprayed hydroxyapatite (HA) coating under unlubricated conditions. Wear,1998,217(1):132-139.
    [61]Chen Chinan, Su Mei. Study on microstructure and abrasive resistance of laser cladding TiN surface alloyed TC9. Beijing University of Aeronautics and Astronautics,1998,24(3):253-255.
    [62]李元元,夏伟,温利平.铝青铜合金的基本特性与摩擦学性能的关系.摩擦学学报,1996,16(2):130-136.
    [63]王东生,黄因慧,田宗军.激光重熔喷射电沉积纳米晶镍涂层微观结构.电加工与模具,2007,5:28-31.
    [64]王赫莹,李德元,马晓丽.等离子喷涂层Al203梯度陶瓷涂层的性能研究.表面技术,2005,34(2): 15-17.
    [65]李浩群,杨政,陈大融.铝合金基体上Al203基陶瓷涂层形成机理.清华大学学报,2000,4(40):92-95.
    [66]冯拉俊,曹凯愽,雷阿丽.等离子喷涂Al2O3陶瓷涂层的工艺研究.中国表面工程,2005,18(6):45-48.
    [67]陈传忠.激光熔覆Al2O3+TiO2复合陶瓷涂层的微观结构.硅酸盐学报,2000,28(2):134-138.
    [68]邸英浩,阎殿然.等离子喷涂纳米结构Al203/TiO2涂层的组织与性能研究.热加工工艺,2005,2: 10.
    [69]倪忠礼,陈麒.复合材料科学与工程.北京:科学出版社,2002.
    [70]Hanumanth G S. Particle incorporation by melt stirring for the production of metal-matrix composites. Journal of Materials Science,1993,28(9):2459-2465.
    [71]J E Doring, R Vassen, G pintsuk, D stover. The processing of vacuum plasma-sprayed tungsten-copper composite coatings for high flux components. Fusion Engineering and Design, 2003,9:23-26.
    [72]Zhao Lidong, Erich Lugscheider. Reactive plasma spraying of TiA6V4 alloy. Wear,2002,253: 1214-1218.
    [73]郑学滨,季珩,丁传贤等.真空等离子喷涂抗菌HA涂层研究.生物骨科材料与临床研究,2005,5:7-10.
    [74]乔保卫,刘止堂.金刚石抗氧化光学涂层的研究发展.材料工程,2004,8:54-56.
    [75]Wu Xiao-lei, Chen Guang-nan. Microstructural characteristics and wear properties of in situ formed TiC particle reinforced coating by laser cladding. Acta Metlllurgical Sinica,1998,34(12): 1284-1288.
    [76]Klemm K A, Patterson HS, Johnson L F et al. Pro-tective optical coatings for diamond infrared windows. Window and Dome Technologies and Mate-rials IV,1994,22(6):347-356.
    [77]Ahmed I, Bergman T L. Thermal modeling of plasma spray deposi-tion of nanostructured ceramics. Thermal Spray Technology,1999,8(3):315-322.
    [78]钟迪生.装饰光学涂层的研究和进展.应用光学,1998,19(1):36-43.
    [79]程原,高保娇,梁浩.微米级镀银铜粉复合导电涂层的导电性研究.应用基础与工程科学学报,2001,9(2-3):184-190.
    [80]丁剑,郭强,潘国梁.超高压电缆护套外表面高分子耐磨导电涂层制备与性能研究.润滑与密封,2007,32(7):38-41.
    [81]李良波,刘来涛,孟严蕊.水性聚氨酯/水泥/碳墨导电涂层的研究.化学建材,2009,25(2):28-30.
    [82]Shen W R,Zhao W K,He F, et al. TiO2-based photocalysis and its applications for waste-water treatment. Prog Chem,1998,10(4):349-361.
    [83]张敬畅,曹维良,于定新.超临界流体干燥法制备纳米级TiO2的研究.无机材料学报,1999,24(1):29-35.
    [84]方晓明,瞿金清,陈焕钦.液相沉淀法制备TiO2纳米粉体.中国陶瓷,2001,37(5):39-41.
    [85]唐芳琼,侯莉萍,郭广生.单分散纳米二氧化钛的研制.无机材料学报,2001,16(4):615-619.
    [86]张蕾,严川伟,童靖宇.原子氧对金属Ag及其表面TiO2—有机硅热控涂层的侵蚀.金属学报,2003,39(9):984-988.
    [87]BerndtC, LarerniaE J.Thermal spray processing of nanoscalematerials I-extended abstracts. Thermal spray Technology,1998,7(3):411-440.
    [88]Ahmed I, Bergman T L. Thermalmodeling of plasma spray deposition of nanostructured ceramics. Thermal Spray Technology,1999,8(3):315-322.
    [89]胡吕义,李靖华.化学气相沉积技术与材料制备.稀有金属,2001,25(5):364-368.
    [90]阎洪.化学气相沉积层的技术和应用.稀有金属与硬质合金,1999,3(136):57-62.
    [91]Rourkevith D, Tager A, Haruyama J. Nonlithographic nano-wire arrays:fabrication, physics, and device applications. IEEE Transactions on electron devices,1996,43(10):1646-1658.
    [92]Shahed U M, Tamanna K.Sultana photoresponse ofn-TiO2thin film and nanowire electrodes.Solar Energy Materials and Solar Cells,2003,76:211-221.
    [93]Tokudome H, Miyauchi M. N-doped TiO2 nanotube with visible light activity. Chem Lett,2004, 33(9):1108-1109.
    [94]宋华,池成忠.化学气相沉积TiN技术在模具表面强化中的应用研究.山西机械,2002,3:20-21.
    [95]许发彬.模具精饰加工及表面强化技术.北京:机械工业出版社,1999.
    [96]张福林,张林荣.化学气相沉积TIC-Ti(CN)-TIN涂层在硬质合金模具上应用研究.表面技术,1995,24(1):27-31.
    [97]郦振声,杨明安.现代表面工程技术.北京:机械工程出版社.
    [98]张菁.化学气相沉积技术发展趋势.表面技术,1996,25(2):1-4.
    [99]郭琳,陈云祥.化学气相沉积技术在工模具中的应用.西安航空技术高等专科学校学报,2004,22(1):50-52.
    [100]关春龙,李垚,赫晓东.电子束物理气相沉积技术及其应用现状.航空制造技术,2003,11:20-25.
    [101]牟仁德,许振华,贺世关.电子束物理气相沉积La2Zr207热障涂层,航空材料科学,2009,1: 13-16.
    [102]Song Y H Lee E Y Nagsnsj B A. Microstructure characterization of thermal barrier coatings on high presser turbine blades. Surface and Coatings Technology.2001,9-10:20-26.
    [103]王永锋,张东辉,郝勇超.等离子喷涂电源发展概述.金属加工, 2009,18:31-34.
    [104]陈丽梅,李强.等离子喷涂技术现状及发展.热处理技术与装备,2006,27(1):1-5.
    [105]徐滨十,刘世参等.纳米表面工程.化学工业出版社,2003.
    [106]蔡建平,李波.热喷涂陶瓷涂层.机械工程材料,2000,24(1):5-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700