用户名: 密码: 验证码:
印制线路板化学镀铜活化剂—胶体钯的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于计算机和通讯等高科技产业的迅猛发展,为印刷电路板(PCB)化学镀铜的发展提供了广阔的空间。胶体钯活化液是化学镀铜行业,尤其是PCB孔金属化中应用最广泛的催化剂。本文通过测定引发周期即诱导时间、完全镀覆时间、混合电位-时间法及镀铜效果测定胶体钯的活性;通过测定放置180天后的超声波作用下的活化液镀铜效果,分析稳定性。通过研究制备方法及各种制备条件对盐基胶体钯活性和稳定性的影响,制得性能优异的胶体钯活化液,进而优化盐基胶体钯的制备条件。获得如下结果:
     1.随着氯化钯浓度的增大,胶体钯活化液的活性增大,实验选定氯化钯浓度为2.5g/L;随着反应时间增加,盐基胶体钯活化液的活性先增大后减小,实验确定反应时间为8min;随着反应温度的升高,盐基胶体钯活化液活性先增大而后减小,实验确定反应温度为20~35℃;随着熟化温度的升高,盐基胶体钯活化液活性随之增大,但是熟化温度为60~80℃时,胶体钯活化液的活性未明显提高,故实验选定熟化温度为55℃。锡酸钠浓度、Sn/Pd(物质的量之比)、氯化钠浓度对盐基胶体钯活化液活性影响较小,但对胶体钯活化液稳定性影响较大。随着锡酸钠浓度的增大,胶体钯活化液的稳定时间增大,当浓度增加到5.0g/L以后,胶体钯活化液稳定时间基本不变,故确定锡酸钠浓度为5.0g/L;随着Sn/Pd的不断增大,胶体钯活化液的稳定性增大,当Sn/Pd=50时,可以满足工业生产要求;随着氯化钠浓度的不断增大,胶体钯活化液的稳定性先随之而增大,后随之减小,最终确定氯化钠的浓度为175g/L。甲醇对胶体钯活化液的活性及稳定性产生不利影响。
     2.盐基胶体钯制备较优条件为:PdCl_2为2.5g/L、Sn/Pd为50:1、NaCl为175g/L、锡酸钠浓度为5g/L,反应时间为8min、反应温度为25~35℃、熟化温度为55℃左右。
     3.用超声波作用的同时制得的胶体钯活化液活性与稳定性优于没有超声波作用的活化液。超声波作用时间为0~20min时,随着超声时间的增加,配制的胶体钯活化液的诱导时间短,活性增加,镀铜效果好,随后超声的效果趋缓。超声波作用后的盐基胶体钯活化液在180天后仍然保持良好的活性,稳定性好。
As a result of the rapid development of high-tech industry,such as the computerand communications. It provides huge room for chemical copper plating technology inPrinted circuit board ( PBC ) industry. Colloid Palladium activated liquid is the mostwidely catalyst in the Electroless copper plating industry, especially in the applicationof PCB hole metallization. In this paper, by studying the effect of preparation methodsand preparation conditions of salt-based Colloid Palladium on the activity andstability,we makes excellent performance of Colloid Palladium. In this paper,throughthe determination of triggered cycle namely induction time,completely platingtime,mixed potential time method and effect of plating copper determined ColloidPalladium activity; Through the determination of placed180 days under function ofultrasonic wave activating liquid copper effect, stability analysis. By studying theeffect of preparation methods and preparation conditions of salt-based ColloidPalladium on the activity and stability,we makes excellent performance of ColloidPalladium,and the optimization of preparation conditions of salt-based colloidpalladium.The results obtained are as follows:
     1. With palladium chloride concentration increased, the activity of colloidPalladium increases, palladium chloride concentration is 2.5g / L; The reaction time,reaction temperature, reaction temperature on the base of colloid Palladium activity isaffected. As the reaction time increases, colloid palladium activation activityincreased first and then decreased, experiment to determine the reaction time of 8min;With the increase of the reaction temperature, base of colloid Palladium activityincreases first and then decreases, the experimentally determined the reactiontemperature is 20~35℃;Along with the aging temperature increasing, ColloidPalladium activated liquid activity increases, but the curing temperature of 60to~80℃,colloid Palladium activity did not significantly improve, the selected curingtemperature of 55℃. Stannic acid sodium concentration, Sn / Pd ( molar ratio ), theconcentration of sodium chloride on the base of Colloid Palladium activity of smalleffect, but the influence of Colloid Palladium stability. With the increasing ofconcentration of sodium stannate, Colloid Palladium stability time increases, whenthe concentration was increased to 5.0g / L, Colloid Palladium stability time constant,so the tin sodium concentration is 5.0g / L; Along with the Sn / Pd increasing, ColloidPalladium increased stability, when Sn / Pd = 50, can meet the requirements ofindustrial production; with sodium chloride concentration increasing, the stability of Colloid Palladium increases first then decreases, after, ultimately determine thesodium chloride concentration at 175g / L. Influence of methanol on PD colloidsactivity and stability to produce adverse effect.
     2. The better condition for preparation of salt-based Colloid Palladium:PdCl_2 for2.5g / L, Sn / Pd is 50:1, NaCl to 175g / L, tin sodium concentration is 5g / L,reaction time 8min, reaction temperature 20~35 C, reaction temperature55degreescelsius.
     3. Using ultrasonic action while the prepared Colloid Palladium activity andstability is better than no action of ultrasonic activation solution. The effect ofultrasonic time is 0~20min, along with the ultrasonic time increased, configuration ofColloid Palladium in a short time, increase the activity of copper, good effect,subsequent ultrasound effect down. The effect of ultrasonic of Colloid Palladiumactivation solution at 180days still maintains high activity, good stability.
引文
[1]齐成.印制电路板丝网印刷工艺和技术要点[J].印制电路信息. 2009(2):30-35
    [2]谷新,王周成,林昌健.陶瓷表面化学镀的前处理工艺新进展[J].材料保护,2003,36(09):1-4
    [3]王桂香,李宁,董国君.胶体钯活化液活性的电化学表征[J].稀有金属材料与工程,2008,37(02):299-301
    [4]肖发新.新型盐基胶体钯制备及应用[D].中南大学,2005:1-24
    [5]王鸿建.电镀工艺学[M].哈尔滨:哈尔滨工业大学出版社,1995
    [6]姜晓霞,沈伟.化学镀理论与实践[M].北京:国防工业出版社,2000
    [7]刘忠芳.镍包覆氮化硅粉体的制备工艺研究[D].中国海洋大学,2008:1-5.
    [8]庄严.印刷电子学的发展[J].电子元件与材料,2010,29(09):1-6
    [9]陈达宏.印制电路孔金属化[J].电子工艺技术,2001,22(03):102-105
    [10]陈益芳.激光诱导选择性化学镀铜及沉积过程的数值模拟[D].东南大学,2006:1-5
    [11] S.Miehinari, K.Koiehi. Electroless Copper Plating using Fe as a Reducing Agent[J]. Electrochem Acta 49(2004): 233-238
    [12]李青.化学镀多功能铜镀层在电子工业中的应用[J].电子工业专用设备,1998,27 (2):27-30
    [13]崔国峰,李宁,黎德育.化学镀铜在微电子领域中的应用及展望.电镀与环保,2003,23(5):5-7
    [14] Y.M.Lin,S.C.Yen.Eeffets of Additives and Chelating Agents on EletrolessCopper Plating[J]. Applied Surafe Seience, 2001, 178:116-126
    [15]李宁主编.化学镀实用技术[M].北京:化学工业出版社,2004:7-8
    [16] Shukla S , Seal, S. , Akesson, J , et al. Study of mechanism of electroless coppercoating of fly-ash,1989, 56-78
    [17]郑立卫.以次亚磷酸钠为还原剂的锦纶织物化学镀铜研究[D].东华大学,2010:17
    [18] R.M.Lkues.The Chemistry of The Autocatalytic of Copper by AlkalineFomraldehyde [J]. Plating, 1964, (51):1066-1068
    [19]田庆华等.化学镀铜的应用与发展概况[J].材料开发与应用,2007
    [20]田庆华等.化学镀铜研究进展[J].材料开发与应用,2006
    [21]李瑞海,顾宜.聚苯乙烯塑料表面化学镀铜的研究.高分子材料科学与工程2004,20(5):208-210
    [22]张颖,郭永卫,王雅珍.玻璃表面化学镀铜工艺的改进.电镀与精饰,1999,26(1):1-4
    [23]许盛光,铝模芯.直接化学镀铜工艺研究,电镀与精饰,1990,12(3):13-14
    [24]高俊丽,王为,王慧等.化学沉积法制备高分子复合导电微球.电镀与精饰,1998,20(4):1-3
    [25]张永锋,马玲俊,郭为民,崔昭霞,温青.非金属化学镀的活化工艺[J].材料开发与应用,2000,15(02):30-34
    [26]王桂香,李宁,黎德育.直接电镀用胶体钯催化剂的研制及性能[J].稀有金属材料与工程,2006,35(10):1656-1659
    [27]李勇成. PCB化学镀铜工艺介绍[J].印制电路与贴装,2001(11)
    [28] Grunwald, Method for electroless copper deposition using a hypophosphitereducing agent, U.S. 6524490,February 25, 2003,39-44
    [29]杨防祖,吴丽琼,黄令等.以次磷酸钠为还原剂的化学镀铜[J].电镀与精饰,2004,26(4):7-9
    [30]李卫明,李文国,刘彬云等.环保型化学镀铜新技术[J].孔化与电镀,2004,12:31-34
    [31]张永锋,马玲俊,郭为民,崔昭霞,温青等,非金属化学镀的活化工艺[J],材料开发与应用,2000,21(4):2-5
    [32]章葆澄等.电镀工艺学.北京:北京航空航天大学出版社
    [33]刘燕萍.电镀与精饰,北京:北京航空航天大学出版社,1997,19 (3):29-31
    [34]田大志.电镀与精饰,北京:化学工业出版社,1990,12 (2):43-44
    [35]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1991
    [36]周祖,顾锡人,马季铭.胶体化学基础[M].北京:北京大学出版社,1987
    [37]李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998
    [38]龚竹青.理论电化学导论[M].长沙:中南工业大学出版社,1987
    [39]郑雅杰,肖发新,易丹青,龚竹青,李新海.添加剂对盐基胶体钯活性和稳定性的影响[J].材料保护,2004,37(12):11-13
    [40] Meyer Heinrich, Stamp Lutz . Palladium Colloid Solution and It's Utilisation[P],CA:2186482, 1995-10-19
    [41]郑辅养,马延春.几种氯化物对胶体钯活化液稳定性及其催化活性的影响[J].电镀与精饰,1990,12(3):9-12
    [42] Randolph, Nelsen. Process for Preparing a nonconduetive substrate forelectroplating[P]. US: 5139642, 1992
    [43] Thorn, Polakovic. Composition and process or preparing a nonconductivesubtrate for electroplating[P]. US: 5389270, 1995
    [44]田大志.低浓度胶体钯活化液[J].电镀与精饰,1990,12(2):43-44
    [45]董根岭,周完贞. TY-1型无锡(I)I胶体钯活化液的研制和应用[J].电镀与精饰,1993,15(3):25-26
    [46] Seitzl, Minardac. Viewing Rack[P]. US: 3751172, 1973, 5-9
    [47]王丽丽.印制板直接电镀工艺[J].电镀与精饰. 1998,20(6):10-12
    [48] Stmap, Lutz, Elisabeth. Process for the metallization of nonconductive substrateswith elimination of elecrtoless metallization[P]. US: 5421989, 1995.
    [49]胡国荣,彭忠东,邓朝阳.金刚石表面化学镀预处理研究[J]. 1999,19(4):20-22
    [50]余志成,汪澜,陈海相.胶体钯的制备及在屏蔽织物上的应用[J].纺织学报,24(4):287-289
    [51] N.Breuer, Gdietrieh, S.Huabold. AFM inbestigations for development of printedcireuit boards[J]. Applied PhysicsA, 1998, 66, 5799-5803
    [52] Andreas Eiehhorn, Andrea Koeh, Joachim Bargon. In situ PHIP NMR a new toolto investigate hydrogenation mediated by colloid eatalysts[J]. Jomual ofMolecular CatalysisA: Chemieal. 2001, 174:293-295
    [53]刘燕萍,刘珍等.胶体钯量对非金属材料的金属覆层性能的影响[J].电镀与精饰,1997,19(3):29-31
    [54]余志成,汪澜,陈海相.胶体钯的制备及在屏蔽织物上的应用[J].纺织学报,24(4):287-289
    [55] Feldstein, Nathna. Method of Preparation and use of novel eleeotrless platingcatalysts [P]. US: 4048354, 1977
    [56]李兵,魏锡文,张朝阳等.非金属材料化学镀镍活化工艺研究[J].材料保护,2001,34(2):1720
    [57] Joshi, Nayan H. Metallization of Non-conductive Surfaces with Silver Catalystand Electroless Metal Composition[P]. US: 6645557, 2003
    [58]Biebuyck, Hans, Delamarche. Mehtod of Printing a catalyst on substrate forelectroless deposition [p]. US: 6521255, 2003
    [58]王桂香,李宁,黎德育.塑料电镀的活化工艺[J].电镀与环保,2004,24(04):21-23
    [59]靖洁.铝基铜沉积体系研究[M].长安大学. 2010,25(02):19-21
    [60]袁忠发.各向异性导电胶膜用柔性导电微球的制备.华中科技大学[M].2006,20(02):15-20
    [61]谷新.化学镀铜过程混合电位本质的研究[J].《物理化学学报》. 2004,24(02):24-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700