用户名: 密码: 验证码:
聚合物光波导的受激辐射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物材料具有荧光量子效率高、受激发射截面大、吸收光谱与发射光谱交叠区小、制备工艺简单等特点,是非常理想的激光增益介质。近年来,聚合物激光已经成为有机发光领域引人注目的研究方向。然而,实现注入式电泵浦激光器仍然是巨大的挑战。针对聚合物材料的受激辐射阈值较高、金属电极引起光学损耗较大等问题,本论文研究了以共轭聚合物MEH-PPV光波导作为增益介质,围绕着如何降低聚合物光波导的放大的自发辐射(ASE)阈值、减少金属电极损耗、基于聚合物受激辐射进行电场调制应用等方面开展了以下几个方面的工作:
     1.利用溶剂蒸汽处理、电场生长和纳米掺杂对薄膜形貌、内部分子结构和波导中分布反馈进行了改善,有效地降低了聚合物光波导的受激辐射阈值。
     (1)利用不同溶剂蒸汽对聚合物薄膜进行处理改善聚合物薄膜的形貌。研究结果表明,溶剂蒸汽改变了有机溶剂的蒸发速率和聚合物分子自组装,薄膜的表面粗糙度明显降低,大约降低了一倍。从薄膜的AFM图中可知,氯仿的作用更为明显,薄膜表面粗糙度变低,光在MEH-PPV波导中的传播损耗降低,薄膜的受激辐射阈值更低,增益更高。
     (2)利用垂直电场下制备聚合物薄膜改变薄膜内部分子排列。在旋涂过程中,合适电场作用下聚合物分子产生了取向,使聚合物分子链沿水平方向定向排列,减小了光子在链间的传输损耗,提高了净增益系数,受激辐射阈值降低了21%,使电场作用下制备的MEH-PPV薄膜更容易实现受激辐射。
     (3)掺入适量的TiO2纳米颗粒到MEH-PPV薄膜中有利于薄膜的受激发射光在纳米颗粒间形成随机谐振腔,出现随机激光。增加了单位长度的增益,提高了增益系数,降低了激射阈值。
     2.选取不同的金属作为电极,探究金属电极影响聚合物光波导受激辐射的因素。
     (1)研究了以金属银作为衬底的聚合物光波导受激辐射特性。研究发现,Ag电极对受激辐射有猝灭作用,该结构的受激辐射阈值比没有金属电极衬底的聚合物薄膜高6.5倍。研究结果表明聚合物的厚度对受激辐射的影响很大。当聚合物薄膜的厚度较低时,金属电极对发光猝灭很严重,但随着MEH-PPV薄膜厚度增加,猝灭现象减弱。由此可知在发光层与金属电极附近光生激子的猝灭影响了受激辐射。
     (2)研究了不同金属电极对聚合物光波导受激辐射的影响。当以高折射率的Al金属作为电极时,光谱窄化的现象完全消失,受激辐射被Al电极猝灭。当电极为低折射率的金属层Ag或Cu时,出现受激辐射现象。但由于金属电极对发光的吸收损耗,金属覆层聚合物光波导的受激辐射阈值增大。当在活性层和电极之间镀一层SiO2绝缘层时,高折射率的Al金属作为衬底的聚合物光波导的受激辐射现象复现。由于不同金属电极的对光的吸收系数不同,器件的受激辐射阈值不同。研究结果表明,折射率低、反射率高的Ag电极制备的聚合物光波导受激辐射器件的增益最高、阈值最低。
     3.设计了用MEH-PPV作为光功能层、以SiO2为辅助层,双电极包裹的光波导器件,研究了电场调制下ASE。
     (1)研究了器件ITO/SiO2/MEH-PPV/SiO2/Al在电场下的受激辐射的特性。研究显示,MEH-PPV发射光谱除了在620nm处出现受激辐射,在580nm处出现明显的自发辐射肩峰。在电场作用下,受激辐射和自发辐射的电场猝灭现象出现,原因是在电场的作用下,激子离化的作用使发光强度降低。相比之下,受激辐射比自发辐射在电场下猝灭更为明显。我们通过理论分析,给出了自发辐射与放大自发辐射和电场强度的关系。此机制可用于电场调制光放大器。
     (2)研究了在不同厚度SiO2包覆的MEH-PPV光波导的受激辐射特性。随着SiO2层厚度的增加,MEH-PPV光波导的受激辐射发射强度增强。研究表明,SiO2包裹层从50nm增加到100nm, MEH-PPV光波导的有效折射率提高,100nm厚的SiO2包裹层的器件的受激辐射阈值比50nm厚的SiO2包裹层的器件降低了2.5倍。
     (3)基于上述的研究结果优化了电场调制聚合物受激辐射的器件结构,以折射率低、反射率高的Ag作为电极。研究结果表明Ag电极降低了光波导传播损耗。在高电场的作用下,激子离化显现,受激辐射发光强度几乎完全猝灭。
Conjugated polymers are attractive laser gain media materials due to their high photoluminescence efficiencies, large stimulated emission cross section, low fabrication cost and chemically tunable emission wavelength. This dissertation focuses on the study of the amplified spontaneous emission (ASE) characteristics of poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene](MEH-PPV) film in order to solve the high threshold and absorption loss from metallic cathode. Some innovative researches as following were carried out.
     1. Three ways to reduce threshold of ASE from polymer waveguide was studied. The threshold of ASE can be reduced by changing polymer film morphology, inducing orientation of polymer chains and making resonant feedback structure.
     (1) The enhancements of ASE from MEH-PPV have been achieved via solvent vapor treatment. Correlations between the morphology of the films and the optical performance of polymer-based ASE are investigated. The results show that solvent-vapor treatment can induce self-organization of MEH-PPV into an ordered structure and a smooth surface, leading to the enhanced optical gain. Thus the solvent-vapor treatment is a good method to improve the ASE optical properties of MEH-PPV.
     (2) An electric field is applied to induce the polarization of MEH-PPV molecule during the process of spin-coating, which cause the orientation of the MEH-PPV chains. The orientated thin film shows lower threshold and higher gain than the normal thin films.
     (3) ASE from composition of MEH-PPV and TiO2nanocrystals was observed. The role of TiO2nanoparticles plays resonant feedback in improving performance of amplified spontaneous emission.
     2. The effect of metallic cladding on amplified spontaneous emission of MEH-PPV films was studied. The low optical loss metallic cathode was picked out.
     (1) Amplified spontaneous emission from an Ag-backed MEH-PPV film controlled by the effect of MEH-PPV film thickness was investigated. The study of ASE characteristics of Ag-backed MEH-PPV films with different thicknesses shows that increasing the film thickness can reduce the quenching which happened in area near to the Ag cladding.
     (2) The effect of metallic cladding on amplified spontaneous. emission of MEH-PPV films was studied. The results showed that the metallic layer is critical for the ASE of MEH-PPV. The ASE threshold of MEH-PPV films with Ag cladding is11times greater than that of sample without Ag cladding layer. Furthermore, ASE from the samples with Al cladding completely vanishes. ASE recurred when a thin spacer layer, such as a few nanometers of SiO2, is introduced between the MEH-PPV film and the Al cladding. Compared with the Cu or Al electrode, the Ag is most suited as low loss electrode with due to its low refractive index and high reflectivity.
     3. Electric-field modulation of the ASE in waveguide based on MEH-PPV was studied.
     (1) The electric-field induced quenching of the ASE at620nm and the spontaneous emission (SE) at580nm was observed which increased. The quenching increases with the rising electric field. The ASE intensity was more effectively quenched than the SE intensity as the field increased. The field dependence of the ASE and the SE intensity can be attributed to field-induced dissociation of photogenerated excitons in the MEH-PPV thin film.
     (2) ASE from MEH-PPV waveguide with different thickness of SiO2cladding was investigated. Availability refractive index of MEH-PPV waveguide increases with the rising thickness of SiO2cladding. The study of ASE characteristics of MEH-PPV films with different thicknesses SiO2cladding shows that increasing film thickness can reduce lasing threshold of polymer film.
     (3) ASE in optically pumped MEH-PPV waveguides with Al or Ag electrode was investigated. The results show that Ag electrode can reduce the ASE threshold compared with Al. The electric-field induced quenching of the ASE has been observed. When the electric field reaches8×106V/cm, the ASE intensity in the device with the Ag electrode is nearly shut off.
引文
[1]H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene, (CH)x, Chem. Commun.,1977,16:578-580.
    [2]C. K. Chiang, J. C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett.,1977,39:1098-1101.
    [3]J. H. Burroufhes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes. Light-emitting diodes based on conjugated polymers, Nature,1990, 347:539-541.
    [4]E. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, P. Qibing, A. J. Heeger, Semiconducting Polymers:A new class of solid-state laser materials. Science,1996: 273-1833.
    [5]C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett.,1987,51: 913-915
    [6]R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D.A. Dos Santos, J. L. Brddas, M. Lrgdlund, and W. R. Salaneck, Electroluminescence in conjugated polymers, Nature,1999,397:121-128.
    [7]C. D. Dimitrakopoulos, P. R. L. Malenfant, Organic thin film transistorsfor large area electronics[J], Adv. Mater,2002,14:99-117
    [8]H. E. Katz, Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics, Chem. Mater.,2004,16 (23):4748-4756.
    [9]D. Wohrle, D. Meissner, Organic solar cells, Adv. Mater,2004,3:129-138
    [10]X Liu, H Li, C Song, Y Liao, M Tian, Microcavity organic laser device under electrical pumping, Opt. Lett,2009,34:503-505.
    [11]M. T. Bernius, M. lnbasekaran, J. O. Brien, W. S. Wu, Progress with light-emitting polymers, Adv. Mater.,2000,12:1737-1750.
    [12]A. Babel, S. A. Jenekhe, Electron transport in thin-film transistors from an n-type conjugated polymer, Adv. Mater.,2002,14:371-374.
    [13]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science,2002, 295:2425-2427.
    [14]A. G. MacDiarmid, A novle role for organic polymers[J] Rev. Mod. Phys,2001,73:701-712
    [15]A.L. Heeger, semiconducting and metallic polymers:the fourth generation of polymeric materials, Rev. Mod. Phys,2001,73:681-700
    [16]Y. Yang, G. A. Turnbull, I. D. W. Samuel, Hybrid optoelectronics:A polymer laser pumped by a nitride light-emitting diode, Appl.Phys. Lett,2008,92:163306
    [17]T. H. Maiman, Stimulated optical radiation in ruby, Nature,1960,187:493-494
    [18]M. Hewish, Janes International Defense Review, August,2000,34
    [19]C. Strohm, Inside Missile Defense, Novemberl,2000,5
    [20]T. G. Pavlopoulos, Prog. Quantum Electron.2002,26,193.
    [21]S. Yanagida, Y. Hasegawa, K. Murakoshi, Y. Wasa, N. Nakashima, T. Yamanaka, Strategies for enhancing photoluminescence of Nd3+ in liquid media, Coord. Chem.Rev.,1998,171: 461-480.
    [22]N. G Basov, Semiconductor Laser,1964,89:104.
    [23]D Moses, High quantum efficiency luminescence from a conducting polymer in solution:A novel polymer laser dye, Appl. Phys. Lett,1992,60(26):3215-3216.
    [24]M. D. McGehee, A. J. Heeger, semiconducting (conjugated) polymers as materials for solid-state lasers, Adv. Mater,2000,12:1655-1665.
    [25]F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, A. J. Heeger, Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals, Chem. Phys. Lett., 1996,256:424-430
    [26]N. D. Kumar, J. D. Bhawalkar, P. N. Prasad, Solid-state tunable cavity lasing in a poly(para-phenylenevinylene)derivative alternating block co-polymer, Appl. Phys. Lett,1997, 71:999-1001.
    [27]V. G. Kozlov, V. Bulovic, Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature,1997,389:362-365.
    [28]R. Xia, G. Heliotis, Y. Hou, D. D.C. Bradley, Fluorene-based conjugated polymer optical gain media, Organic Electronics,2003,4:165-177.
    [29]田苗苗,电泵浦有机半导体激光器及其特性研究,长春,中国科学院研究生院,2010,1:1-26.
    [30]高瑞,聚合物薄膜受激辐射特性的研究,北京,北京交通大学.2007.1,5.
    [31]于丹,DFB结构聚合物薄膜受激辐射特性的研究,北京,北京交通大学,2008,1,4.
    [32]A J. Heeger, N. S. Sarichiftci, E. B. Namdas, Semiconducting and metallic polymers, Cxford Univerisity Press,2010,11:171-193.
    [33]B. K. Yap, R. Xia, M. Campoy-Quiles, P. Stavrinou, D. D. C. Bradley, Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films, nature materials,2008,7:376-380.
    [34]A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, Low threshold edge emitting polymer distributed feedback laser based on a square lattice, Appl. Phys. Lett.,2005,86:161102.
    [35]G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, Operating characteristics of a traveling-wave semiconducting polymer optical amplifier, Appl. Phys. Lett.,2004,85:6122
    [36]D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer, Adv. Mater.2009, 21:107-110
    [37]N. Liu, A. Ruseckas, N. A. Montgomery, I. D. W. Samuel, and G. A. Turnbull, Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers, Opt. Express.,2009,17(24): 21452-21458
    [38]S. Perissinotto, G Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, Ultrafast optical switching in distributed feedback polymer laser, Appl. Phys. Lett.,2007,91:191108.
    [39]V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, and P. N. Prasad, High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures, Opt. Express.,2005,13:3787-3794
    [40]V Navarro-Fuster, E. M. Calzado, P. G Boj, J. A. Quintana, J. M. Villalvilla, M. A. Diaz-Garcia, V Trabadelo, A Juarros, A Retolaza, and S. Merino, Highly photostable organic distributed feedback laser emitting at 573 nm, Appl. Phys. Lett.,2010,97:171104
    [41]S. Richardson, O. P. M. Gaudin, G A. Turnbull, and I. D. W. Samuel, Improved operational lifetime of semiconducting polymer lasers by encapsulation, Appl. Phys. Lett.,2007,91: 261104
    [42]M. Campoy-Quiles, G Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchgoin, D.D.C Bradley, Ellipsometric characterization of the optical constants of polyfluorene gain media, Adv. Funct. Mater.,2005,15:925-933
    [43]M. Reufer, S. Riechel, J. M. Lupton, J. Feldmann, U. Lemmer, D. Schneider, T. Benstem, T. Dobbertin, W. Kowalsky, A. Gombert, K. Forberich, M. Wittwer, and U. Scherf, Low-threshold polymeric distributed feedback lasers with metallic contacts, Appl. Phys. Lett.,2004,84:3262
    [44]S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition, Appl. Phys. Lett.,2006,89:031108.
    [45]B. T. de Villers, B. J. Schwartz, Destruction of amplified spontaneous emission via chemical doping at low-work-function metal/conjugated polymer interfaces, Appl. Phys. Lett.,2007,90: 091106.
    [46]X. Zhao, Z. Wu, S. Ning, S. Liang, D. Wang, X. Hou, Random lasing from granular surface of waveguide with blends of PS and PMMA, Opt. Express.,19(17):16126-16131
    [47]E. Mele, A. Camposeo, R. Stabile, P. Del Cairo, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, Polymeric distributed feedback lasers by room-temperature nanoimprint lithography, Appl. Phys. Lett.,2006,89:131109
    [48]G Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, Blue, surface-emitting, distributed feedback polyfluorene lasers,2003,83(11):2118
    [49]G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser, Phys. Rev. B,2001,64:25122
    [50]R. J. Lawrence, GA. Turnbull, I. D. W. Samuel, G. J. Richards, Optical amplification in a first-generation dendritic organic semiconductor,Opt. Lett.,2004,29:869-871
    [51]R. Xia, G. Heliotis, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, Characterization of a high-thermal-stability spiroanthracenefluorene-based blue-light-emitting polymer optical gain medium, J. Appl. Phys.,2005,98:083101.
    [52]A. G. MacDiarmid, A novle role for organic polymers, Rev. Mod. Phys.,2001,73:701-712.
    [53]师全民,聚合物半导体中激子离化及电荷输运特性研究,北京.北京交通大学.2009.
    [54]T. Ito, H. Shirakawa., S. Ikeda, Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-Type catalyst solution, J. Polym. Sc. Polym. Chem,1974,12:11-20
    [55]C. K. Chiang, H. Shirakawa, C. R. Frincher, Electrical conductivity in dope polyacetylene, Phys. Rev. Lett,1977,39:1098-1101.
    [56]J. H. Schon, S. Berg, C. H. Kloc, Ambipolar pentacene field-effect transistors and inverters, Science,2000,287:1022-1023
    [57]J. H. Schon, Ch. Kloc, A. Dodabalapur, B Batlogg, An organic solid state injection laser, Science,2000,289:599-601.
    [58]J. H. Schon, H. Meng, Z. Bao, Self-assembled monolayer organic field-effect transistors, Nature, 2001,413:713-716.
    [59]黄春辉,李富友,黄维,有机电致发光材料与器件导论,复旦大学出版社,2005,2,14-19
    [60]H. Haken and H. Wolf, Molekulphysik und Quantenchemie, Berlin, Springer Verlag,1998.
    [61]S. Richardson, The fabrication and lithography of conjugated polymer distributed feedback lasers and development of their applications, St. Andrews, Astronomy at the University of St. Andrews,2007.2,19
    [62]N. Tessler, Lasers based on semiconducting organic materials, Adv. Mater,1999,11:363-370.
    [63]吴世康,汪鹏飞,有机电子学概论,北京,化学工业出版社,2010,10:273-305.
    [64]凌云,有机聚合物光波导的研制.南京.东南大学.2005.14,16.(凌云,张彤,崔一平,有机聚合物光波导的研制,电子器件,2005,28:265-267.
    [65]方俊鑫,曹庄琪,杨傅子,光波导技术物理基础,上海,上海交通大学出版社,1987
    [66]范崇澄,彭吉虎,导波光学,北京,北京理工大学出版社,1988
    [67]吴重庆,光波导导论,清华大学出版社,2000
    [68]S. Tasch, G. Kranzelbinder, G. Leising, Electric-field-induced luminescence quenching in an electroluminescent organic semiconductor, Phys. Rev. B,1997,55:5079-5083.
    [69]J. Kalinowski, W. Stampor, P. G. Di Marco, Electromodulation of fluorescence in a crystalline organic photoconductor (thionaphthenindole), J. Chem. Phys.,1992,96:4136-4148.
    [70]M. C. Vissenberg, M. J. de Jong, Theory of exciton migration and field-induced dissociation in conjugated polymers, Phys. Rew. B,1998,61:2134.
    [71]李云白,滕枫,徐征,侯延冰,徐叙瑢,聚烷基芴电场调制光谱研究,光谱学与光谱分析,2005,25:1030-1033
    [72]Y. Hou, M. Koeberg, D. D. C. Bradley, Electric field-induced quenching of photoluminescence in a blend of electron and hole transporting polyfluorene, Synth. Met.,2003,139:859-862.
    [73]J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, J. A. G. Williams, Evidence for electric field dependent dissociation of exciplexes in electron donor-acceptor organic solid films, Chem. Phys. Lett.,2006,432:110-115.
    [74]J. Kalinowski, W. Stampor, P. J. Di Marco, Electromodulation of Luminescence in Organic Photoconductors, J. ElectrOchem. SOc.,1996,143:315-325.
    [75]Z. Yang, H. J. Geise, M. Mehbod, G. Debrue, J.W. Visser, E.J. Sonneveld, L. Van't dack, R. Gijbels, Conductivity and electron density of undoped model compounds of poly(phenylene vinylene), Synth, met.,1990,39(2):137-151.
    [76]G H. Gelinck and J. M. Warman, Narrow-band emissions from conjugated-polymer films, Chem, Phys. Lett.,1997.265(3-5):320-326.
    [77]Z. Yang, H. J. Geise. Midcibility of poly(para-phenylene vinylene) model compounds with PMMA studied by solid-state NMR. Synth. Met.,1992,47 (2):239-253.
    [78]K. Sandros, M. Sundahl, O. Wennerstrom and U. Norinder, J. Am. Chem. Soc., Cis-trans pheotoisomerization of a P-styrylstilbene, a one- and twofold adiabatic process.1990,112(8): 3082-3086.
    [79]K. Sandros, M. Sundahl, O. Wennerstrom, J. Phys. Chem., Singlet-state diabatic and adiabatic cris-trans photoisomerizations of 4,4'-bis(3.5-di-tert-butylstyryl)stilbenes.1993,97(20): 5291-5294.
    [80]D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch and E. Sternhuber. Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J. Phys. Chem. B.,1998,102(11):1902-1907.
    [81]X. Y. Wang, Y. M. Xu, Calculation of optical parameter of MEH-PPV Film, Acta. Photoniea. Sinica.,2005,34:746-749.
    [82]高瑞,侯延冰,于丹,滕枫MEH-PPV薄膜的放大自发发射特性,发光学报,2008,29(1):71-74.
    [83]H. M. Gibbs, Q. H. F. Vrehen, H. M. J. Hikspoors. Single-Pulse Superfluoresccmcc in Cesium Phys. Rev. Lett.,1977,39(9):547-550.
    [84]G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, Blue, surface-emitting, distributed feedback polyfluorene lasers, Appl. Phys. Lett. 2003,83(11):2118-2120.
    [85]R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, Fluorene-based conjugated polymer optical gain media, Org. Electron,2003,4(2-3):165-177.
    [86]I. D. W. Samuel, and G. A. Turnbull, Polymer lasers:recent advances, Mater. Today 2004,7(9): 28-35.
    [87]R. Xia, G. Heliotis, P. N. Stavrinou, and D. D. C. Bradley, Polyfluorene distributed feedback lasers operating in the green-yellow spectral region, Appl. Phys. Lett.,2005,87(3):031104.
    [88]I. D. W. Samuel and G. A. Turnbull, Organic semiconductor lasers, Chem. Rev.,2007, 107(4):1272-1285.
    [89]A. K. Sheridan, G. A. Turnbull, A. N. Safonov, and I. D. W. Samuel, Tuneability of amplified spontaneous emission through control of the waveguide-mode structure in conjugated polymer films, Phys. Rev. B 2000,62(18), R11929-R11932
    [90]A. Mahfouda, A. Sarangana, T. R. Nelsonb, and E. A. Blubaugh, Role of aggregation in the amplified spontaneous emission of poly [2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] in solution and films, J. Lumin.,2006,118(2):123-130
    [91]A. Mahfoud, and A. Sarangan, Optically pumped photonic crystal polymer lasers based on poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene], Opt. Express.,2005,13(8): 3136-3143.
    [92]B. Wallikewitz, M. Rosa, J. Kremer, D. Hertel, and Klaus Meerholz, A Lasing Organic Light-Emitting Diode, Adv. Mater.,2009,21:1-4.
    [93]G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organizationof polymer blends, Nat. Mater.,2005,4:864-868.
    [94]P. Vanlaeke, G Vanhoyland, T. Aemouts, D. Cheyns, C. Deibel, J. Manca, P. Heremans, J. Poortmans, Polythiophene based bulk heterojunction solar cells:Morphology and its implications, Thin Solid Films,2006,511:358-361.
    [95]V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, Origin of the enhanced performance in poly(3-hexylthiophene):methanofullerene solar cells using slow drying, Appl. Phys. Lett.,2006,89:012107.
    [96]S. E. Shaheen, C. J. Brabec, N. S. Sadciftci, F. Padinger, T. Fromherz, J. C. Hummelen,3.5% efficient organic plastic solar cell, Appl. Phys. Lett.,2001,78:841-843.
    [97]C. F. Liang, J. D. White, Y. F. Huang, W. Fann, Solvent mediated enhanced mobility of PPV films cast under the presence of a static electric field, Chem. Phys. Lett.,2007,450,61-64.
    [98]Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene, Appl. Phys. Lett.,2005,86:063502.
    [99]Y. Zhao, Z. Xie, Y. Qu, Y. Geng and L. Wang, Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells, Appl. Phys. Lett.,2007,90:043504.
    [100]Z. Feng, Y. Hou, Q. Shi, X. Liu, and F. Teng, Effect of slow-solvent-vapour treatment on performance of polymer photovoltaic devices, Chin. Phys. B,2010,19:098601.
    [101]B. Zhang, Y. Hou, F. Teng, Z. Lou, X. Liu, B. Hu, W. Wu, Solvent-vapour treatment of the induced performance enhancement of amplified spontaneous emission based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene], Chin. Phys. B,2011, 20:054208.
    [102]H. Jin, Y. Hou, Q. Shi, X. Meng and F. Teng, Improving photovoltaic properties via electric-field-induced orientation of conjugated polymer, Solid State Commun.,2006, 140:555-558.
    [103]Q. M. Shi, Y. B. Hou, J. Lu, H. Jin, Y. B. Li, Y. Li, X. Sun, J. Liu, Enhancement of carriermobility in MEH-PPV film prepared under presence ofelectric field. Chem. Phys. Lett., 2006,425(4):353-355.
    [104]F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, A. J. Heeger, Semiconducting Polymers:A New Class of Solid-State Laser Materials, Science 1996,273: 1833-1836.
    [105]M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Diaz-Garcia, and A. J. Heeger, Amplified spontaneous emission from photopumped films of a conjugated polymer, Phys. Rev. B,1998,58:7035-7039.
    [106]F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, A. J. Heeger, Conjugated polymers as solid-state laser materials, Synth. Met.,1997,91:35-40.
    [107]C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Plastic Solar Cells, Adv. Funct. Mater.,2001,11: 15-26.
    [108]K. M. Coakley, and M. D. McGehee, Conjugated Polymer Photovoltaic Cells, Chem. Mater., 2004,16:4533-4542.
    [109]Y. Zhao, X. Guo, Z. Xie, Y. Qu, Y. Geng, L. Wang, Solvent Vapor-Induced Self Assembly and its Influence on Optoelectronic Conversion of Poly(3-hexylthiophene):Methanofullerene Bulk Heterojunction Photovoltaic Cells, J. Appl. Polym. Sci.,2009,111,1799-1804.
    [110]T. W. Haggler, K. Pakbaz, J. Mouhon, F. Wudl, P. Smith, A. J. Heeger, Polym. Commun.,1991, 32,339.
    [111]D. Beljonne, Z. Shum, C. Comil, J. P. Calbert, J. L. Bredas, Journal of Photochemistry and Photobiology A:Chemistry 2001,144:57.
    [112]Z. Shuai, A. Ye, D. Beljonner, R. J. Silbey, J. L. Bredas, Synthe Met.,2001,121,1637.
    [113]Z. Shuai, D. Beljonner, R. Silbey, J. L. Bredas. Phys. Rev. Lett.,2000,84,131.
    [114]A. R. Inigo, C. C. Chang, W. Fann, J. D. White, Y. S. Huang, U. S. Jeng, H. S. Sheu, K. Y. Peng, S. A. Chen, Enhanced hole mobility in poly (2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylenevinylene) by elimination of nanometer-sized domains, Adv. Mater.,2005,17:1835-1838.
    [115]G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, Photonic mode dispersion of a two-dimensional distributed feedback polymer laser, Phys. Rev. B,2003,67:165107.
    [116]R. Gupta, M. Stevenson, A. J. Heeger, Low threshold distributed feedback lasers fabricated from blends of conjugated polymers:Reduced losses through Forster transfer, Appl. Phys. Lett.,2002,92:4874-4877.
    [117]S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure, Appl. Phys. B:Lasers Opt.,2000,77:2310-2312.
    [118]G A. Turnbull, A. Carleton, G F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, I. D. W. Samuel, Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers, J. Appl. Phys.,2005,98:023105.
    [119]G.Heliotis,R. Xia,G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, D. D. C. Bradley, Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One- and Two-Dimensional Distributed Feedback, Adv. Funct. Mater.,2004,14:91-97.
    [120]G Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, H. H. Horhold, Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene), Appl. Phys. Lett.,2002,80:716-718.
    [121]J. A. Rogers, M. Meier, A. Dodabalapur, Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers, Appl. Phys. Lett.,1998, 73:1766-1768.
    [122]S. Chenais, S. Forget, Recent advances in solid-state organic lasers, Polymer International, 2012,61:390-406.
    [123]M. Meier, A. Dodabalapur, J. A. Rodgers, R. E. Slusher, A. Mekis, A. Timko, C. A. Murray, R. Ruel, and O. Nalamasu, Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding, J. Appl. Phys.,1999,86:3502-3507.
    [124]W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Brauer, E.B. Kley, H. Tillmann, C. Bader and H. H. Horhold, Corrugated neat thin-film conjugated polymer distributed-feedback lasers, Appl. Phys. B,2002,74:333-342.
    [125]P. K. H. Ho, D. Stephen, Thomas, R. H. Friend, N. Tessler, All-Polymer Optoelectronic Devices, Science,1999,285:233-236.
    [126]V. G Kozlov, G Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations, IEEE J. Quantum Electron.,2000,36:18-26.
    [127]M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, Organic solid-state distributed feedback dye laser with a nonmorphological modification grating, Appl. Phys. Lett.,2000,77:2641-2643.
    [128]G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, Operating characteristics of a semiconducting polymer laser pumped by a microchip laser, Appl. Phys. Lett.,2003,82: 313-315.
    [129]A. E. Vasdekis, G. Tsiminis, J. C. Ribierre, Liam O' Faolain, T. F. Krauss, G. A. Turnbull and I. D. W. Samuel, Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend, opt. express,2006,20:9211-9216.
    [130]N. M. Lawandy, R. M. Balachandran, A. S. Gomes, E. Sauvain, Laser action in strongly scattering media, Nature,1994,368(31):436-438.
    [131]H. cao, Y. G Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Random laser action in semiconductor powder, Phys. Rev. Lett.,1999,82(11):2278-2281.
    [132]H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, Photon statistics of random lasers with resonant feedback, Phys. Rev. Lett.,2001,86(20):4524-4527.
    [133]D.S. Wiersma, M.P. Van Albada, A. Lagendijk, Random laser?, Nature,1995,373:203-204.
    [134]D. S. Wiersma, The physics and applications of random lasers, Nat. Phys.,2008,4:359-367.
    [135]S. Gottardo, S. Cavalieri, O.Yaroshchuk,1,3 and D. S. Wiersma, Quasi-Two-Dimensional Diffusive Random Laser Action, Phys. Rev. Lett.,2004,93:263901.
    [136]D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, S. H. Anastasiadis, Random laser action in organic-inorganic nanocomposites, J. Opt. Soc. Am. B,2004,21(1):208-213.
    [137]R. C. Polson, and Z. V. Vardeny, Organic random lasers in the weak-scattering regime, Phys. Rev. B,2005,71:045205.
    [138]O. Popov, A. Zilbershtein, and D. Davidov, Random lasing from dye-gold nanoparticles in polymer films:Enhanced gain at the surface-plasmon-resonance wavelength, Appl. Phys. Lett., 2006,89:191116.
    [139]A. Tulek, R. C. Polson, and Z. V. Vardeny, Naturally occurring resonators in random lasing of π-conjugated polymer films, Nature Physics,2010,6:303-310.
    [140]X. Zhao, Z. Wu, S. Ning, S. Liang, D. Wang, X. Hou, Random lasing from granular surface of waveguide with blends of PS and PMMA, Opt. Express,2011,19(17):16126-16113
    [141]V. M. Markushev, N. E. Ter-Gabrielyan, M. Briskina Ch, V. R. Belan, and V. F. Z. Sov, Stimulated emission kinetics of neodymium powder lasers, J. Quantum Electron,1990, 20(7):773-777.
    [142]T. Takahashi, T. Nakamura, and S. Adachi, Blue-light-emitting ZnSe random laser, Opt. Lett., 2009,34(24):3923-3925.
    [143]G. Zacharakis, N. A. Papadogiannis, and T. G Papazoglou, Random lasing following two-photon excitation of highly scattering gain media, Appl. Phys. Lett.,2002, 81(14):2511-2513.
    [144]E. Pecoraro, S. Garcia-Revilla, R. A. S. Ferreira, R. Balda, L. D. Carlos, and J. Fernandez, Real time random laser properties of Rhodamine-doped di-ureasil hybrids, Opt. Express,2010, 18(7):7470-7478.
    [145]S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. A. Zakhidov, and R. H. Baughman, Stimulated emission in high gain organic media, Phys. Rev. B,1999,59(8), R5284-R5287.
    [146]A. C. Vutha, S. K. Tiwari, and R. K. Thareja, Random laser action in ZnO doped polymer, J. Appl. Phys.,2006,99:123509.
    [147]R. C. Polson, A. Chipoline, and Z. V. Vardeny, Random lasing in π-conjugated films and infiltrated opals, Adv. Mater. (Deerfield Beach Fla.),2001,13(10):760-764.
    [148]R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, Laser action in polymeric gain media containing scattering particles, Appl. Opt.,1996,35(4):640-643.
    [149]A. Tulek, R. C. Polson, and Z. V. Vardeny, Naturally occurring resonators in random lasing of π-conjugated polymer films, Nat. Phys.2010,6(4):303-310.
    [150]M. N. Shkunov, M. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, Photonic versus random lasing in opal single crystals, Synth. Met.,2001,116, 485-491.
    [151]D. S. Wiersma and S. Cavalieri, Light emission:A temperature-tunable random laser, Nature, 2001,414(6865):708-709.
    [152]C. Bouvy, E. Chelnokov, R. Zhao, W. Marine, R. Sporken, and B.L. Su, Random laser action of ZnO mesoporous silicas, Nano.Technol.,2008,19:105710.
    [153]C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets, Opt. Express,2010,18(3):2406-2412.
    [154]Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity, Opt. Lett.,2009,34(3):298-300.
    [155]Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, Colloidal quantum dot random laser, Opt. Express,2011,19(4):2996-3003.
    [156]D. S. Wiersma, "The smallest random laser," Nature,2000,406(6792):132-135.
    [157]V. M. Apalkov, M. E. Raith, and B. Shapiro, Random resonators and prelocalized modes in disordered dielectric films, Phys. Rev. Lett.2002,89(1):016802.
    [158]D. S. Wiersma, The physics and applications of random lasers, Nat. Phys.,2008,4(5): 359-367.
    [159]Q. Song, S. Xiao, Z. Xu, V. M. Shalaev, and Y. L. Kim, Random laser spectroscopy for nanoscale perturbation sensing, Opt. Lett.,2010,35(15):2624-2626.
    [160]V. S. Letokhov, Sov. Phys. JETP,1968,26,835-838.
    [161]刘俊业,刘春旭,张立功,黄宗浩,关宏宇,张家骅,许武,含纳米随机微腔MEH-PPV/玻璃光波导激光,发光学报,2001,22:405-408.
    [162]C. Liu, J. Liu, J. Zhang, K. Dou, Random lasing with scatterers of diameters 20 nmin an active medium, Opt. Commun.,2005,244:299-303.
    [163]何本桥,廖青,黄勇,胆甾型液晶溶液膜中的随机激光,中国激光,2008,35(10):1477-1480.
    [164]R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas,M. Logdlund, W. R. Salaneck, Electroluminescence in conjugated polymers, Nature,1999,397:121-128.
    [165]J. Zaumseil, R. H. Friend, H. Sirringhaus, Spatial control of the recombination zone in an ambipolar light-emitting organic transistor, Nat. Mater.,2006,5:69-74.
    [166]J. S. Swensen, C. Soci, A. J. Heeger, Light emission from an ambipolar semiconducting polymer field-effect transistor, Appl. Phys. Lett.,2005,87:253511.
    [167]J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, H. Sirringhaus, Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene, Adv. Mater.,2006,18:2708-2712.
    [168]E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, A. J. Heeger, Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting:Progress Toward Electrically Pumped Plastic Lasers, Adv. Mater.,2009, 21:799-802.
    [169]I. D. Parker, Carrier tunneling and device characteristics in polymer lightemitting diodes,J. Appl. Phys.,1994,75,1656-1666.
    [170]H. Razafitrimo, E. Ettedgui, L.H. Guo, G. L. McLendon, Y. Gao, Xray photoemission study of the interface formation between calcium and selfassembled alkanethiol monolayers,Appl. Phys. Lett.,1995,67:2621-2623.
    [171]L. S. Hung, C. W. Tang, and M. G. Mason,Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Appl. Phys. Lett.,1997,70:152-154.
    [172]P. W. M. Blom, M. J. M. de Jong, M. G. van Munster, Electric-field and temperature dependence of the hole mobility in poly.p-phenylene vinylene, Phys. Rev. B, 1997,55:R656-R659.
    [173]D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett.,1991,58,1982-1984.
    [174]D. D. C. Bradley, Elctroluminescence:A bright future for conjugated polymers, Adv. Mater., 1992,4:756-758.
    [175]A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burns, A. B. Holmes, A. Kraft, Poly(p-phenylenevinylene) light-emitting diodes:Enhanced electroluminescent efficiency through charge carrier confinement, Appl. Phys. Lett.,1992, 61:2793-2795.
    [176]M. G. Mason, C. W. Tang, L. S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S. T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, J. L. Br6das, Interfacial chemistry of Alq3 and LiF with reactive metals, J. Appl. Phys.,2001,89:2756-2765.
    [177]G E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices, Appl. Phys. Lett.,1998,73:1185-1187.
    [178]T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy, Appl. Phys. Lett.,1998,73:2763-2765.
    [179]Q. T. Le, L. Yan, Y. Gao, M. G. Mason, D. J. Giesen, C. W. Tang, Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces, J. Appl. Phys.,2000,87:375-379.
    [180]P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, P. J. Brock, Role of CsF on electron injection into a conjugated polymer, Appl. Phys. Lett.,2000,77:2403-2405.
    [181]P. Broms, J. Birgersson, N. Johansson, M. Loglund, W. R. Salaneck, Calcium electrodes in polymer LEDs, Synth. Met.,1995,74:179-181.
    [182]X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J. Bredas, Characterization of the Interface Dipole at Organic/Metal Interfaces, J. Am. Chem. Soc.,2002, 124 (27):8131-8141.
    [183]Y. Gao, K. T. Park, and B. R. Hsieh, Interface formation of Ca with poly(pphenylene vinylene), J. Appl. Phys.,1993,73:7894-7899.
    [184]V. E. Choong, Y. Park, Y. Gaol, M. G. Mason, C. W. Tang, Photoluminescence quenching of Alq3 by metal deposition:A surface analytical investigation, J. Vacu. Sci. Tech. A,1998, 16:1838-1841.
    [185]V. E. Choong, Y. Park, Y. Gao, B. R. Hsieh, and C. W. Tang, Effects of Al, Ag, and Ca on luminescence of organic materials, J. Vac. Sci. Technol. A.,1997,15:1745-1749.
    [186]H. Becker, A. Lux, A. B. Holmes, R. H. Friend, PL and EL quenching due to thin metal films in conjugated polymers and polymer LEDs, Synth. Met.,1997,85:1289-1290
    [187]J. M. Bharathan, Y. Yang, Polymer/metal interfaces and the performance of polymer light-emitting diodes, J. Appl. Phys.,1998,84:3207-3211.
    [188]R. Lazzaroni, M. Logdlund, A. Calderone, J.L. Bredas, P. Dannetun, C. Fauquet, C. Frederiksson, S. Strafstrom, and W. R. Salaneck, Chemical and electronic aspects of metal/conjugated polymer interfaces, Synth. Met.,1995,71:2159-2162.
    [189]W. R. Salaneck, J. BrPdas, The metal-on-polymer interface in polymer Light Emitting Diodes, Adv. Mnter.,1996,8:48-52.
    [190]Y. Wu, Y. C. Zhou, H. R. Wu, Y. Q. Zhan, J. Zhou, S. T. Zhang, J. M. Zhao, Z. J. Wang, X. M. Ding, and X. Y. Hou, Metal-induced photoluminescence quenching of tri-(8-hydroxyquinoline) aluminum, Appl. Phys. Lett.,2005,87:044104.
    [191]V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Mullen, B. R. Hsieh, and C. W. Tang, Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition, Appl. Phys. Lett.,1996,69:1492-1494.
    [192]V. Choong, Y. Park, N. Shivaparan, C. W. Tang, and Y. Gao, Deposition-induced photoluminescence quenching of tris-(8-hydroxyquinoline) aluminum, Appl. Phys. Lett.,1997, 71:1005-1007.
    [193]Y. Park, V. Choong, B. R. Hsieh, C. W. Tang, and Y. Gao, Gap-State Induced Photoluminescence Quenching of Phenylene Vinylene Oligomer and Its Recovery by Oxidation,Phys. Rev. Lett.,1997,78:3955-3958.
    [194]V. Choong, M. G. Mason, C. W. Tang, and Y. Gao, Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum, Appl. Phys. Lett.,1998, 72:2689-2691.
    [195]H. Becker, S. E. Burns, and R. H. Friend, Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers, Phys. Rev. B,1997,56:1893-1905.
    [196]M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, Cathode-induced luminescence quenching in polyfluorenes, J. Appl. Phys.,2000,87,4467-4475.
    [197]W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, Luminescence quenching of ordered π-conjugated molecules near a metal surface:Quaterthiophene and PTCDA on Ag(111), Phys. Rev. B,2004,69:155431.
    [198]M. Daffershofer, H. Port, and H. C. Wolf, Fluorescence quenching of ultrathin anthracene films by dielectric and metallic substrates, Chem. Phys.,1995,200:225-233.
    [199]A. L. Burin, M. A. Ratner, Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes, J. Phys. Chem. A.,1999,104:4704-4710.
    [200]R. R. Chance, A. Prock, R. Sibey, J. Phys. Chem.,1975:62:2245; R. R. Chance, A. Prock, R. Sibey, Adv. Phys. Chem.,1978,37:1.
    [201]D. Zhang, Z. Deng, Q. Wang, B. Li, S. Chen, Y. Wang, Y. Liu and D. Ma, Amplified spontaneous emission from an Ag-backed red-fluorescent-dye-doped polymer film, Appl. Opt. 2010,49:315-319.
    [202]B. Zhang, Y. Hou, T. Teng, Z. Lou, X. Liu, B. Hu, andW. Wu, Amplified spontaneous emission from metal-backed poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] film, Chin. Phys. B,2011,20(7):077803.
    [203]Y. M. Huang, F. Zhou, K. Xu, Low-temperature lasing action in a metal-backed monosubstituted polyacetylene, Appl. Phys. Lett.,2006,88:131112.
    [204]P. Andrew, G. A. Turnbull, I. D. W. Samuel, and W. L. Barnes, Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser, Appl. Phys. Lett.,2002,81:954
    [205]马春生,刘式墉,光波导模式理论,长春,吉林大学出版社,2007,3,86-90
    [206]E. D. Palik, Handbook of Optical Constants of Solids, New York, Academic Press,1985, 286-295.
    [207]M. Born and E. Wolf, Principles of optics:electromagnetic theory of propagation, interference and diffraction of light (seventh edition),1999,7:623
    [208]K. Forberichl, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, and K. Busch, Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback, J. Appl. Phys.,2006,100:023110.
    [209]G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films, Appl. Phys. Lett.,2005,87:103505
    [210]F. Lahoz, C. Oton, N. Capuj, M. Ferrer-Gonzalez, S. Cheylan, and D. Navarro-Urrios, Reduction of the amplified spontaneous emission threshold in semiconducting polymer waveguides on porous silica, Opt. Express,2009,17:16766-16775.
    [211]R. Xia, G. Heliotis, P. N. Stavrinou, and D. D. C. Bradley, Polyfluorene distributed feedback lasers operating in the green-yellow spectral region, Appl. Phys. Lett.,2005,87,031104.
    [212]J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, Flexible blue-emitting encapsulated organic semiconductor DFB laser, Opt. Express,2010,18:25535-25545.
    [213]S. Tasch, G Kranzelbinder, G. Leising, U. Scherf, Electric-field-induced luminescence quenching in an electroluminescent organic semiconductor, Phys. Rev. B,1997, 55:5079-5083.
    [214]R. Kersting, U. Lemmer, M. Deussen, H. J. Bakker, R. F. Mahrt, H. Kurz, V. I. Arkhipov, H. Bassler, E. O. Gobel, Ultrafast Field-Induced Dissociation of Excitons in Conjugated Polymers,Phys. Rev. Lett.73 (1994) 1440.
    [215]M. Deussen, M. Scheidler, H. Bassler, Electric field-induced photoluminescence quenching in thin-film light-emitting diodes based on poly(phenyl-p-phenylene vinylene)Synth. Met.,1995, 73:123-129.
    [216]J. Szmytkowski, W. Stampor, J. Kalinowski, Z. H. Kafafi, Electric field-assisted dissociation of singlet excitons in tris-(8-hydroxyquinolinato) aluminum (III), Appl. Phys. Lett.,2002, 80:1465-1467.
    [217]P. Dyreklev, O. Inganas, J. Paloheimo, H. Stubb, Photoluminescence quenching in a polymer thin film field effect luministor, Synth. Met.,1993,57:4139-4144
    [218]Y. Hou, X. Yang, Y. Li, X. Xu, Electric field induced quenching of photoluminescence of poly(N-vinylarbaole) (PVK) doped with dyes, Thin Solid Films,2000,363:248-251.
    [219]J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, Evidence for electric field dependent dissociation of exciplexes in electron donor-acceptor organic solid films, J. Appl. Phys.,2006,432:100-115.
    [220]M. Mizoguchi, N. Ohta, Fluorescence of an electron donor-acceptor system in a polymer film under the simultaneous application of electric field and magnetic field, Chem. Phys. Lett., 2003,372:66-72.
    [221]H. Jin, Y. Hou, X. Meng, F. Teng, Electric field-induced quenching of photoluminescence in the MEH-PPV:C60 composite thin film, Chem. Phys. Lett.,2007,443:374-377
    [222]M. Yan, L. J. Rothberg, E.W. Kwock, T. M. Miller, Interchain Excitations in Conjugated polymers, Phys. Rev. Lett.,1995,75:1992-1995.
    [223]M. Ariu, M. Sims, M. D. Rahn, J. Hill, A. M. Fox, D. G Lidzey, M. Oda, J. Cabanillas-Gonzalez, D. D. C. Bradley, Exciton migration in β-phase poly(9,9-dioctylfluorene), Phys. Rev. B,2002,67:195333
    [224]B. Zhang, Y. Hou, F. Teng, Z. Lou, X. Liu and Y. Wang, Electric field-modulated amplified spontaneous emission in waveguides based on poly [2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylene vinylene], Appl. Phys. Lett.,2010,96:103303.
    [225]A. Reisinger, Characteristics of Optical Guided Modes in Lossy Waveguides, Applied Optics, 1973,12:1015-1025
    [226]W. Dumke, The angular beam divergence in double-heterojunction lasers with very thin active regions, IEEE J, Quantum Electron,1975,11:400-402.
    [227]刘式墉,半导体集成光学,长春,吉林大学出版社,1986,1,30-36
    [228]C. S Ma, S. Y Liu, Effect of metal cladding thickness on guided-mode optical characteristics for metal-clad four-layer waveguides. Opt. Soc. Am. A.,1990,7:1577.
    [229]C. S. Ma, Coupling properties in periodic waveguides and in multiple quantum-well waveguides, IEEE J, Quantum Electron,1994,30:2811-2816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700