用户名: 密码: 验证码:
基于虚拟样机技术的70t级新型通用敞车抗疲劳设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随中国铁路跨越式发展战略的实施,铁路车辆制造行业先后推出了一系列提速、重载新产品。在这些新产品投入市场运用之后,疲劳断裂问题日益突出。因而在70t级新型通用敞车产品的开发过程中,如果还是以传统的静强度设计理念进行产品设计,必然会造成产品结构静强度有余,疲劳强度不足的现象,将会对产品运用中的可靠性带来严重的安全隐患。因此,基于虚拟样机技术对70t级新型通用敞车车体进行抗疲劳设计就具有重要的现实意义。
     本文在认真研究了虚拟样机技术的关键技术,也就是性能仿真技术的基础之上,对70t级新型通用敞车主要进行了以下几方面的研究工作:
     首先,根据70t级新型通用敞车的结构特点和技术参数,为该车车体建立了详细的有限元模型;依据TB/T1335-1996《铁道车辆强度设计及试验鉴定规范》对模型进行了细致的静强度分析、模态分析。根据静强度分析结果和结构的焊接形式,确定该车车体较易出现裂纹的部位。
     其次,根据有限元静强度分析结果,以AAR标准中各类载荷谱为依据,从而获得时间历程动态应力,然后以AAR标准中各类焊接接头材料特性曲线,再基于Miner损伤累积理论,对70t级新型通用敞车车体关键部位的焊缝位置进行了抗疲劳设计。
     最后,在样车制造后,根据其静强度试验结果同样用AAR标准的载荷谱,作疲劳寿命预测,并与根据有限元分析结果作出的寿命预测相对比,薄弱部位基本一致。说明基于虚拟样机技术的抗疲劳设计是有重要意义的,也是可行的。
     本文对70t级新型通用敞车的抗疲劳设计,对以后新产品的开发研究具有重要借鉴意义。由于疲劳寿命预测影响因素众多,疲劳理论还不是十分成熟,因此,焊接结构的疲劳寿命预测尤为困难。疲劳寿命预测真正价值体现在设计阶段的方案对比,通过疲劳寿命预测对比优选出最佳设计方案,同时,也能通过疲劳寿命预测结果找出结构中应该认真关注的部位。
With implementation of stride development strategy for China Railways, a series of heavy haul brand new products running at higher speed have been given birth to the market in railway industry. Since these new products put into service, the problem of fatigue breakage has become more prominent than before. Hence, for development of 70t new type general purpose use open top wagon, if the traditional static strength design philosophy were used for product design, it would inevitably result in much more static strength of the product structure available, but insufficient fatigue strength existing there, which would bring in the serious safety danger to the reliable service of the product. Therefore, it is of great significance in reality in carrying out anti-fatigue design on wagon body of 70t new type general purpose open top wagon based on virtual model machine technology.
     This paper presents the major research and study on 70t new type general purpose use open top wagon in the following aspects with careful study of key technical know-how of virtual model machine technology, that is to say, on the basis of performance simulation technology:
     At first, considering the structure feature and technical parameters of 70t new type general purpose use open top wagon, the detailed FEA model is established for the wagon body. Then the static strength analysis and modular analysis is done on the model in accordance with TB/T1335-1996“Strength Design and Test Accreditation Specification for Railway Rolling Stock”. The position of the wagon body for the crack more easily occurring is finalized on the basis of the result of static strength analysis and welding types for the structure.
     Secondly, the anti-fatigue design on the welding seam on the key position of wagon body for 70t new type general purpose use open top wagon is performed based on the results of finite element static strength analysis, as per various load spectrums in AAR standard and due dynamic stress vs time, then characteristic curve of various welding joints as described in AAR standard and Miner damage theory.
     Finally, upon completion of prototype wagon production, the fatigue life forecast is carried out with the result of the static strength test and the load spectrum in AAR standard, also in contrast with the life forecast with the result of FEA, which illustrates that weak position is basically the same as each other. It shows that it is greatly significant and feasible for anti-fatigue design on the basis of virtual model machine technology.
     Anti-fatigue design on 70t new type general purpose use open top wagon as described in this paper attaches great importance for the reference to research and development of future new product. As there are various factors affecting fatigue life forecast and fatigue theory is not so mature as expected, therefore, it has become more difficult to forecast the fatigue life for the welding structure. The true value for fatigue life forecast embodies the comparison of different schemes at design stage for the optimum design scheme is finalized through comparison of fatigue life forecasts; meanwhile, the position for concern in the structure is figured out with the result of fatigue life forecast.
引文
[1] FanDai, Wolfgang Felger, Martin Gobel. Applying Virtual Reality to Electronic Prototyping– Concept and First Results Virtual Prototyping :Virtual environments and the product design process [C]. ChapMan and Hall Press, 1995
    [2] Kerttula M, Salmela M, Heikkinen M. Virtual reality prototyping a framework for the development of electronics and telecommunications products [A]. Proceeedings of 8th IEEE International Workshop on Rapid System Prorotyping [C], 1997
    [3] Bloor M S, McKay A. Product and shape Representation for Virtual Prototyping [M]. Book of Vitual Prototyping :Virtual environments and the product design process, ChapMan and Hall Press, 1995
    [4] Defense Systems Management College. Virtual Prototyping: Concept to Production [M]. DSMC Press, 1994.
    [5] Council of SBA. A Roadmap for Simulation Based Design [Z],1998
    [6]美国铁路标准, AAR机务标准手册[S],美国:北美铁路协会,1999。
    [7]中华人民共和国铁道部标准,TB/T1335-1996铁道车辆强度设计及试验鉴定规范[S],北京:中华人民共和国铁道部,1996。
    [8]兆文忠等,货车典型结构有限元多媒体示范库研制[J],大连铁道学院学报,2000,03。
    [9]谢素明等,关于提高CAE性能仿真置信度的思考[J],系统仿真学报,2003,08。
    [10]熊光楞、郭斌等“协同仿真与虚拟样机技术”.清华大学出版社,2004
    [11]熊光楞、李伯虎,柴旭东.“虚拟样机技术”.系统仿真学报,2001,11(5)
    [12]刘宏增等编著.虚拟设计[M].机械工业出版社,1999.12
    [13]王克明,熊光楞等.基于产品信息重用的设计仿真协同技术研究[J].清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集,2002,3
    [14]王勖成,邵敏.有限元法基本原理和数值方法(第二版)[M].清华大学出版社,1997,3
    [15] 70t级新型通用敞车车体静强度试验报告.中国北车集团四方车辆研究所,2005,5。
    [16]兆文忠编著. I-DEAS系统基本原理讲义[M].大连铁道学院机械工程研究所CAD室,1994.4
    [17]施普尔·克劳舍.虚拟产品开发技术[M].北京:机械工业出版社,2000
    [18]熊光楞等,先进仿真技术与仿真环境[M].北京:国防工业出版社,1997
    [19]柴旭东等,复杂产品虚拟样机工程工具集的研究与初步实践.清华大学博士后出站报告,2002
    [20]韦有双等,虚拟现实与系统仿真[J].计算机仿真,1999,16(2):63-66
    [21]唐硕等,飞行器设计与试验的虚拟样机技术[J].宇航学报,2000,11
    [22]闫雪冬等,车辆工程中有限元边界条件模型化的若干技术问题[J].机械设计,2004,(8):
    [23]施光燕,董加礼.最优化方法[M].北京:高等教育出版社,2001,4
    [24]中华人民共和国标准,GB570017-2003钢结构设计规范[S],北京:中华人民共和国建设部,2003。
    [25] [英]T.R.格尔内著,周殿群译,焊接结构的疲劳[M],北京:机械工业出版社,1988。
    [26]霍立兴,焊接结构的断裂行为及评定[M],北京:机械工业出版社,2000。
    [27]徐灏,疲劳强度[M],北京:高等教育出版,1990。
    [28]徐灏,机械强度可靠性设计[M],北京:机械工业出版社,1984。
    [29]赵少卞等,抗疲劳设计--方法与数据[M],北京:机械工业出版社,1997。
    [30]郑修磷,金属疲劳的定量理论[M],西安:西北工业大学出版社,1994。
    [31]王超等,机械可靠性工程[M],北京:冶金工业出版社,1992。
    [32]程育仁等,疲劳强度[M],北京:中国铁道出版社,1990。
    [33]高镇同等,疲劳可靠性[M],北京:北京航空航天大学出版社,2000。
    [34]刘志明,随机载荷下焊接构架疲劳寿命及可靠性研究[D],北京:北方交通大学,2001。
    [35]项彬等,铁路货车车轴断裂分析[J],理化检验,2004,09。
    [36]胡再世,转8A型转向架交叉支撑装置裂纹的分析及处理[J],机车车辆工艺, 2004,04。
    [37]喻志平等,转向架构动应力解耦分析[J],北方交通大学学报,2000,08。
    [38]赵建明等,焊接转向架焊接接头疲劳性能的试验[J],机车车辆工艺,2003,12。
    [39]姚卫星,结构疲劳寿命分析,国防工业出版社2003。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700