用户名: 密码: 验证码:
2E12-Zr铝合金的热处理与微观组织及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了热处理制度对2E12+Zr合金微观组织和性能的影响。通过拉伸性能和疲劳性能测试,利用金相显微镜、透射电镜(TEM)、以及扫描电镜(SEM)观察,得到的主要结论如下:
     (1)通过DTA实验,确定合金的过烧温度是503℃。通过SEM观察发现,难溶相主要是AlCu,AlCuMn及AlCuMg粒子。2E12+Zr合金经500℃×40min固溶处理后的抗拉强度、屈服强度及延伸率等达到最佳。
     (2)自然时效后,GPB区是合金的主要强化相。T3状态比T4状态具有更高的屈服强度和抗拉强度,而延伸率略有下降。这是由于预变形增加位错,促进GPB区析出的结果。
     (3)人工时效后,S'相是合金的主要强化相。T6状态在10h达到峰值,T8状态的峰值时间提前2h,拉伸强度和屈服强度比T6工艺均提高40MPa左右,延伸率降低6个百分点。预变形导致合金中位错密度增高,为S'相形核提供了更多位置,从而促进S'相析出,提高合金强度。
     (4)与2E12合金相比,2E12+Zr合金自然时效后,合金的抗拉强度下降了约20~30MPa,屈服强度下降不多,而伸长率提高了4个百分点;人工时效至峰值时,合金的抗拉强度值较2E12合金的强度下降了约40~50MPa,屈服强度下降了约10~30MPa,而伸长率提高了2~5个百分点。这是因为微量Zr的添加,降低了GPB区的形成,减少了亚稳相S'相的析出数量,降低了时效硬化效果。
     (5)在应力比R=0.5时,2E12+Zr合金T3状态具有较好的耐损伤疲劳性能,在10~6循环周次下的疲劳强度σ_(max)=280Mpa,高于T4状态σ_(max)=270Mpa。缺口的存在降低了疲劳极限,Kt=3时的疲劳强度不及Kt=1时的一半。
     (6)T3和T4两种自然时效状态下,2E12+Zr合金L-T方向的疲劳裂纹扩展可分三个阶段,当R=0.5时,△K在5.5Mpa×m~(1/2)以下时,为裂纹扩展第Ⅰ阶段;△K在5.5Mpa×m~(1/2)~18Mpa×m~(1/2)之间时,为裂纹扩展第Ⅱ阶段;当△K大于18Mpa×m~(1/2)后,为裂纹扩展的第Ⅲ阶段。T3工艺在前两个阶段的曲线比较平缓,且进入瞬间断裂阶段较缓慢,而T4工艺在前两个阶段的曲线倾斜较大,且迅速进入瞬断阶段。
     (7)2E12+Zr合金T3状态,R=0.5时的裂纹扩展速率曲线明显位于R=0.1曲线之上,R=0.5时,合金的疲劳裂纹扩展速度更快。R=0.1时,疲劳裂纹扩展的三个阶段分别在△K<7.3Mpa×m~(1/2)时,为裂纹扩展第Ⅰ阶段;△K在7.3Mpa×m~(1/2)~30Mpa×m~(1/2)之间,为裂纹扩展第Ⅱ阶段;当△K=30Mpa×m~(1/2)时,da/dN为3.2×10~(-3)mm/cycle,△K>30Mpa×m~(1/2)为裂纹扩展的第Ⅲ阶段。
     (8)T3状态,2E12+Zr合金R=0.5和R=0.1时,L-T方向的疲劳裂纹扩展速率都略低于T-L方向,但相差并不大,并且到裂纹扩展后期这种差别进一步缩小。
     (9)T3状态,R=0.5和R=0.1时,2E12+Zr合金的裂纹扩展速率在疲劳裂纹的初始阶段快于2E12合金,随着△K的不断增大,两种合金的疲劳裂纹扩展速率的差别也不断减小。
     (10)2E12+Zr合金疲劳断口由裂纹源区、裂纹扩展区及瞬断区三部分组成,裂纹萌生一般位于试样表面应力集中处或典型缺陷部位,呈现“鱼骨形”小刻面。裂纹扩展区有明显疲劳辉纹特征,并伴随部分二次裂纹。瞬断区呈现静拉伸断口特征,韧窝多呈现盘形或拉长形。
Effects of heat treatment and microstructures on properties of 2E12+Zr alloy were studied in this paper,including fatigue properties testing and tensile properties testing,Optical microscopy(OM), Transmission electron microscopy(TEM)and Scanning electron microscopy(SEM)observations.The main conclusions are as following:
     (1)DTA test were carried out,the overburnt temperature is 503℃.With the SEM obvervations,the insoluble paritles were AlCu, AlCuMn and AlCuMg paticle.The results showed that 2E12+Zr alloy had better tensile properties after 500℃×40min solution treatment.
     (2)GPB zone was the comstituent phase after 96h natural aging of 2E12+Zr alloy.The alloy at T3 condition had better strength and lower elongation than T4 condition,because the pre-deformation induced higher dislocation density,promoted the precipitation of GPB zone.
     (3)S' phase was the comstituent phase after 190℃artificial aging of 2E12+Zr alloy.At T6 condition 10h the strength arrived at the peak value, at T8 condition was 2h earlier.The Tensile strength and Yield strength at T8 condition increased 40MPa,the elongation decreased 6 percent.The results was that the pre-deformation induced higher dislocation density, promoted the precipitation of S' phase,increased strength of the alloy.
     (4)After 96h natural aging,the Tensile strength of 2E12+Zr alloy decreased 20~30MPa,Yield strength was invariant,the elongation increased 4 percent;After 190℃artificial aging,the Tensile strength of 2E12+Zr alloy decreased 40~50MPa,Yield strength decreased 10~30 MPa,the elongation increased 2~5 percent.The results was that the addition of micro Zr reduced the formation of GPB zone,decreased the precipitation of the S' phase,reduced the effect of age harding.
     (5)When stress ratio R=0.5,with the same level cycles,the fatigue strength at T3 condition is higher than that at T4 condition,such as the cyclic fatigue strength(σ_(max))at 10~6 cycles is 10MPa higher than that at T4 condition.These notches resulted in reduction of fatigue limit of this alloy.When Kt=3,the fatigue limit is short half of the Kt=1.
     (6)The fatigue crack growth of 2E12+Zr alloy contained three stages in L-T direction at T3 and T4 condition.On the condition of R=0.5, AK<5.5Mpa×m~(1/2),it was the first stage;when△K was between 5.5Mpa×m~(1/2)and 18Mpa×m~(1/2),it was at the second stage;when△K>18Mpa×m~(1/2),it was at the last stage.With the same level of stress intensity factor△K,the fatigue crack propagation rate(da/dN)at T3 condition is slower than that at T4 condition.
     (7)At the T3 condition,with the same level of stress intensity factor△K,the fatigue crack propagation rate(da/dN)on the condition of R=0.1 is slower than that on the condition of R=0.5.When R =0.1, AK<7.3Mpa×m~(1/2),it was the first stage;when△K was between 7.3Mpa×m~(1/2)and 30Mpa×m~(1/2),it was at the second stage;when△K=30Mpa×m~(1/2),da/dN=3.2×10~(-3)mm/cycle;when△K>30Mpa×m~(1/2),it was at the last stage.
     (8)At the T3 condition,when R=0.5 and R=0.1,with the same level of stress intensity factor△K,the fatigue crack propagation rate(da/dN) on the condition of L-T direction is slower than that on the condition of L-T direction,and the diffenerce was small;at the last stage,the diffenerce turned smaller.
     (9)R=0.landR=0.5,with the same level of stress intensity factor△K, the fatigue crack propagation rate(da/dN)of the 2E12 alloy is slower than that of 2E12+Zr alloy until△K=19Mpa×m~(1/2)in the initial stage.As the stress intensity factor△K increased,the diffenerce turned small.
     (10)The fracture appearance of 2E12+Zr alloy consisted of fatigue crack intiation zone,fatigue crack zone and final fracture zone.The locations of initial fatigue cracks generally were on the surface stress concentrated or on the different defects in alloy,the appearance of facets had fishbone-like.It was obvious to see fatigue stripe in fatigue crack zone and some secondary cracks.It was just like tensile fracture appearance in the final fracture zone with circular dimples and elongated dimples.
引文
[1]陈亚莉.波音777及其候选动力装置的选材(一).航空制造工程,1995,25(1):32-34
    [2]李成功,傅恒志.航空航天材料.北京:国防工业出版社,2002
    [3]催德刚,郭建平.航空武器系统的发展趋势.航空周刊,1995,(46):2
    [4]江辉,国外航天结构新材料发展简述.宇航材料工艺,1998,4:1
    [5]杭吕,俄罗斯的航空用高强高韧铝合金.航空制造工程,1996,5:19
    [6]梁忠华,2124铝合金铸态及厚板的组织分析.黑龙江大学自然科学学报,1996,12(2):72-76
    [7]赵刚,刘春明,高纯硬铝2224-T3510挤压型材组织性能多的研究,[J]有色矿冶,1999年第2期,p33
    [8]李满良,初春溪,许晨玲.组元含量和T851参数对2124合金厚板组织和性能的影响.轻合金加工技术,1991,19(1):20-25
    [9]赵刚,黄洪涛,高纯硬铝2324-T39厚板组织性能的研究,[J]有色矿冶,1999年第5期,p41
    [10]李红英,郑子樵.高性能航空铝合金结构材料的动态研究.湖南有色金属,2001,17(4):36
    [11]赛西昌,杨守杰,张坤,戴胜龙,铝合金在运输机上的应用与发展[J],轻合金加工技术,2005,V33,N10,1-7
    [12]杨守杰,戴胜龙,航空铝合金的发展回顾与展望[J],材料导报,2005,V19,N2,76-80
    [13]潘复生,张丁非等.铝合金及应用.北京:化学工业出版社,2006
    [14]李成功,巫世杰,戴圣龙等.先进铝合金在航空航天工业中的应用与发展.中国有色金属学报,2002,3(2):14-21
    [15]郑玉珍,刘存玉,刘金凤.影响2124铝合金断裂韧性的因素.航空材料,1989,9(4):16-23
    [16]杨胜;易丹青;杨守杰;钟利,温度对2E12铝合金疲劳性能与断裂机制的影响[J],航空材料学报,2007,V27,N6,1
    [17]杨胜;易丹青;杨守杰;钟利,腐蚀环境下2E12航空铝合金疲劳裂纹扩展行为研究[J],材料工程,2007,V12,p26
    [18]刘岗;郑子樵;杨守杰;戴圣龙;李世晨,2E12铝合金的疲劳性能与裂纹扩展行为,机械工程材料[J],2007,V31,N11,64
    [19]中国航空材料手册,第三卷[M]中国标准出版设,2002年6月,p148-166
    [20]田荣璋,王祝堂.铝合金及其加工手册.长沙:中南大学出版社,2000
    [21]SUG WON KIM and HAI HAO,Microstructure and Fatigue Characterisics of Direct Chill Cast and Electromagnetic Cast 2024 Al Alloy Ingots.Metallurgical and Materials Transactions,Jul2003,34A,7,p1537
    [22]Jr Starke E A,STALEYT J T.Application of modern aluminum alloys to aircraft.Prog.Aerospace Sci.1996,32(2-3):131-172.
    [23]T.S.Srivatsan,D.Kolar and P.Magnusen.The cyclic fatigue and final fracture behavior of aluminum alloy 2524.Materials & Design,Volume 23,Issue 2,April 2002,Pages 129-139
    [24]T.S.Srivatsan,D.Kolar and R Magnusen.Influence of temperature on cyclic stress response,strain resistance,and fracture behavior of aluminum alloy 2524.Materials Science and Engineering A,Volume 314,Issues 1-2,15 September 2001,Pages 118-130
    [25]彭志辉.航空用新型高强度铝合金.材料导报,1997,(06)
    [26]陈文.先进铝合金在A380上的应用.航空维修与工程,2005,(02)
    [27]P.J.Golden,A.F.GrandtJr.and G.H.Bray.A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens.International Journal of Fatigue,Volume 21,Supplement 1,September 1999,Pages 211-219
    [28]徐崇义,李念奎.2xxx系铝合金强韧化的研究与发展.轻合金加工技术,2005,33(8):13-17
    [29]张士林.简明铝合金手册.上海:上海科学技术文献出版社,2001
    [30]WILLIAM Cassada,JOHN Liu,JAMES Taley.Aluminum alloys for aircraft structure.Advanced Materials Processes,2002,160(12):27-29
    [31]费子文,徐大铨.中国冶金百科全书(金属材料).北京:冶金工业出版社,1992
    [32]肖代红.微合金化对Al-Cu-Mg基耐热铝合金的显微组织和力学性能的影响.[博士学位论文].上海:上海交通大学,2004
    [33]王猛等.轻金属材料加工手册(下).北京:冶金工业出版社,1980:392-430
    [34]肖代红,王健农,陈世朴,丁冬雁.铈对高Cu:Mg比率Al-Cu-Mg合金组织和耐热性能的影响.中国稀土学报,2003,21(5):264-268
    [35]林钢,林慧国,赵玉涛.铝合金实用手册.北京:机械工业出版社,2006
    [36]李超.金属学原理.哈尔滨工业大学出版社,1989:321
    [37]Polmear I J.Role of trace elements in aged Aluminium alloys.Materials science Forum,1987,13/14:195-214
    [38]Wilson R N,forsyth P J E.effect of additions 1%iron and 1%nickel on the age-hardening of an aluminium 2.5%copper 21.2%magnesium alloy.J inst Metals,1966,94:8-13
    [39]S.C.Wang.Precipitation Hardening in Al-Cu-Mg alloy revisited.Scripta Materialaia,2006,54:287-291
    [40]S.C.Wang and M.J.Starink.Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li)based alloys[J].International Materials Review,2005.Vol50,No4,193
    [41]王莉梅,Al-Cu-Mg系合金时效过程的电镜观察.轻合金加工技术,1995,23(26):16-17
    [42]Nakai M and Etoh T.Effect of the morphology of constituents and dispersoids on fracture toughness and fatigue crack propagation rate in 2024 aluminum alloys.Journal of Japan Institute of Light Metals 1995,45:677
    [43]王玉林,沈德久.Al-Cu-Mg系硬铝型材挤压淬火研究工艺技术,2001,(6):35-36
    [44]陈康华,刘允中,7075和2024铝合金的固溶组织与力学性能[J].中国有色金属学报,2000,Vol10,No6,819-822
    [45]李慧中,张新明,预变形对2519铝合金组织与力学性能的影响[J].Vols.14,No 12(2004)pp1990-1994
    [46]李松瑞,周善初,金属热处理[M]。长沙:中南大学出版社,pp206
    [47]George W.Smith.Precipitation kinetics in solutionized aluminum alloy 2124Determination by scanning and isothermal calorimetry.Thermochimica Acta,1998,317;7-23
    [48]徐灏.疲劳强度[M].北京:高等教育出版社,1988:p11-23.
    [49]断口学,钟群鹏[M]高等教育出版社,2006年6月,p242-326
    [50]Coffin,L.F.A study of the effects of cyclic thermal stresses on a ductile metal.Transactions of the American Society of Mechanical Engineers.1954.76:931-950
    [51]Manson,S.S.Behavior of materials under condtions of thermal stress.National Advisory Commission on Aeronautics:Report1170.Cleveland Lewis Flight Propulsion Laboratory,1954
    [52]Suresh,S.材料的疲劳.王中光译.北京:国防工业出版社,1993
    [53]S.戈康达.Fatigue Failure of Metals[M].颜鸣皋,刘才穆译.上海:上海科学技术出版社,1983:p210-218.
    [54]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:
    [55]王栓柱,金属疲劳[M],福建科学技术出版社,1985年,p399
    [56]Irwin,G.R.Analysis of stresses and strains near the end of a crack traversing a plate.Journal of Applied Mechanics.1957,24:361-364
    [57]Forman R G,Kearney V E,Engle R M.Numerical analysis of crack propagation in cyclic-loaded structures[J].Journal of Basic Engineering,1967,89:459-464
    [58]Walker K.The effect of Effects of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[C].In:Effects of Environment and Complex Load History for Fatigue Life,Special Technical Publication 462,Philadelphia:ASTM,1970:1-4
    [59]Forsyth P J E.A two stage process of fatigue crack growth[C]..In:Crack Propagation:Proceedings of Cranfield Symposium,London:Her Majesty' s Stationiery Office,1962:76-94
    [60]Laird,C.(1967).The influence of metallurgical structure on the mechanisms of fatigue crack propagation.In Fatigue Crack Propagation,Special Technical Publication 415,pp.131-68.Philadelphia:The American Society for Testing and Materials
    [61]T.Zhai,X.P.Jiang,and X.Li,The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys[J],International Journal of Fatigue 27(2005)1202-1209
    [62]J.X.LI,T.ZHAI,Four-Point-Bend Fatigue of AA2026 Aluminum Alloys[J].Metallurgical and Materials Transactions,Vol36A,2005,2529
    [63]D.L.Chen,M.C.Chaturvedi,Fatigue crack growth behavior of X2095 Al-Li alloy[J].International Journal of Fatigue 21(1999)1079-1086
    [64]Bhaskar Sarkar and W.Barry Lisagor,Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys[J].Scripta Metallurgica et Materialia,Vol26,pp 169-174,1992
    [65]G.H.Bray,M.Glazov,Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys[J].International Journal of Fatigue 23(2001)265-276
    [66]Manabu Nakai,Takehiko Eto,New aspects of development of high strength aluminum alloy for aerospace applications[J].Materials Science and Engineering A285(2000)62-68
    [67]GB 3075-82金属轴向疲劳实验方法[S]
    [68]GB/T6398-2000金属材料疲劳裂纹扩展速率试验方法[S]
    [69]尚勇,张立武.高强铝合金的热处理技术.上海有色金属,2005,26(2):97-102
    [70]高树增,侯振庆.2A12-T81铝合金板材热处理工艺研究.轻合金加工技术,1998,26(9):39-43
    [71]邓少奎,2E12高强耐疲劳铝合金轧制工艺和疲劳性能的研究,[硕士学位论文].秦皇岛,燕山大学
    [72]苏学常,吴锡坤.论铝合金建筑型材的内部质量控制.2001年铝型材技术论坛会文集,2001:9-12
    [73]胡建强.7075铝合金控制轧制过程的实验模拟.[中南大学硕士论文].2004:2-18
    [74]伊林娜,汝继刚,张禄山.Л19 ч铝合金铸锭均匀化及棒材固溶处理温度的研究.稀有金属,2000,24(1):70-73
    [75]刘胜胆,张新明,固溶处理对高纯7055铝合金组织的影响[J],材料热处理学报,2006,Vol27,No3,54-59
    [76]曾苏民,影响铝合金固溶保温时间的多因素相关规律[J],中国有色金属学报,1999,Vol9,No1,79-86
    [77]刘友良,张新民,固溶温度处理对7A55铝合金组织与力学性能的影响[J],轻合金加工技术,2006,Vol34,No8,48-52
    [78]M.J.Starink,N.Gao Relations between microstructure,precipitation,age-formalilty and damage tolerance of Al-Cu-Mg-Li-(Mn,Zr,Sc)alloys for age forming,Materials Science and Engineering A 418(2006)241-249
    [79]A.Tolley,R.Ferragut,and A.Somoza,.Study of the nanostructures formed in 2024alloy during thermo-mechanical treatments,Materials Science Forum[J]Vols.519-521(2006)pp489-494
    [80]刘延斌,刘志义,时效对2524铝合金热稳定性的影响[J].Vols.21 No 6(2007)pp585-588
    [81]T.Warner,Recently-developed aluminum solutions for aerospace applications.Materials Science Forum[J]Vol.519-521(2006)pp1271-1278
    [82]刘岗.2E12合金的热处理与微观组织及疲劳性能研究.[硕士学位论文].长沙:中南大学,2007
    [83]冯端,金属物理学,第一卷:结构与缺陷,pp343
    [84]杨守杰,谢优华,陆政,Zr对超高强铝合金合金时效过程的影响[J],中国有色金属学报,2002,Vol12,No2,226-230
    [85]A.K.Mukhopadhyay,G.J.Shiflet and E.A.Starke,Jr,Role of Vacanaies on The Precipitaion Processes in Zr Modified Aluminum Based Alloys[J]Scripta Metallurgica et Materialia,V24,pp307-312,1990
    [86]James M.Fragomeni,Effect of Precipitation Aging on the Microstructure,Fatigue Behavior,and Precipitation Response in an Al-Li-Cu Alloy[J]Journal of Advanced Materials,Vol38,No3,July,2006
    [87]Cabibbo.M.,Evangelista.E,A TEM study of the combined effect of severe plastic deformation and(Zr),(Sc+Zr)-containing dispersoids on an Al-Mg-Si alloy[J]Journal of Materials Science,v 41,n 16,August,2006,p 5329-5338
    [88]Sarioglu.F;Orhaner.F.O.[J]Materials Science & Engineering A:Structural Materials:v A248,n 1-2,Jun 15,1998,p 115-119
    [89]Keiro Tokaji,Notch fatigue behaviour in a Sb-modified permanent-mold cast A356-T6 aluminum alloy,Materials Science and Engineering A396(2005)333-340
    [90]王弘,高庆,缺口应力集中对40Cr钢高疲劳性能的影响[J],机械工程材料,2004,V28,N8,12
    [91]虞忠良,赵永庆,TC21合金315℃高周疲劳光滑和缺口试样断口分析[J],材料工程,2007,7,p55
    [92]李眉娟,胡海云,多晶体金属疲劳寿命随晶粒尺寸变化的理论[J]物理学报,V52,N8,2003,2092-2095
    [93]丁传富,刘建中,TC钛合金和7475铝合金的长裂纹和小裂纹扩展特征的研究[J],航空材料学报,2005,Vol25,No6,pp11-17
    [94]Elber W.Fatigue crack closure under cyclic tension[J].Engineering Fracture Mechanics,1970.2:37-45
    [95]Xue.Y,H.El Kadiri,Micro-mechanisms of multistage fatigue crack growth in a high-strength aluminum alloy[J]Acta Materialia 55(2007)1975-1984
    [96]樊喜刚,蒋大鸣,7150铝合金疲劳裂纹异常扩展分析[J],物理测试,2006,Vol24,No3,pp51
    [97]Cassada W,Liu J,Taley J.Aluminum alloys for aircraft structure[J].Advanced Materials Processes,2002,160(12):27-29.
    [98]周昆,李云卿,Al-Zn-Mg-Cu合金应变疲劳行为及位错结构演变[J],中国有色会属学报,1997,Vol7,No4,79-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700