用户名: 密码: 验证码:
2124铝合金板材断裂韧性和高周疲劳特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过MTS测试了不同厚度2124-T851铝合金板材的断裂韧性,并详细考察了合金板材的疲劳性能。此外,通过金相实验方法(OM),X射线物相分析(XRD)以及透射电镜分析(TEM),结合断裂韧性测试以及疲劳性能实验失效样品断口扫描电镜扫描分析(SEM)研究了合金微观组织结构对2124-T851铝合金板材断裂韧性和疲劳性能的影响。结果表明:
     (1)2124-T851铝合金板材不同取向的断裂韧性不同,L-T向断裂韧性明显优于T-L向:30mm厚板材断裂韧性最好,L-T向为29.64MPa(?),T-L向为24.31MPa(?)。
     (2)2124-T851铝合金板材应力幅值低于243MPa时,疲劳寿命达到10~7;随厚度的增加,疲劳强度下降,疲劳裂纹扩展速率增加。
     (3)高周疲劳断裂过程中应力幅值越高,样品疲劳寿命越低,瞬断区面积占总的断面面积的比例也越大。应力幅值对板材疲劳寿命的影响主要在于随着应力幅值的提高,在疲劳辉纹间距略有增大的同时,疲劳裂纹越早进入瞬时断裂阶段。
     (4)疲劳裂纹扩展速率计算结果,30mm厚板材为da/dN=2.8×10~(-8)(△K)~(3.5);40mm厚板材为da/dN=4.4×10~(-8)(△K)~(3.4);55mm厚板材为da/dN=5.7×10~(-8)(△K)~(3.3)。由于裂纹闭合效应等因素的影响,循环载荷数会远大于微观可见的疲劳辉纹数目,因此计算结果与断口观察的疲劳辉纹间距有差异。
     (5)2124-T851铝合金疲劳裂纹扩展有明显的三阶段特性,疲劳裂纹一般在试样表面萌生,裂纹扩展中产生大量疲劳辉纹,随着裂纹的扩展疲劳辉纹间距会增大,随后发生瞬时断裂,断口呈小韧窝和解理断裂的混合形貌。
     (6)Paris描述的应力场强度因子范围与裂纹扩展速率的关系只适用于某一扩展阶段,裂纹在Ⅰ和Ⅲ阶段,其扩展速率都是随△K的增加而急剧上升。疲劳瞬断区的形成和材料的断裂韧性是相关的,当K_(max)大约达到K_(IC)时材料发生断裂。
     (7)2124-T851铝合金板材为不完全的再结晶组织,合金主要相有α-Al基体,针状析出相S'(Al_2CuMg)以及大颗粒析出相Al_6(Fe,Mn)。
     (8)晶界和亚晶界能有效阻止疲劳裂纹的萌生和扩展,有利于合金的抗疲劳性能和断裂韧性。板材厚度对2124-T851铝合金断裂韧性以及疲劳性能的影响主要源于因板材厚度不同而导致的晶界以及亚晶界情况的差异。
The fracture toughness and high cycle fatigue characteristics of 2124-T851 aluminum alloy plates were investigated using MTS.Meanwhile,the influences of the microstructure on the alloy's fracture toughness and high cycle fatigue characteristics were researched using optical microscopy(OM)、transmission electron microscopy (TEM)and X-ray diffraction(XRD),as well as the fatigue fractography observed by scaning electron microscopy.The results show that:
     (1)The fracture toughness of 2124-T851 aluminum alloy plates is anisotropic,and the crack growth resistance in L-T direction is better than the one in T-L direction.The 30mm-thick-plate has the best all-around fracture toughness that 29.64MPam/2 in L-T direction,and 24.31MPam/2 in T-L direction.
     (2)The high cycle fatigue strength of 2124-T851 aluminum alloy plates decrease with the increase of the plate thickness.Under the condition of room temperature and stress ratio R=0.1,the fatigue strength at 10~7 cycles of 2124-T851 aluminum alloy with 30mm thickness is 243MPa.
     (3)At high cycle fatigue condition,the higher the stress amplitude, the lower the fatigue life,and the greater the ratio between the intermittent fracture area and the whole fracture area.The influence of the stress amplitude on the fatigue life of alloy plates dues to the aggrandizement of space between fatigue striations and advance of fatigue crack developing into the intermittent fracture area.So the fatigue resistance can be improved effectively with the increase of alloy's fracture toughness.
     (4)The calculated fatigue crack growth rate results of 2124-T851 aluminum alloy plates with 30mm、40mm and 55mm thickness are da/dN=2.8×10~(-8)(△K)~(3.5);da/dN=4.4×10~(-8)(△K)~(3.4);and da/dN=5.7×10~(-8)(△K)~(3.3),respectively.Because of the crack closure effect,the time of cyclic loads is more than the number of fatigue striations which can be observed using SUM,so the results of estimation do not tally with the observed separation of fatigue striations well.
     (5)The fatigue crack growth of 2124-T851 aluminum alloy can be divided into three regions obviously.Generally,the fatigue crack initiates at the surface of the samples,then a number of fatigue striations form during the process of fatigue crack propagation,and the separation of them becomes larger.Lastly,the rapid fracture happens,and the mixed fractography of little dimples and cleavage fracture can be observed.
     (6)The relationship between the stress intensity factor D-value and the fatigue crack developing rate can be described using Paris equation just during the process of theⅡstage of crack propagation. And during theⅠandⅢstage,the fatigue crack growth rate speeds rapidly with the enhancement of△K.Because the rapid fracture stage forms relating with the fracture toughness of alloy,when the K_(max)reaches to the K_(IC)the fracture happens.
     (7)The microstructure of the 2124-T851 aluminum alloy is partially recrystallized.The grain size in normal of rolling plane augments with the increase of plate thickness.The main phases of the as-received alloy includeα-Al、S'(Al_2CuMg)and Al_6(Fe, Mn)
     (8)The grain boundary,and sub-boundary can effectively restrain the initiation and propagation of fatigue crack,so they are propitious to the fatigue resistance and fracture toughness.The effect of thickness on the fracture toughness is primarily due to the differences of alloy's grain boundary and sub-boundary owing to the differrent thickness.
引文
[1]约翰 D 费豪文.物理冶金学基础.卢光熙,赵子伟.上海:上海科学技术出版社,1981.
    [2]徐崇义,李念奎.2xxx系铝合金强韧化的研究与发展.轻合金加工技术,2005,33(8):13-14.
    [3]Hamstad M A,Bianchetti R,Mukherjee A K.CORRELATION BETWEEN ACOUSTIC EMISSION AND THE FRACTURE TOUGHNESS OF 2124-T851ALUMINUM.Engineering Fracture Mechanics,1977,V9(3):663-674.
    [4]B.T 库良绍夫.铝合金断裂韧性.高云震.北京:冶金工业出版社,1980.9.
    [5]Lumley R N,Polmear I J.The Effect of Long Term Creep Exposure on the Microstructure and Properties of an Underaged Al-Cu-Mg-Ag Alloy.Scrip ta Materialia,2004,50:1227-1231.
    [6]王祝堂.全球最大的客机采用2524铝合金制造机身.轻合金加工技术,2000,28(8):48.
    [7]田荣章,王祝堂.铝合金及其加工手册.长沙:中南大学出版社.2000.
    [8]胡德林,张帆.三元合金相图.西安:西北工业大学出版社,1995.
    [9]ADA002875 APPENDIX F Influence of precipitate structures On the deformation of aluminum alloys:part 1 2000 series alloys.
    [10]肖亚庆,谢水生,刘静安.铝合金技术实用手册.北京:冶金工业出版社,2005.
    [11]黄绍良.变形铝合金中微量合金元素研究.上海航天,1995,5:57.
    [12]S C Wang,M J Starink,N Gao.Precipitation hardening in Al-Cu-Mg alloys revisited Scripta Materialia.2006,287-291(54):288.
    [13]Charai A,Walther T,Alfonso C.Coexistence of clusters,GPB zones,S double prime -,S prime - and S-phases in an Al-0.9%Cu-1.4%Mg alloy.Acta Materialia.2000,48(10):2751-2764.
    [14]Kovarik L,Miller M K,Court S A.Atom probe tomography study of GPB zones in Al-Mg-Cu-(Si)alloys.Proc.Int.Conf.Solid-Solid Phase Transform.Inorg.Mater.2005,1:301-308.
    [15]王莉梅,Al-Cu-Mg系合金时效过程的电镜观察.轻合金加工技术,1995,23(26):16-17.
    [16]Song R G,Tseng M K,Zhang B J,etc.Acta Mater,1996,44:3241.
    [17]Unwin P N T,Smith G C.J Inst Metals,1969,97:299.
    [18]蒋呐,李劲风,郑子樵.时效工艺对高强度Al-Cu-Li合金断裂韧性的影响.宇航材料工艺,2007,2:66-69.
    [19]宋旼,袁铁锤,张福勤.Al-Cu-Mg合金的断裂韧性与拉伸延性模拟.中国有色金属学报,2007,17(7):1034-1040.
    [20]Neimitz A.Fracture toughness of structural elements:The influence of the in-and out-of-plane constraints on fracture toughness.Materials Science,2006,42(1):61-77.
    [21]Zhang Li,Zhang Yufeng,Huo Lixing.Fracture toughness and safety assessment of X65 offshore pipeline welded joints.Welding Research Abroad,2006,52(4):7-11.
    [22]褚武扬,林实,田中卓.断裂韧性测试.北京:科学出版社,1979.12.
    [23]GB4161-84,金属材料平面应变断裂韧度K_(IC)试验方法.
    [24]Liu A F.The fracture toughness of high strength aluminum alloys.Eleventh Aerospace Science Meeting,1973,paper73:253.
    [25]Srivatsan T S.Microstructure,tensile properties and fracture behavior of aluminum alloy 7150.Journal of Materials Science,1992,27(17):4772-81.
    [26]Bolotin V V.Analytical modeling of fatigue crack propagation.Fatigue and Fracture of Engineering Materials and Structures,1999,22(11):939-947.
    [27]Nakai M,Eto T.New aspect of development of high strength aluminum alloys for aerospace applications.Materials Science & Engineering A,2000,A285(1-2):62-8.
    [28]Dzidowski E S,Cisek W.New development of shear fracture research.Journal of Materials Processing Technology,2000,106(1-3):267-72.
    [29]段玉波,唐剑,黄平.7B04合金的断裂韧性.中国有色金属学报,2003,13(1):216-221.
    [30]编写组.有色金属及热处理.北京:国防工业出版社,1981:117-118.
    [31]Wu Yi-Lei,Froes F H,Li Chenggong.Microalloying of Sc,Ni,and Ce in an advanced Al-Zn-Mg-Cu alloy.Metallurgical and Materials Transactions A,1999,30(4):1017-1024.
    [32]Rabinovich M Kh,Trifonov V G.Dynamic grain growth during superplastic deformation.Acta Materialia,1996,44(5):2073-2078.
    [33]苏学常.铝合金的强化.轻合金加工技术,1996,24(9):2-5.
    [34]宫木美光.铝合金的微观组织与性能.轻金属,1976,12:211-215.
    [35]宋仁国.高强度铝合金的研究现状及发展趋势.材料导报,2000,14(1):20-21.
    [36]Uchida H.Heat treatment of aluminum.Sumitomo Light Metal Technical Report,1997,38:177.
    [37]Sih G C.Influence of specimen size and microstructure on the fracture toughness of aluminum alloys.Eng.Fract.Mech.,1976,54(6):813.
    [38]She S,Landes J D.Statistical analysis of fracture in graphite.International Journal of Fracture,1993,63(2):189-200.
    [39]许晨玲,张克伟.2224铝合金挤压件T3510处理工艺研究.轻合金加工技术,2001,29(11):33-35.
    [40]江红.微观组织对热锻模具钢热疲劳性能的影响.吉林大学硕士学位论文.2001,2.
    [41]S Taira,M Fujino,R Ohtanl.Collaborative study on thermal fatigue Properties of high temperature alloys in Japan.Fatigue of Engineering Materials and Structures,1979,1:495-508.
    [42]郑治沙,王中光.疲劳研究的历史回顾.材料科学与工程,1993,11(1).
    [43]Suresh R A.材料的疲劳.王中光.北京:国防工业出版社,1993.
    [44]福克斯.工程中的金属疲劳.漆平生.北京:中国农业机械出版社,1983.
    [45]Paris P C,Gomez M P,Anderson W P.A rational analytic theory of fatigue.The Trend in Enguneering,1961,13:9-14.
    [46]Mughrabi H.Microscope mechanisms of metal fatigue.In:Haasen P,Gerold V,Kostorz G.The strength of metals and alloys,Vol.3.Oxford:Pergamon Press,1980:1615-1639.
    [47]Thompson N,Wadsworth N J,Louat N.The origin of fatigue fracture in copper.Philosophical Magazine,1956,1:113-126.
    [48]Forsyth P J E.A two stage process of fatigue crack growth.In:Crack Propagation:Proceedings of Cranfield Symposium,London:Her Majesty's Staioniery Office,1962:76-94.
    [49]程育仁.疲劳强度.北京:中国铁道出版社,1990.
    [50]徐灏.疲劳强度.北京:高等教育出版社,1988.
    [51]刘晓莹,刘勇兵.重力铸造镁合金AZ91高周疲劳性能研究.铸造,2006,55(12):1280-1282.
    [52]杨富民,孙晓峰,管恒荣.K40S钴基高温合金高温高周疲劳行为.中国有色金属学报,2003,13(1):141-146.
    [53]朱正宇,何国求,陈成澍.ZL101铝合金低周疲劳行为研究.特种铸造及有色合金,2007,27(4):256-259.
    [54]陈凌,蒋家羚.一种新的低周疲劳损伤模型及实验验证.金属学报,2005,41(2):157-160.
    [55]T S Srivatsan,D Kolar,P Magnusen.Influence of temperature on cyclic stress response,strain resistance,and fracture behavior of aluminum alloy 2524.Materials Science and Engineering,2001,A314:118-130.
    [56]Lukas P,Kunz L,Svoboda M.High cycle fatigue of superalloy single crystals at high mean stress.Materials Science and Engineering A,2004,387-389(1-2):505-510.
    [57]Chapetti Mirco D.High-cycle fatigue of austempered ductile iron (ADI).International Journal of Fatigue,2007,29(5):860-868.
    [58]Takahashi Takehiko,Hioki Susumu,Shohji Ikuo.Low cycle fatigue behavior and surface feature by image processing of Sn-0.7Cu lead-free solder.Key Engineering Materials,2006,306-308:115-120.
    [59]Mohamed A,El-Madhoun Y,Bassim M N.The effect of grain size on low-cycle fatigue behavior of Al-2024 polycrystalline alloy.Metall Mat Trans A Phys Metall Mat Sci,2004,35 A(9):2725-2728.
    [60]川田雄一著.金属の疲労と設計.東京:オ一ム社,1982.
    [61]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2001.
    [62]郑修鳞.材料的力学性能.西安:西北工业大学出版社,1996.
    [63]I B Kwon,M E Fine,J Weertman.Acta Metall,1989,37:2913-2946.
    [64]李国强.Al-Cu-Mn-Ti-Ce合金热疲劳性能的研究.镇江:江苏大学,2005.13-14.
    [65]Barnby J T.疲劳.曾春华,郭康民.北京:科学出版社,1984.
    [66]钟群鹏,赵子华.断口学.北京:高等教育出版社,2006.249-252.
    [67]Essmann U,Gosele U,Mughrabi H.A model of extrusions and intrusions in fatigued metals.I.Point-defet production and the growth of extrusions.Philosophical Magazine A,1981,44:405-426.
    [68]Ma B T,Laird C.Overview of fatigue behavior in copper single crystals-Ⅰ.Surface morphology and stage Ⅰ crack initiation sites for tests at constant strain amplitude.Acta.Metallurgica,1989,36:325-336.
    [69]何柏林,李树桢,于影霞.42CrMo钢M+F双相组织接触疲劳、多冲疲劳及弯曲疲劳性能研究.机械强度,2004,26(4):431-435.
    [70]尹志新,于维成,姚戈.循环淬火细化对42CrMo钢组织及疲劳性能的影响.钢铁,2002,37(10):52-56.
    [71]Gray G T,Williams J C,Thomposon A W.Roughness-induced crack closure:an explaination for near-thresh-old corrosion fatigue crack growth behavior.Metallrugical Transactions,1981,12A:1435-1443.
    [72]Neumann P.Coarse slip model of fatigue.Acta.Metallurgica,1969,17:1219-1225.
    [73]郑修麟.工程材料的力学行为.西安:西北工业大学出版社,2004.
    [74]中国标准出版社第二编辑室.有色金属工业标准汇编.北京:中国标准出版社,2006.
    [75]杨继运,张行材.料断裂韧度与试样厚度关系研究.机械强度,2003,25(1):76-80.
    [76]Prasad N E,Kamat S V,Prasad K S.In-plane Anisotropy in the Fracture Toughness of an Al-Li 8090 Alloy Plate.Eng.Frac.Mech.,1993,46(2):209-223.
    [77]Hagedorn,Karl Edgar,Pardun.Some Aspects of Fracture Mechanics Research During the Last 25 Years.Steel Res,1998,69(4-5):206-213.
    [78]孟亮,郑修麟.铝铿合金力学性能的各向异性.有色金属,1996,48(4):82-88.
    [79]潘清林,黄继武,薛松柏.金属材料科学与工程实验教程.长沙:中南大学出版社,2006.84-92.
    [80]吴连生,刘正义.机械装备失效分析图谱.广东:广东科技出版社,1990.219.
    [81]Laird C.The influence of metallurgical structure on the mechanisms of fatigue crack propagation.In:Fatigue Crack Propagation,Special Technical Publication 415,Philadelphia:ASTM,1967:131-168.
    [82]褚武扬,乔利杰.断裂与环境断裂.北京:科学出版社,2000.45-67.
    [83]Forman R G,Kearney V E,Engle R M.Numerical analysis analysis of crack propagation in cyclic-loaded structures.Journal of Basic Engineering,1967,89:459-464.
    [84]Walker K.The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum.In:Effect of Environment and complex Load History for Fatigue Life,Special Technical Pubilcation 462,Philadelphia:ASTM,1970:1-14.
    [85]谭家骏.金属材料强化原理基本途径及热处理新技术.电子工艺技术,1995, 6:5-10.
    [86]孙福生,曹春晓.一种含Nd耐热钛合金强化机制的研究.金属学报,1994,30(1):11-19.
    [87]邱庆荣,孙宝德,周尧和.B对快速凝固Al-Ce-Ni合金组织和耐热性的影响.铸造,1998,03:1-3.
    [88]Hwang H J,Tajima K,Sando M.Fatigue-Free PZT-Based Nanocomposites.Key Engineering Materials,1999,161-163:431-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700