用户名: 密码: 验证码:
芯片毛细管电泳电化学检测的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十几年中,微全分析系统(μ-TAS) 或芯片实验室(lab on a chip)已经发展成为当今世界上最前沿的研究领域之一,它的主要特点是:分析速度快、信息量高、操作费用低、试样消耗小、污染小。
    与传统的毛细管电泳类似,芯片毛细管电泳(CE chip)常用的检测方法为激光诱导荧光检测(LIF),主要是因为它的灵敏度较高,但是具有天然荧光的物质较少,常常需要对样品进行衍生。另一方面,电化学检测(ECD)的灵敏度高、选择性易于调变、试样用量少、成本低,特别是包括控制仪器在内的EC装置特有的微型化特点,与微加工技术很匹配。这一传感方式非常符合微流控分析系统的微型化、集成化的要求,成为μ-TAS中非常重要的一类检测方式。
    本论文以芯片毛细管电泳电化学检测 (CE – ECD chip) 为研究重点,主要包括以下工作内容:
    采用毛细微模塑法(MIMIC)与无电沉积技术,可以直接在玻璃基片上制作出具有特定形状的铜膜电极。该铜膜电极不但可以直接作为工作电极,而且还可以作为铂接地电极的基底。然后将带有分离通道的聚二甲基硅氧烷(PDMS)芯片可逆的与电极板相键合,形成PDMS/玻璃杂化电泳芯片。该芯片制作费用低,时间短,电极形状可以准确控制,而且检测灵敏度高。芯片的有效分离通道长43 mm。在最优化的分析条件下,(30 mmol/L NaOH,检测电为0.7 V,进样与分离场强均为200 V/cm),连续七次进样标准葡萄糖溶液所得迁移时间与电流的相对标准偏差分别为2.2 %,4.4 %。得到葡萄糖的线性响应范围10 μmol/L ~ 1 mmol/L,相关系数为0.997,在信噪比等于3时的检测限是6 μmol/L。在分析健康人与糖尿病人的血浆样品时,测得的葡萄糖浓度与医院里采用酶自动分析仪所得的结果非常接近。证明CE – ECD chip技术在应用于临床样品分析方面显示了良好的选择性、重现性、准确性等优点,对于糖尿病人的诊断和治疗具有很好的应用价值,是一种灵敏、快速、准确的分析技术,具有一定的临床应用前景。
    
    在PMMA上溅射金属Cu,然后利用光刻、湿法腐蚀的办法制出铜电极,与另一片含有微沟道的PMMA基片热键合,制作集成铜电极的塑料电泳芯片。当连续7次进样分析标准葡萄糖溶液时,迁移时间和电化学响应信号的相对标准偏差分别为3.52%和1.12%,重现性较好,说明该芯片微沟道表面特性和电极的电化学特性均较稳定。而且还考察了各种分析条件对氨基酸分离的影响,在优化条件(30 mmol/L NaOH 缓冲溶液中,检测电位为0.7 V,进样与分离电场强度均为50 V/cm)下,精氨酸的线性响应范围为40 μmol/L 到3 mmol/L,检测限为 30 μmol/L(信噪比等于3),同时在3 cm 长的通道内较好地分离了精氨酸与亮氨酸。
For over a decade, the area of micro total analysis systems, also called “lab on a chip”, has been growing rapidly. The numerous advantages of incorporating several previously distinct processes into a miniaturized format include faster analysis time, decreased cost and waste production, portability, disposability.
    Capillary electrophoresis microchip (CE chip) is an emerging technology that has generated a great deal of interests in analytical chemistry. Like conventional CE, laser- induced fluorescence (LIF) remains one of the most sensitive detection techniques for CE chip. However, the implementation of LIF can be quite difficult. On the other hand, electrochemical detection (ECD) is relatively simple, inexpensive, applicable to a wide range of analytes, and easily miniaturized.
    This thesis is concentrated on the study of CE – ECD chip and its application in analysis of pharmaceuticals and biochemicals as described below.
    The pattern of the microelectrodes for CE – ECD chip was directly made on the surface of a microscope slide through the micromolding in capillaries (MIMIC) techniques and electroless deposition procedure. The copper microelectrode is fabricated by selective electroless deposition. And the fabrication of decoupler is platinum electrochemical deposition on metal film formed by electroless deposition. The whole chip was built by reversibly sealing the slide to the poly(dimethylsiloxane) (PDMS) layer with electrophoresis microchannels at room temperature. The fabrication of a hybrid chip device is simple, rapid and costless compared with the conventional method of glucose detection using glucose oxidase. Factors influencing the performance, including the detection potential, separation field strength, buffer concentration, were studied. The electrodes exhibited good stability and durability in the analytical procedures. Under optimized detection conditions, (30 mM NaOH, separation field strength of 200 V/cm and detection potential at 0.7 V), seven consecutive injections of glucose
    
    
    were performed. The relative standard deviation (RSD) of the migration time was 2.2 %, with that of the peak height was 4.4 %. And the glucose responded linearly from 10 μmol/L to 1 mmol/L. Furthermore, the glucose in human plasma from healthy individuals and diabetics was successfully determined, which was close to those got with HITACHI 7020 Automatic Analyzer in Jilin University Hospital. This work gives a newly alternative way to the quick determination of glucose in real sample with high sensitivity. So the miniaturized CE–ECD analysis system has the application prospect and attraction for clinical bioassays.
     Cu is sputtered onto PMMA, and copper electrodes are formed by photolithograph and wet etching; an electrophoresis chip is fabricated by thermally bonding the PMMA with copper electrodes to a PMMA substrate with microchannels. When seven consecutive injections of standard glucose were performed, the relative RSD of the migration time was 3.52 %, with that of the peak height was 1.12 %. Furthermore, factors influencing the performance, including the detection potential, separation field strength were studied. Under optimized detection conditions, (30 mmol/L NaOH buffer, 0.7 V detection potential and 50 V/cm separation field strength), arginine responded linearly from 40 μmol/L to 3 mmol/L. The arginine and leucine got fast and good separation by 30 mm-long channel.
引文
Manz, A.; Graber, N.; Widmer, H. M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators, 1990, B1: 244 – 248.
    Reyes, D. R.; Iossifidis, D.; Auroux, P. A.; Manz, A. Micro total analysis systems 1, introduction, theory, and technology. Anal. Chem., 2002, 74: 2623 – 2636.
    Auroux, P. A.; Iossifidis, D.; Reyes, D. R.; Manz, A.. Micro total analysis systems 2, analytical standard operations and applications. Anal. Chem., 2002, 74: 2637 – 2652.
    方肇伦, .微流控分析芯片, 科学出版社, 北京,1 st ed., 2003
    Manz, A.; Harrison, D. J.; Verpoorte, E. M. J.; Fettinger, J.C.; Paulus, A.,; Ludih, H.; Widmer, H. M. Planer chips technology for miniaturization and integration of separation techniques into monitoring systems – capillary electrphoresis on a chip. J. Chromatogr., 1992, 593: 253 – 258.
    Hjerten, S. High-performance electrophoresis including separation of nucleic acids and their degradation products. Interplay between theory and practical experiments. Electrophoresis, 1990, 11: 665 – 669.
    陈义,毛细管电泳技术及应用,化学工业出版社,2000。
    林炳承,毛细管电泳导论,北京,科学出版社,1996。
    Griffiths, S. K.; Nilson, R. H. Low-dispersion turns and junctions for microchannel systems. Anal. Chem., 2001, 73: 272 – 278.
    Culbertson, C. T.; Jacobson, S. C.; Ramsey, J. M. Dispersion sources for compact geometries on microchips, Anal. Chem., 1998, 70: 3781 – 3789.
    Culbertson, C. T.; Jacobson, S. C.; Ramsey, J. M. Microchip Devices for High-Efficiency Separations. Anal. Chem., 2000, 72: 5814 – 5819.
    
    Paegel, B. M.; Hutt, L. D.; Simpson, P. C.; Mathies, R. A. Turn geometry for minimizing band broadening in microfabricated capillary electrophoresis channels. Anal. Chem., 2000, 72: 3030 – 3037.
    Ghosal, S.; Band Broadening in a Microcapillary with a Stepwise Change in the potential. Anal. Chem., 2002, 74: 4198 – 4203.
    Xia, Y.; Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. 1998, 37: 550 – 575.
    Ng, J. M. K.; Gitlin, I.; Stroock, A. D.; Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis, 2002, 23: 3461 – 3473.
    McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H.; Whitesides, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000, 21: 27 – 40.
     Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem., 1998, 70: 4974 – 4984.
    Xia, Y. N.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev., 1999, 99: 1823 – 1848.
    Zhang, C.; Manz, A.Narrow sample channel injectors for capillary electrophoresis on microchips. Anal. Chem., 2001, 73: 2656 – 2662.
    Backofen, U.; Matysik, F. M.; Lunte, C. E. A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection. Anal. Chem., 2002, 74, 4054-4059.
    Fu, L.; Yang, R.; Lee, G.; Liu H. Electrokinetic injection techniques in microfluidic chips. Anal. Chem., 2002, 74: 5084 – 5091.
    Ermakov, S.V.; Jacobson, S. C.; Ramsey, J. M. Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal. Chem., 2000, 72: 3512 – 3517.
    
    Bai, X.; Josserand, J.; Jensen, H.; Rossier, J. S.; Girault, H. H. Finite element simulation of pinched pressure-driven flow injection in microchannels. Anal. Chem., 2002, 74: 6205 – 6215.
    Slentz, B. E.; Penner, N. A.; Regnier, F. Sampling bias at channel junctions in gated flow injection on chips. Anal. Chem., 2002, 74: 4835 – 4840.
    Alarie, J. P.; Jacobson, S. C.; Ramsey, J. M. Electrophoretic injection bias in a microchip valving scheme. Electrophoresis, 2001, 22: 312 – 317.
    Jacobson, S. C.; Ermakov, S. V.; Ramsey, J. M. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices. Anal. Chem. 1999, 71: 3273 – 3276.
    Schwarz, M. A.; Hauser, P. C. Recent developments in detection methods for microfabricated analytical devices. Lab on a chip, 2001, 1:1 – 6.
    Jacobson, S. C.; Ramsey, J. M., Integrated microdevice for DNA restriction fragment analysis, Anal. Chem., 1996, 68: 720 – 723.
    Fang Q,Xu G M,Fang Z L,A high-throughput continuous sample introduction interface for microfluidic chip-based capillary electrophoresis systems. Anal. Chem.,2002,74:1223 – 1231.
    Effenhauser, C. S.; Bruin, G. J. M.; Paulus, A.; Ehrat, M.. Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips, Anal. Chem., 1997, 69: 3451 – 3457.
    Collins, G. E.; Lu, Q. Microfabricated capillary electrophoresis sensor for uranium (VI). Anal. Chim. Acta., 2001, 436: 181 – 189.
    Mao, Q.; Pawliszyn, J. Demonstration of isoelectric focusing on an etched quartz chip with UV absorption imaging detection. Analyst, 1999, 124: 637-641.
    Mangru, S. D.; Harrison, D. J. Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis. Electrophoresis, 1998, 68: 2301 – 2307.
    
    Hashimoto, M.; Tsukagoshi, K.; Nakajima, R.; Kondo, K.; Arai, A. Microchip capillary electrophoresis using on-line chemiluminescence detection. J. Chromatogr. A, 2000, 867: 271 – 279.
    Liu, B. F.; Ozaki, M.; Utsumi, Y.; Hattori, T.; Terabe, S. Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal. Chem., 2003, 75: 36 – 41.
    Velasco, J.G.. Electroluminescence, Electroanalysis, 1991, 3: 261 – 271.
    Deng, Y., Henion, J., Li, J., Thibault, P., Wang, C., Harrison, D. J., Chip-based capillary electrophoresis/mass spectrometry determination of carnitines in human urine, Anal. Chem., 2001, 73: 639 – 646.
    Wen, J.; Lin, Y.; Xiang, F.; Matson, D. W.; Udseth, H. R.; Smith, R. D. Microfabricated isoelectric focusing device for direct electrospray ionisation-mass spectrometry. Electrophoresis, 2000, 21: 191 – 197.
    Licklider, L.; Wang, X.; Desai, A.; Tai, Y.; Lee, T. D. A micromachined chip-based electrospray source for mass spectrometry. Anal. Chem., 2000, 72: 367 – 375.
    Kim, J. S.; Knapp, D. R. Miniaturized multichannel electrospray ionisation emitters on poly(dimethylsiloxane) microfluidic devices. Electrophoresis, 2001, 22: 3993 – 3999.
    Schultz, G. A.; Corso, T. N.; Prosser, S. J.; Zhang, S. A fully integrated monolithic microchip electrospray device for mass spectrometry. Anal. Chem., 2000, 72: 4058 – 4063.
    Lacher, N. A.; Garrison, K. E.; Martin, R. S.; Lunte, S. M. Microchip capillary electrophoresis/electrochemistry. Electrophoresis, 2001, 22: 2526 – 2536.
    Vandaveer, W.R., Pasas, S.A., Martin, R.S., Lunte, S.M. Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis, 2002, 23: 3667 – 3677.
    Gerhardt, G. C.; Cassidy, R. M.; Baranski, A. S. Square-wave voltammetry
    
    
    detection for capillary electrophoresis. Anal. Chem. 1998, 70: 2167 – 2173.
    Gerhardt, G. C.; Cassidy, R. M.; Baranski, A. S. Adsorption-based electrochemical detection of nonelectrochemically active analytes for capillary electrophoresis. Anal. Chem., 2000, 72: 908–915.
    Wilke, S.; Schürz, R.; Wang, H. Amperometric ion detection in capillary zone electrophoresis by ion transfer across a liquid-liquid microinterface. Anal. Chem. 2001, 73: 1146 – 1154.
    Cheng, C.; Lee, K.; Chang, S.; Chen, D.; Yu, C.; Chen. C. Capillary-electrode alignment by an optical-fiber Connector for amperometric detection in capillary electrophoresis. Anal. Chem., 2002, 74: 3906 – 3910.
    Zemann, A. J.; Schnell, E.; Volgger, D.; Bonn, G. K. Contactless conductivity detection for capillary electrophoresis. Anal. Chem., 1998, 70: 563 – 567.
    Brazill, S. A.; Kim, P. H.; Kuhr, W.G. Capillary gel electrophoresis with sinusoidal voltammetric detection: a strategy to allow four-“color” DNA sequencing. Anal. Chem., 2001, 73: 4882 – 4890.
    Osbourn, D. M.; Lunte, C. E. Cellulose acetate decoupler for on-column electrochemical detection in capillary electrophoresis. Anal. Chem., 2001, 73: 5961 – 5964.
    Klett, O.; Nyholm, L. Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis. Anal. Chem., 2003, 75: 1245 – 1250.
    Woolley, A. T.; Lao, K.; Glazer, A. N.; Mathies, R. A. Capillary electrophoresis chips with integrated electrochemical detection. Anal. Chem., 1998, 70: 684 – 688.
    Rossker, J. S.; Ferrigno, R.; Girault, H. H. Electrophoresis with electrochemical detection in a polymer microdevice. J. Electroanal. Chem., 2000, 492: 15 – 22.
    Chen, D.; Hsu, F.; Zhan, D.; Chen, C. Palladium film decoupler for
    
    
    amperometric detection in electrophoresis chips. Anal. Chem., 2001, 73: 758 – 762.
    Wu, C. C.; .Wu, R. G.; Huang, J. G.; Lin, Y. C.; Chang, H. C. Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection. Anal. Chem., 2003, 75: 947 – 952.
    Huang, X.; Zare, R. N.; Sloss, S.; Ewing, A. E. End-column detection for capillary zone electrophoresis. Anal. Chem., 1991, 63: 189 – 192.
    Lu, W. Z.; Cassidy, R. M. Background noise in capillary electrophoretic amperometric detection. Anal. Chem., 1994, 66: 200 – 204.
    Wang, J.; Tian, B.; Sahlin, E. Micromachined electrophoresis chips with thick-film electrochemical detectors. Anal. Chem., 1999, 71: 5436 – 5440.
    Martin, R. S.; Ratzlaff, K. L.; Huynh, B. H.; Lunte, S. M. In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. Anal. Chem., 2002, 74: 1136 – 1143.
    Mangru, S. D.; Harrison, D. J. Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis. Electrophoresis, 1998, 19: 2301 – 2307.
    Gawron, A. J.; Martin, R. S.; Lunte, S. M. Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips. Electrophoresis, 2001, 22: 242 – 248.
    Martin, R. S.; Gawron, A. J.; Fogarty, B. A.; Regan, F. B.; Dempsey, E.; Lunte, S. M. The carbon paste-based electrochemical detectors for microchip capillary electrophoresis / electrochemistry. Analyst, 2001, 126: 277 – 280.
    O’Shea, T. J.; Lunte, S. M. Chemically modified microelectrodes for capillary electrophoresis/electrochemistry. Anal. Chem., 1994, 66: 307 – 311.
    Zhou, J.; Lunte, S. M. Membrane-based on-column mixer for capillary electrophoresis /electrochemistry. Anal. Chem., 1995, 67: 13 – 18.
    Wang, J., Tian, B., Sahlin, E. Integrated electrophoresis chips/amperometric
    
    
    detection with sputtered gold working electrodes. Anal. Chem., 1999, 71: 3901 – 3904.
    Martin, R. S.; Gawron, A. J.; Lunte, S. M. Dual-Electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal. Chem., 2000, 72: 3196 – 3202.
    Hilmi, A.; Luong, J. H. T. Micromachined electrophoresis chips with electrochemical detectors for analysis of explosive compounds in soil and groundwater. Environ. Sci, Technol., 2000, 34: 3046 – 3050.
    Schwarz, M. A.; Galliker, B.; Fluri, K.; Kappes, T.; Hauser, F. C. A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device. Analyst, 2001, 126: 147 – 151.
    Gavin, P. F.; Ewing, A. G. Continuous separations with microfabricated electrophoresis – electrochemical array detection. J. Am. Chem. Soc., 1996, 118: 8932 – 8936.
    Gavin, P. F.; Ewing, A. G. Characterization of electrochemical array detection for continuous channel electrophoretic separations in micrometer and submicrometer channels. Anal. Chem. 1997, 69: 3838 – 3845.
    Woolley, A. T.; Lao, K.; Glazer, A. N.; Mathies, R. A. Capillary electrophoresis chips with integrated electrochemical detection. Anal. Chem., 1998, 70, 684 – 688.
    Verpoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis 2002, 23: 677 – 712.
    Bilitewski, U.; Genrich, M.; Kadow, S.; Mersal, G. Biochemical analysis with microfluidic systems. Anal. Bioanal. Chem., 2003, 377: 556 – 569.
    McClain, M. A.; Culbertson, C. T.; Jacobson, S.C.; Ramsey, J. M. Flow cytometry of escherichia coli on microfluidic devices. Anal. Chem. 2001, 73: 5334 – 5338.
    Gottschlich, N.; Jacobson, S. C.; Culbertson, C. T.; Ramsey, J. M.
    
    
    Two-dimensional electrochromatography/capillary electrophoresis on a microchip. Anal. Chem., 2001, 73: 2669 – 2674.
    Cheng, S. B.; Skinner, C. D.; Taylor, J.; Attiya, S.; Lee, W. E.; Picelli, G.; Harrison, D. J. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal. Chem. 2001, 73: 1472 – 1479.
    Haab B. B.; Mathies, R. A. Single-Molecule detection of DNA separations in microfabricated capillary electrophoresis chips employing focused molecular streams. Anal. Chem., 1999, 71: 5137 – 5145.
    Hutt, D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration lester. Anal. Chem., 1999, 71: 4000 – 4006.
    Chen, S.; Lillard, S. J. Continuous cell introduction for the analysis of individual cells by capillary electrophoresis. Anal. Chem., 2001, 73: 111 – 118.
    Zabzdyr, J. L.; Lillard, S. J. Measurement of single-cell gene expression using capillary electrophoresis. Anal. Chem., 2001, 73: 5771 – 5775.
    Fu, A. Y.; Chou, H.; Spence, C.; Arnold, F. H.; Quake S. R. An integrated microfabricated cell sorter. Anal. Chem., 2002, 74: 2451 – 2457.
    Huang, Y.; Joo, S.; Duhon, M.; Heller, M.; Wallace, B.; Xu, X. Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal. Chem., 2002, 74: 3362 – 3371.
    Macounová, K.; Cabrera, C. R.; Holl, M. R.; Yager, P. Generation of natural ph gradients in microfluidic channels for use in isoelectric focusing. Anal. Chem., 2000, 72: 3745 – 3751.
    Macounová, K.; Cabrera, C. R.; Yager, P. Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. Anal. Chem., 2001, 73: 1627 – 1633.
    Cabrera, C. R.; Finlayson, B.; Yager, P. Formation of natural ph gradients in a
    
    
    microfluidic device under flow conditions: model and experimental validation. Anal. Chem., 2001, 73: 658 – 666.
    Chabinyc, M. L.; Chiu, D. T.; McDonald, J. C.; Stroock, A. D.; Christian, J. F.; Karger, A. M.; Whitesides, G. M. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem., 2001, 73: 4491 – 4498.
    Dodge, A.; Fluri, K.; Verpoorte, E.; de Rooij, N. F. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal. Chem., 2001, 73: 3400 – 3409.
    Wang, J.; Chen, G.; Chatrathi, M. P. Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector. Anal. Chem., 2003, 75: 935 – 939.
    Wang, J.; Chatrathi, M. P. Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid and acetaminophen. Anal. Chem., 2000, 72: 2514 – 2518.
    Wang, J.; Chatrathi, M. P. Microfabricated electrophoresis chip for bioassay of renal markers. Anal. Chem., 2003, 75: 525 – 529.
    Wang, J.; Pumera, M.; Chatrathi, M. P.; Escarpa, A.; Kkonrad, R.; Griebel, A.; Dorner, W.; Lowe, H. Towards disposable lab-on-a-chip: Poly (methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis, 2002, 23: 596 – 601.
    Baldwin, R. P.; Roussel, T. J.; Crain M. M.; Bathlagunda, V.; Jackson, D. J.; Gullapalli, J.; Conklin, J. A.; Pai, R.; Naber, J. F.; Walsh, K. M.; Keynton, R. S. Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device. Anal.Chem., 2002, 74: 3690 – 3697.
    Hilmi, A.; Luong, J. H. T.; Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips. Anal. Chem., 2000, 72: 4677 – 4682.
    Ng, J. M. K.; Gitlin, L.; Stroock, A. D.; Whitesides, G. M. Components for
    
    
    integrated poly(methylmethacrylate) microfluidic systems. Electrophoresis, 2002, 23: 3461 – 3473.
    McDonald, J. C.; Whitesides, G. M. Poly(methylmethacrylate) as a material for fabricating microfluidic devices. Acc. Chem. Res., 2002, 35: 491 – 499.
    Baldwin, R. P. Electrochemical determination of carbohydrates: enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis. J. Pharm. Biomed. Anal., 1999, 19: 69 – 81.
    王玢,左明雪,人体及动物生理学,高等教育出版社,2001,第二版,p176.
    Boulbou, M. S.; Gourgoulianis, K. I.; Klisiaris, V. K.; Tsikrikas, T. S.; Stathakis, N. E.; Molyvdas, P.A. Diabetes mellitus and Lung Function. Med. Prin. & Prac., 2003, 12: 87 – 91.
    Ishimura, E.; Okuno, S.; Kitatani, K.; Kim, M.; Shoji, T.; Nakatani, T.; Inaba, M.; Nishizawa, Y. Different risk factors for peripheral vascular calcification between diabetics and non-diabetics haemodialysis patients - importance of glycaemic control. Diabetologia, 2002, 45: 1446 – 1448.
    Stegmayr, B., Asplund, K. Diabetes as a risk factor for stroke. A population perspective. Diabetologia, 1995, 38:1061 – 1068.
    Lv, Y.; Zhang, Z.; Chen, F. Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents. Talanta, 2003, 59: 571 – 576.
    Li, B.; Zhang, Z.; Jin, Y. Chemiluminescence flow sensor for in vivo on-line monitoring of glucose in a wake rabbit by microdialysis sampling. Anal. Chim. Acta., 2001, 432: 95 – 100.
    Matsumoto, K.; Waki, K. Simultaneous biosensing of ethanol and glucose with combined use of a rotating bioreactor and a stationary column reactor. Anal. Chim. Acta., 1999, 380: 1 – 6.
    Fang, Q.; Shi, X. T.; Sun, Y. Q.; Fang, Z. L. A flow injection microdialysis sampling chemiluminescence system for in vivo on-line monitoring of glucose in intravenous and subcutaneous tissue fluid microdialysates. Anal. Chem.,
    
    
    1997, 69: 3570 – 3577.
    Wang, C. Y.; Huang, H. J. Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)32+–tripropylamine system. Anal. Chim. Acta., 2003, 498: 61 – 68.
    F?hnrich, K. A.; Pravda, M.; Guilbault, G. G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta, 2001, 54: 531 – 559.
    Laespada, M.E.F., Pavon, J.L.P., Cordero, B.M. Electroluminescent detection of enzymatically generated hydrogen peroxide. Anal. Chim. Acta., 1996, 327: 253 – 260.
    Gerardi, R.D.; Barnett, N.W.; Lewis, S.W. Analytical applications of tris (2,2'-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal. Chim. Acta., 1999, 378: 1 – 41.
    Yamamoto, K.; Ohgaru, T.; Torimura, M.; Kinoshita, H.; Kano, K.; Ikeda, T. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry. Anal. Chim. Acta., 2000, 406: 201–207.
    Evans, S. A. G.; Elliott, J. M., Andrews, L. M., Bartlett, P. N., Doyle, P. J., Denault, G. Detection of hydrogen peroxide at mesoporous platinum microelectrodes. Anal. Chem., 2002, 74: 1322 – 1326.
    Fanguy, J. C., Henry, C. S., Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. Analyst, 2002, 127: 1021 – 1023.
    O’Shea, T. J.; Lunte, S. M. Detection of carbohydrates by capillary electrophoresis with pulsed amperometric detection. Anal. Chem., 1993, 65: 948 – 951.
     Lu, W. Z.; Cassidy, R. M. Pulsed amperometric detection of carbohydrates separated by capillary electrophoresis. Anal. Chem., 1993, 65: 2878–2881.
    Garcia, C. D., Henry, C. S. Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric
    
    
    detection. Anal. Chem., 2003, 75: 4778 – 4783.
    Prabhu, S. V.; Baldwin, R. P. Constant potential amperometric detection of carbohydrates at a copper- based chemically modified electrode. Anal. Chem., 1989, 61: 852 – 856.
    Reim, R. E.; Van Effen, R. M. Determination of carbohydrates by liquid chromatography with oxidation at a nickel(III) oxide electrode. Anal. Chem., 1986, 58: 3203 – 3207.
    Zhou, W.; Baldwin, R. P. Capillary electrophoresis and electrochemical detection of underivatized oligo- and polysaccharides with surfactant – controlled electroosmotic flow. Electrophoresis, 1996, 17: 319 – 324.
    Ye, J. N.; Baldwin R. P. Detection of carbohydrates, sugar acids and alditols by capillary electrophoresis and electrochemical detection at a copper electrode. J. Chromatogr. A, 1994, 687: 141 – 148.
    Nagy, L.; Nagy, G.; Hajos, P. Copper electrode based amperometric detector cell for sugar and organic acid measurements. Sensors and Actuators B, 2001, 76, 494 – 499.
    Hebert, N. E., Kuhr, W. G., Brazill, S. A. Microchip capillary electrophoresis coupled to sinusoidal voltammetry for the detection of native carbyhydrates. Electrophoresis, 2002, 23: 3750 – 3759.
    Luo P. F.; Prabhu S. V.; Baldwin R. P. Constant potential amperometric detection at a copper-based electrode: electrode formation and operation. Anal. Chem., 1990, 62: 752 – 755.
    Prabhu S. V.; Baldwin R. P. Electrocatalysis and detection of amino sugars, alditols, and acidic sugars at a copper-containing chemically modified electrode. Anal. Chem., 1989, 61: 2258 – 2263.
    Luo, M. Z.; Baldwin R. P. Characterization of carbohydrates oxidation at copper electrodes. J. Electroanal. Chem., 1995, 387: 87 – 94.
    Webster, J. R.; Burns, M. A.; Burke, D. T.; Mastrangelo, C. H. Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal.
    
    
    Chem., 2001, 73: 1622 – 1626.
    Harrison, D. J.; Manz, A.; Fan, Z.; Lüdi, H.; Widmer, H. M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem., 1992, 64: 1926 – 1932.
    Martynova, L.; Locascio, L. E.; Gaitan, M.; Kramer, G. W.; Christensen, R. G.; MacCrehan, W. A. Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem., 1997, 69: 4783 – 4789.
    Koh, C. G.; Tan, W.; Zhao, M. Q.; Ricco, A. J.; Fan, Z. H. Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal. Chem., 2003, 75: 4591 – 4598.
    Manica, D. P.; Mitsumori, Y.; Ewing, A. G. Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip. Anal. Chem., 2003, 75: 4572 – 4577.
    Grass, B.; Neyer, A.; Johnck, M.; Siepe, D.; Eisenbeiss, F.; Weber, G.; Hergenroder, R. A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sen. Actuators B, 2001, 72: 249 – 258.
    Galloway, M.; Stryjewski, W.; Henry, A.; Ford, S. M.; Llopis, S.; McCarley, R. L.; Soper, S. A. contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. Anal. Chem., 2002, 74: 2407 – 2415.
    Colón, L. A.; Dadoo, R.; Zare, R. N. Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. Anal. Chem., 1993, 65: 476 – 481.
    Ye, J. N.; Baldwin, R. P. Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode. Anal. Chem., 1994, 66: 2669 – 2674.
    Dou, Y. H.; Bao, N.; Xu, J. J.; Chen, H. Y. A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis. Electrophoresis, 2002, 23: 3558 – 3566.
    
    Liu, J. S.; Yu, J. Q.; Liu, C.; Wang, L. D. Pacific rim workshop on transducers and micro/nano technologies, Xiamen, China, 2002, pp. 115 – 118.
    Berger R, in: M.D.N. Blau,M.E. Blaskovics (Eds.), Physician’s Guide To the Laboratory Diagnosis of Metabolic Diseases,Chapman and Hall Medical,1996,p.65 and p.107.
    Jacobson, S. C.; Kounty, L. B.; Hergenroder, R.; Moore, A. W. Jr; Ramser, J. M. Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal. Chem., 1994, 66: 3472 – 3476.
    Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C. S.; Manz. Micromachining a miniaturized capillary electrophoresisi-based chemical-analysis system on a chip. Science, 1993, 261: 895 – 897.
    Kameoka, J.; Craighead, H. G.; Zhang, H.; Henion, J. A Polymeric microfluidic chip for CE/MS determination of small molecules. Anal. Chem., 2001, 73: 1935 – 1941.
    Luo, P. F.; Hang, F. Z.; Bakdwin, R. P. Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Anal. Chem., 1991, 63: 1702 – 1707.
    Kafil, J. B.; Huber, C. O. A nickel oxide amperometric detector in the chromatographic separation of amino acids. Anal. Chim. Acta., 1985, 175: 275 – 280.
    Johnson, D. C.; LaCourse, W. R. Liquid chromatography with pulsed electrochemical detection at gold and platinum electrodes. Anal. Chem.,1990,62: 589 – 597.
    Clarke, A. P.; Jandik, P.; Rocklin, R. D.; Liu, Y.; Avdalovic, N. An Integrated Amperometry Waveform for the Direct, Sensitive Detection of Amino Acids and Amino Sugars Following Anion-Exchange Chromatography. Anal. Chem., 1999, 71: 2774 – 2781.
    Kappes, T.; Schnierle, P.; Hauser, P. C. Field-portable capillary electrophoresis instrument with potentiometric and amperometric detection.
    
    
    Anal. Chim. Acta., 1999, 393: 77 – 82.
    Engstrom-Silverman, C. E.; Ewing, A. G. Copper wire amperometric detector for capillary electrophoresis. J. Microcolumn. Sep., 1991, 3: 141 – 145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700