用户名: 密码: 验证码:
非平衡凝固合金的相形成及动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非平衡凝固合金由于其特殊的微观结构导致其具有许多优异的性能。随着航天航空及运输工具轻型化的迅速发展,具有较高比强度的Al基快速凝固合金尤其是Al基非晶合金表现出广阔的应用前景。晶化动力学模型在分析非晶相的形成过程及热稳定性方面具有重要的价值,因此一直受到研究者的关注,如何提高模型在实际分析过程中的精确度从而得出正确的分析结果是非晶晶化模型追求的主要目标。
     论文系统研究了非平衡凝固条件下冷却速度和合金成分对Al-Fe-Si合金凝固组织的影响规律;通过制备Al-Fe-Si-(Zr)非晶合金,研究了该合金中纳米晶/非晶复合结构的形成及其动力学机理;为进一步精确描述动力学过程,对等时动力学模型进行了改进,发展了多峰转变模型和孕育动力学模型。
     研究结果表明:非平衡凝固过程中,冷却速度和合金成分对合金的凝固组织具有显著地影响。其中,亚快速凝固条件下,冷却速度决定了Al-Fe-Si合金中凝固组织的相选择,并对其凝固组织中金属间化合物的形貌、尺寸、分布及体积分数有显著影响;快速凝固条件下,Al-Fe-Si-(Zr)合金的冷却速度越高,越有利于非晶相的形成。此外,快速凝固Al-Fe-Si-(Zr)合金中,Fe和Zr元素的含量对非晶相的形成也有明显的促进作用,两者促进非晶相的形成原因却有所不同。
     快速凝固条件下,对Al-Fe-Si-Zr合金的微观组织观察可知,此时的合金为10 nm左右的纳米Al颗粒随机分布在非晶基体中的纳米晶/非晶复合结构中。等时晶化过程动力学分析结果表明其晶化过程分两步进行,且两步晶化过程进行的难易程度大致相当。
     对传统的等时晶化动力学模型进行改进,同时建立了适用于晶化过程中普遍存在的多相转变的多峰转变模型,并以此对具体合金体系的晶化过程进行了研究。结果表明,特别是在具有较小转变温度范围的非晶合金体系中,改进的等时晶化模型和多峰转变模型均具有较高的精确度。此外,还建立了较为完善的晶化孕育动力学模型,并用于具体非晶合金的孕育动力学,分析结果和实验数据保持了较高的一致性。
Compared with conventional crystalline alloys, non-equilibrium solidified alloys show outstanding mechanical properties due to their special microstructure. The rapidly solidified Al-based alloys, especially the Al-based amorphous alloys, are highlighted because of their specific strength, tunable corrosion resistance and high fracture strength. It makes Al-based glasses to be very promising materials for potential aerospace applications. The crystallization kinetic model has been used to improve the analysis result accuracy and get the correct conclusion about crystallization process, which is very important for studying the formation mechanism of amorphous alloys and their thermal stability.
     This thesis mainly focus on the contents below: the solidification behavior of Al-Fe-Si-(Zr) alloy under sub-rapid or rapid solidification, such as the influence of cooling rate on the microstructural evolution of alloy (Chapters 2 and 3); the effect of cooling rate and the composition of alloy on the crystallization of amorphous phase, which formed during the rapid solidification (Chapter 4); the formation and crystallization of nano/amorphous Al-Fe-Si-Zr alloy (Chapter 5); improvement of isochronal crystallization kinetics model and its application to the amorphous alloy (Chapters 6 and 7); establishment of multi-peak transformation kinetics model and incubation kinetics model and the study on their validity in the practical application in chapter 8. The results indicate that:
     The cooling rate and components of alloy agents influence the microstructure of alloy under non-equilibrium condition. In the sub-equilibrium condition, the cooling rate affects no only the phase selection, but also the volume fraction, shape and size of the intermetallic compounds. The increase of cooling rate and component of Fe or Zr in Al-Fe-Si-(Zr) both contribute to the formation of amorphous phase.
     In the as-spun Al89Fe8Si2Zr ribbons, a composite nanocrystalline/amorphous structure formed companied with the average size of nano Al particles of about 10 nm and the crystallization of as-spun composite Al89Fe8Si2Zr was investigated by the continuous heating annealing DSC analysis. The result showed that the crystallization process two progresses, which with the approximately same reaction rates.
     An improved analytical model for isochronal transformation kinetics has been developed. The proposed treatment for the temperature integral and the consequent analytical model for isochronal transformation kinetics have been proved to be more effective than the previous model especially in a narrow temperature interval by numerical method. Moreover, both the multi-peak transformation kinetics model and incubation kinetics model established here show the validity and precision during their practical applications.
引文
[1] W. Kurz, D.J. Fisher.凝固原理[M],毛协民,包冠乾,西北工业大学出版社,西安,1987: 47
    [2]胡德林,张帆.三元合金相图[M],西北工业大学出版社,西安,1955:13
    [3] A.L. Dons, E.K. Jensen, Y. Langsrud, The alstruc microstructure solidification model for industrial aluminum alloys [J], Metallurgical and Materials Transactions A, 1999, 30A: 2135
    [4] P. Duwez, R.H. Willens, Contiuous series of metastable solid solutions in silver-copper alloys [J], J. Appl. Phys., 1960, 31: 1136
    [5] K. Lu, W.D. Wei,J.T. Wang, Microhardness and fracture properties of nanocrystalline Ni-P alloy [J], Scripta. Metall. Mater.,1990, 24: 2319
    [6] K. Lu, J.T. Wang, W.D. Wei, A new method for synthesizing nanocrystalline alloys [J], J. Appl. Phys, 1991, 69: 522
    [7] M.M. Nicolaus, H.R. Sinning, F. Haessner, crystallisation behaviour and generation of a nanocrystalline state from amorphous Co33Zr67 [J], Mater. Sci. Eng., 1992, A150: 101]
    [8] H.Y. Tong, J.T. Wang, B.Z. Ding, et al., The structure and properties of nanocrystalline Fe78B13Si 9 alloy [J], J. Non-Cryst. Sol., 1992, 150: 444
    [9] H.Q. Guo, T. Reininger, H. Kronmuller,et al., Magnetism and Microstructure in Nanocrystalline FeCoZr Ferromagnets [J], Phys. Stat. Sol.,1991, A127: 519
    [10] A. Inoue, M. Watanable, H.M. Kimura, et al., High mechanical strength of quasicrystalline phase surrounded by fcc-Al phase in rapidly solidified Al-Mn-Cea lloys [J], Mater. Trans. JIM., 1992, 33: 723
    [11] M. Watanable, A. Inoue, H.M. Kimura, et al., High mechanical strength of rapidly solidified Al92Mn6Ln2( Ln=Lanthanide Metal) alloys with finely mixed icosahedral and Al phases [J], Mater. Trans. JIM., 1993, 34: 162
    [12] D. Shechtman, I. Blech, D. Gratices, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry [J], Phys. Rev. Let., 1984, 53: 1951
    [13] Y. He, S.J. Poon, G.J. Shiflet, Synthesis and properties of metallic glasses that contain aluminum [J],, Science, 1988, 241: 1640
    [14] A. Inoue, K. Ohtera, K. Kita, T. Masumoto, New amorphous alloys with good ductility in Al-Ce- M (M=Nb, Fe, Co, Ni or Cu) system [J], Jpn. J. Appl. Phys., 1988, 27: L1796
    [15] Y.H. Kim, A. Inoue, T. Masumoto, Ultra high tensile strengths of Al88Y2Ni9M1 (M=Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles [J], Mater. Trans. JIM, 1990, 31: 747
    [16] A. Inoue, H.M. Kimura, K. Sasamori, T. Masumoto, Ultra high strengths of rapidly solidified Al96-XCr3Ce1Cox (x=1, 1.5, and 2%) alloys containing an icosahedral phase as a main component [J], Mater. Trans. JIM, 1994, 35: 85
    [17]郑贻诚,震西编.非晶态物理学[M],北京:科学出版社,1984
    [18] H.Z. Fu, X.G. Geng, High Rate directional solidification and its application in single crystal superalloys [J], Sci. Tech. Adv. Mater., 2001, 2(1):197
    [19]沈宁福,汤亚力,关绍康等.凝固理论进展与快速凝固[J],金属学报,1996,32(7):673
    [20]张海峰,丁炳哲,胡壮麒.块状金属玻璃研究与进展[J],金属学报,2001,37(11):1131
    [21]周尧和,胡壮麒,介万奇.凝固技术[M],北京:机械工业出版社,1998
    [22]程天一,章守华.快速凝固技术与新型合金[M].北京:宇航出版社,1991
    [23] P. Predecki, B.C. Giessen, N.J. Grant, New Metastable Alloy Phases of Gold, Silver and Aluminum [J], Trans. Metall. Soc. AIME, 1965, 233: 1438
    [24] P. Ramachandrarao, M. Laridjani, R.W. Cahn, Diamond as a Splat-Cooling Substrate [J], Z. Metallkunde, 1972, 63(1): 43
    [25] P. Furrer, H. Warlimont, Crystalline and amorphous structures of rapidly solidified Al-Cr alloys [J], Mater. Sci. Eng., 1977, 28: 127
    [26] A.Inoue, A.Kitamura,T.Masumoyo. The effect of aluminum on mechanical properties and thermal stability of(Fe, Co, Ni)-Al-B ternary amorphous alloys [J], J. Mater.Sci, 1981, 16: 1895
    [27] R.O. Suzuki, Y. Komatsu, YK.E. Kobayashi, et al., Formation and crystallization of Al-Fe-Si amorphous alloys [J], J. Mater. Sci., 1983, 18: 1195
    [28] A. Inoue, Y. Bizen, H.M. Kimura, et al., Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing [J], J. mater. Sci. Let., 1987, 6: 811
    [29] A. Inoue, M. Yamamoto, H.M. Kimura, et al., Ductile aluminium-base amorphous alloys with two separate phases [J], J. mater. Sci. Let., 1987, 6: 194
    [30] A.P. Tsai, A. Inoue, T. Masumoto, Formation of metal-metal typealuminum-based amorphous alloys [J], Metal. Trans., 1988, 19A: 1369
    [31] A.P. Tsai, A. Inoue, T. Masumoto, Dutile Al-Ni-Zr amorphous alloys with high mechanical strength [J], J. mater. Sci. Let., 1988,7: 805
    [32] A. Inoue, K. Ohtera, An-Ping et al., Aluminum-based amorphous alloys with tensile strength above 980Mpa (100kg/MMZ) [J], Jpn. J. Appl. Phys., 1988, 27: L479
    [33] M. Pont, J. Gonzalo, K.V. Rao, eta al., Electronic properties of a new class of aluminum-based metallic glasses Al100-x-yTx (La,Y)y with T=Fe, Co, Ni and Cu [J], Phys. Rev. B, 1989, 40: 1345
    [34] A.P. Tsai, T. Kamiyama, Y. Kawamura et al., Formation and precipitation mechanism of nanoscale Al particals in Al-Ni base amorphous alloys [J], Acta. Mater., 1997,45: 1477
    [35] A. Inoue, K. Kita, T. Zhang, An amorphous La55A125Ni20 alloy prepared by water quenching [J], Mater. Trans. JIM, 1989, 30: 965
    [36] L. Angers, M.E. Fine, J.R. Weertman, Efect of Plastic deformation othe coarsening of dispersoids inrapidly solidified Al-Fe-Ce alloy [J], Metall. Trans. A, 1987, 18: 555
    [37] A. Inoue, H.M. Kimuraet et al., Formation, thermal stability and electrical resistivity of quasicrystalline phase in rapidly quenched Al-Cr alloys [J], J. Mater.Sci., 1987, 22: 1758
    [38] D. Shechtman, I. Blech, The microstructure of rapidly solidified A16Mn [J], Metal. Trans. A, 1985, 16: 1005
    [39] R.A. Dunlap, K. Dini, Formation, structure and crystallization of metastabl equasi-crystalline Al-transition metal alloys prepared by rapid solidification [J], Can. J. Phys, 1985, 63: 1268
    [40] X.Z. Li, K.H. Kuo, Decagonal quasicrystals with different periodicities along the ten fold axis in rapidly solidified Al-Ni alloys [J], Philops. mag. Let., 1988, 58: 167
    [41] R.A. Dunlap, K. Dini, Structure and stability of quasicrystalline aluminum transition-metal alloys [J], J. Phys. F, 1986, 16: 11
    [42] Y.K. Kim, A. Inoue, T. Masumoto, Increase in mechanical strength of Al-Y-Ni amorphous alloy by dispersion of nanoscale fcc-Al particles [J], Mater. Trans. JIM. 1991, 32: 331
    [43] YK. Kim, A.Inoue and T.Masumoto. Ultrahigh mechanical strengths of A188Y2Ni10-xMx (M=Mn, Fe or Co) amorphous alloysc ontaining nanoscale fcc-Al particles [J], Mater. Trans. JIM. 1991, 32: 599
    [44] H. Chen, Y. He, G.J. Shiflet, et al., Mechanical Properties of partiallycryatallized aluminum based metallic glasses, Scripta [J], Metall. Mater., 1991, 25: 1421
    [45] J.C. Foley, J.H. Perepezko. Devitrification of Al-Y-Fe amorphous alloys [J], J. Non-crys. Solids., 1996, 205-207: 559
    [46] J.Q. Wang, B.J. Zhang, M.K.Teng, et al., Synthesis, crystallization and Properties of novel Al-Fe-V-Si-Mm metallic glass [J], J. Mater. Sci. Let., 1995, 14: 1403
    [47] T. Gloriant, D.H. Ping, K. Hono, et al., Nanostructured A188Ni4Sm8 alloys investigated by transmission electron and field-ion microscopies [J], Mater. Sci. Eng., 2001, 304-306: 315
    [48] N. Bassim, C.S. Kiminami, M.J. Kaufman et al., Crystallization behavior of amorphous A188Y9Ni5Co2 alloy [J], Mater. Sci. Eng., 2001, A304-306: 332
    [49] K. Hono, Y. Zhang, A.P. Tsai, et al., Solute partitioning in partially crystallized A l-Ni-Ce(-Cu) metallic glasses [J], Scr. Metall. Mater., 1995, 32: 191
    [50] M. Matsuura, M. Sakurai, S.H. Kim, et al., The role of small additives for nanocrystalline formation from amorphous matrix [J], Mater. Sci. Eng., 1996, A217-218: 397
    [51] M. Matsuura, M. Sakurai, K. Suzuki, et al., Local structure change of Ce and Cu in the course of nanocrystalline from amorphous Al87Ni8Ce3Cu2 [J], Mater. Sci. Eng., 1997, A226-228: 511
    [52] Z.C. Zhong, X.Y. Jiang, et al, Microstructure and harding of Al-based nonophase composites [J], Mater. Sci. Eng., 1997, A226-228: 531
    [53] Y.K. Kim, K. Hiraga, A. Inoue,et al., Crystallization and high mechanical strength of Al-based amorphous alloys [J], Mater. Trans. JIM., 1994, 35: 293
    [54] T. Gloriant, A.L. Greer, Al-based nanocrystalline composites by rapid solidification of Al-Ni-Sm alloys [J], Nanostruct. Mater., 1998, 10: 389
    [55] X.Y. Jiang, Z.C. Zhong, A.L. Greer, Particle-size efects in primary Crystallization of amorphous Al-Ni-Y alloys [J], Mater. Sci. Eng, 1997, A226-22: 789
    [56] A. Inoue, A. Kato, T. Zhang, New amorphous alloys with significant supercooled liquid region and large reduced glass transition temperature [J], Mater Trans, 1991, 32(7): 609
    [57] A. Inoue, T. Nakamura, N. Nishiyama, Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J], Mater Trans [J], 1992, 33(10): 937
    [58] H. Men, Z. Q. Hu, J. Xu, Bulk metallic glass formation in the Mg–Cu–Zn–Ysystem [J], Scripta Materialia, 2002, 46: 702
    [59] M. Ohnuma, N.H. Pryds, S. Linderoth, Bulk amorphous (Mg0.98Al0.02)60Cu30Y10 alloy [J], Scripta. Mater., 1999, 41(8): 893
    [60] S. Linderoth, N. H. Pryds, M. Ohnuma, On the stability and crystallisation of bulk amorphous Mg–Cu–Y–Al alloys [J], Mater. Sci. Eng. A, 2001, 304-306: 656
    [61]李荣华,黄继华等,镁基复合材料研究现状与展望[J],材料导报,2002, 16(8): 19
    [62] R.E. Franck, J.A. Hawk, Effet of very High temperatures on the mechanical properties of Al-Fe-V-Si alloy [J], Scripata. Metal., 1989, 23(1): 113
    [63] M.S. Zedalis, D.J. Skinner, Proc. Structural light weight alloy for aerospace applicatons [M]. TMS-AIME, LasVegas, NV, 1989: 323
    [64] L.M. Rylands, R.L. Rye, D. Rayhould,etal. Coarsening of precipitates and dispersoids in aluminum alloy materials [J], J. Mater. Sci., 1994, 29: 1895.
    [65] S. Hariprasad, S.L. Sastru, K.L. Jenna. Microstructure and mechanical properties of dispersion strengthened by atomized melt deposition process [J], Metal. Trans., 1993, 24 A(4): 865
    [66]马卫红,坚增运,严文.液态金属的深过冷及其凝固组织[J],西安工业学院学报,2000, 20(1): 49
    [67]王祖锦,黄涛,李建国等.亚快速定向凝固中枝胞转变的原位观测[J],材料研究学报,1995, 9(4):167
    [68]蒋成保,胡汉起,王佩君等.晶体生长方向对亚快速凝固结晶形貌的影响[J],航空学报,1995, 16(3):331
    [69]傅恒志,王祖锦.亚快速定向凝固晶体生长的非稳态演化[J],材料研究学报,1996, 10(3):253
    [70] A. Inoue, H.M. Kimura, K. Sasamori, et al., Ultrahigh strengths of rapidly solidified Al96-XCr3Ce1Cox (x=1, 1.5, and2%) alloys containing an icosahedral phase as a main component [J], Mater. Trans. JIM, 1994, 35: 85
    [71]王胜海,边秀房,贾玉波.铝基合金超厚带非晶的形成[J],科学通报,2003, 48(14): 1521
    [72]马学鸣,杨元政,董远达,等.用机械合金化制备Al-Y-Ni非晶合金[J],金属学报,1992, 28: 2
    [73] Z.H. Chen, X.Y. Jiang, Y. Wang, et al., Superhigh pressure consolidation of Al-based alloy quasicrystalline powders [J], Scripta Metallurgica et Matrialia, 1991, 25(1): 159
    [74] K. Chattopadyay, R. Ramachandrarao, S. Lele, et al., Proc. 2nd Int. Conf. on Rapidly Quenched Metals, ed. By Grant N J and Giessen B C, Cambridge,MA: MIT Press, p. 157
    [75] R.B. Schwarz, C.C. Koch, Formation of Amorphous Alloys by The Mechanical Alloying of Crystalline Powders of Pure Metals and Powders of Intermetallics [J], Appl. Phys. Lett, 1986
    [76] K. Chattopadyay, R. Ramachandrarao, S. Lele, et al., Proc. 2nd Int. Conf. on Rapidly Quenched Metals, ed. By Grant N J and Giessen B C, Cambridge, MA: MIT Press, p. 157
    [77] P. Furrer, H. Warlimont, Crystalline and Amorphous Structures of Rapidly Solidified Al-Cr Alloys [J], Mater. Sci. Eng., 1977, 28: 127
    [78] A. Inoue, M. Yamamoto, H.M. Kimura, et al., Ductile aluminium-base amorphous alloys with two separate phases [J], J. Mater. Sci. Lett., 1987, 6: 194
    [79] A. Inoue, K. Ohtera, A. P. Tsai, et al.. New amorphous alloys with good ductility in Al-YM and Al-La-M (M=Fe, Co, Ni or Cu) systems [J], Jpn J Appl Phys, 1988, 27: L280
    [80] A. Inoue, K. Obtera, T. Masumoto, New amorphous Al-Y, Al-La and Al-Ge alloys prepared by melt spin ning [J], Jpn J Appl Phys, 1988, 27(5): L736
    [81] A. Inoue, K. Ohtera, T. Zhang, et al., New Amorphous Al-Ln (Ln=Pr, Nd, Sm or Gd) Alloys Prepared by Melt Spinning [J], Jpn J Appl Phys, 1988 27: L1583
    [82] A.L. Greer. Confusion principle design [J], Nature.1993, 366: 303
    [83]张林,铝基合金液态和非晶态结构的微观不均匀性[M]。山东工业大学博士论文,1999
    [84] W.E. Brower, S.C. Megli., Influence of superheat and hammer speed on the formation of metallic glasses [J], Mater. Sci. Eng. A, 1991, 133: 846
    [85] L. Zhang, Y. Wu, X.F. Bian, et al., Effects of quenching temperature on the chemical short-range order in Al-Fe-Ce alloys [J], J. Mater. Sci. Lett., 1999, 18: 1977
    [86] H.Y. Hsieh, T. Egami, Y. He, Poon S J. Short range ordering in amorphous Al90FexCe10-x [J], J. Non-Cryst. Solids., 1991, 135: 248
    [87] M.D. Nguyen, D. Mayu, A. Pasture, et al. Electronic structure and hybridization effects in transition-metal-polyvalent-metal alloys [J], J. Phys. F., 1985, 15: 1911
    [88] J.W. Cahn, L.A. Bendersky, An isotropic glass phase in Al-Fe-Si formed by the first order transition [J], Amorphous and Nanocrystalline Metals, edited by R. Busch et al., MRS Symposia Proceedings No. 806 (Materials Research Society, Pittsburgh, 2004), pp. 139
    [89] L.A. Bendersky, A.J. Mcalister, F.S. Biancaniello. Phase transformation during annealing of rapidly solidified Al-rich Al-Fe-Si alloys [J], Metall. Trans. A., 1988, 19: 2893
    [90] L.A. Bendersky. M.J, Kaufman, W.J. Boettinger, et al., Solidification of an 'amorphous' phase in rapidly solidifie d Al-Fe-Si alloys [J], Mater. Sci. Eng., 1988, 98: 213
    [91] A. Inoue, H.M. Kimura, K. Sasamori, et al.. Ultrahigh strengths of rapidly solidified Al96-xCr3Ce1Cx (x=1, 1.5, and 2 %) alloys containing an icosahedral phase as a main component [J], Mater. Trans. JIM., 1994, 35: 85
    [92] Z.C. Zhong, X.Y. Jiang, A.L. Greer, Nanocrystallization in Al-based amorphous alloys [J], Phil. Mag. B., 1997, 76: 505
    [93] X.J. Jiang, Z.C. Zhong, A.L. Greer, Particle-size effects in primary crystallization of amorphous Al-Ni-Y alloys [J], Mater. Sci. Eng. A., 1997, 226-228: 789
    [94] D.R. Allen, J. C. Foley, J. H. Perepezko, Nanocrystal development during primary crystallization of amorphous alloys [J], Acta. Metall. Mater., 1998, 46: 431
    [95]王一禾,杨鹰善.非晶态合金[M],北京:冶金工业出版社,1984
    [96]郭贻诚,王震西.非晶态物理学[M],北京:科学出版社,1984
    [97]卢博斯基F E.非晶态金属合金[M],北京:冶金工业出版社,1989
    [98]卢柯.非晶态合金向纳米晶体的相转变[J],金属学报,1994, 30 (1) : B1
    [99] M. Calin, U. Koster, Nanocrystallization of Al-Ni-Y and Al-Ni-Nd metallic glasses [J], Mater. Sci. Forum.,1998, 269-272: 749
    [100] R.I. Wu, G. Wilde, J.H. Perepezko, Glass formation and nanostructure development in Al-based alloys [J], Mat. Res. Soc. Symp. Proc., 2000, 581: 101
    [101] K.F. Kelton, Time-dependent nucleation in partitioning transformations [J], Acta. Mater., 2000, 48: 1967
    [102] A.K. Gangopadhyay, T.K. Croat. K.F. Kelton. Acta. Mater., The effect of phase separation on subsequent crystallization in Al88Gd6La2Ni4 [J], 2000, 48: 4035
    [103] D.R. Allen, J.C. Foley, J.H. Perepezko, Nanocrystal development during primary crystallization of amorphous alloys [J], Acta. Mater.,1998, 46: 431
    [104] T. Gloriant, D.H. Ping, K. Hono, et al.. Nanostructured A188Ni4Sm8 alloys investigated by transmission electron and field-ion microscopies [J], Mater. Sci. Eng., 2001, 304-306: 315
    [105] N. Bassim, C.S. Kiminami, M.J. Kaufman, et al.. Crystallization behavior ofamorphous A188Y9Ni5Co2 alloy [J], Mater. Sci. Eng., 2001, 304-306: 332
    [106] L. Battezzati, S. Pozzovivo, P. Rizzi, Mater. Trans., Phase Transformations in Al87Ni7Ce6 and Al87Ni7Nd6 Amorphous Alloys [J], 2002, 43: 2593
    [107] R.I. Wu, G. Wilde, J.H. Perepezko, Glass formation and nanostructure development in Al-based alloys [J], Mat. Res. So. Symp. Proc., 2000, 581: 101
    [108] J.Q. Wang. X.C. Chang, W.L. Hou, et al., Crystallization behaviour of Al-based amorphous alloy and nanocomposites by rapid quenching [J], Phil. Mag. Lett., 2000 . 80: 349
    [109] F. Ye, K. Lu, Crystallization kinetics of Al–La–Ni amorphous alloy [J], J. Non-Cryst. Solid., 2000, 262: 228
    [110] H. Chen, Y. He, G.J. Shiflet, et al., Deformation-induced nanocrystal formation in shear bands of amorphous alloys [J], Nature, 1994, 367: 541
    [111] Y. He, G.J. Shiflet, S.J. Poon, Ball milling-induced nanocrystal formation in aluminum-based metallic glasses [J], Acta. Metall. Mater., 1995, 43: 83
    [112] L.V. Meisel, P.J. Cote, Nonisothermal Transformation Kinetics: Application to Metastable Phases [J], Acta. Metall., 1983, 31: 1053
    [113] J.M. Criado, A. Ortega, Non-Isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law [J], Acta. Metall, 1987, 35: 1715
    [114] S. Vyazovkin, Computational aspects of kinetics analysis. Part C. The ICTAC Kinetics Project-the light at the end of the tunnel [J], Thermochim. Acta. 2000, 355: 155.
    [115] R.E. Lyon. An integral method of nonisothermal kinetic analysis [J], Thermochim. Acta., 1997, 297: 117.
    [116] J. Vázquez, C. Wagner, P. Villares, et al., A theoretical method for determining the crystallization fraction and kinetics parameters by DSC, using non-isothermal techniques [J], Acta. Mater., 1996, 44: 4807.
    [117] J. Vázquez, D. García-Barreda, P.L. López-Alemany, et al., A study on non-isothermal transformation kinetics Application to the crystallization of the Ge0.18Sb0.23Se0.59 glassy alloy [J], Mater Chem Phys 2006, 96: 107.
    [118] G. Ruitenberg, E. Woldt, A.K. Petford-Long. Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions [J], Thermochim. Acta., 2001, 378: 97.
    [119] J. Málek. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J], Thermochim. Acta., 1995, 267: 61.
    [120] D.W. Henderson. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids [J], J. Non-Cryst. Solids., 1979, 30: 301.
    [121] D.W. Henderson, Experimental analysis of non-isothermal transformations involving nucleation and growth [J], J Thermal. Anal. 1979, 15: 325.
    [122] T.J.W. DeBruijn, W.A. DeJong, P.J. VanDenBerg. Kinetic Parameters in Avrami-Erofeev Type Reactions from, Isothermal and Non-Isothermal Experiments [J], Thermochim. Acta. 1981, 45: 315
    [123] E.J. Mittemeijer. Analysis of the kinetics of phase transformations [J], J. Mater. Sci., 1992, 27: 3977.
    [124] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer. Determination and interpretation of isothermal and non-isothermal transformation kinetics: the effective activation energies in terms of nucleation and growth [J], J. Mater. Sci., 2002, 37: 1321.
    [125] F. Liu, F. Sommer, E.J. Mittemeijer. An Analytical Model for Isothermal and Isochronal Transformation Kinetics [J], J. Mater. Sci., 2004, 39: 1621.
    [126] J. Farjas, P. Roura. Modification of the Kolmogorov-Johnson- Mehl-Avrami rate equation for the non-isothermal experiments and its analytical solution [J], Acta. Mater., 2006, 54: 5573.
    [127] C.E. Bates, T. Landing, G. Seitanakis. Quench factor analysis: A powerful tool comes of a geometrical [J], Heat Treating, 1985, 12: 13.
    [128] R.W. Thomas, H. Cama, P.V. Evans, et al., Proceedings of the 4th Decennial International Conference on Solidification Processing, University of Sheffield, Sheffield, UK, 1997, p. 559.
    [129] M.W. Meredith, A.L. Greer, P.V. Evans, Proceedings of the 4th Decennial International Conference on Solidification Processing, University of Sheffield, Sheffield, UK, 1997, p. 541.
    [130] P.V. Evans, J. Worth, A. Bosland, et al., Proceedings of the 4th Decennial International Conference on Solidification Processing, University of Sheffield, Sheffield, UK, 1997, p. 531.
    [131] A.G.C. Gwyer, H.W.L. Phillips, The ternary system: Al–Si–Fe in the constitution of alloys with Si and Fe [J], J. Inst. Met. 1927, 38: 44
    [132] M. Armand, Rev. Alum., 1955, 1: 305
    [133] H.W.L. Phillips. Annotated Equilibrium Diagrams of some Aluminium Alloys N025 [M], London, Inst. Met.,1959: 66
    [134] H. Nishimura, Mem. Coll. Eng. Kyoto Imp., Univ. 1933, 7: 285
    [135] V.G. Rivlin, G.V. Raynor, Phase Equilibria in Iron Ternary Alloys. IV.--Critical Evaluation of Constitution of Aluminium--Iron--Silicon System[J], Int. Met. Rev., 1981, 26: 133
    [136] M.W. Meredith, A.L. Greer, P.V. Evans, Proceedings of the 4th Decennial International Conference on Solidification Processing, University of Sheffield, Sheffield, UK, 1997, p. 541
    [137] A. Roosz, H.E. Exner, in: T.S. Piwonka, V. Voller, L. Katgerman (Eds.), Modelling of Casting, Welding and Advanced Solidification Processes VI, TMS, Warrendale, PA, USA, 1993, p.243-250.
    [138] V.R. Voller, S. Sundarraj, in: T.S. Piwonka, V. Voller, L. Katgerman (Eds.), Modelling of Casting, Welding and Advanced Solidification Processes VI, TMS, Warrendale, PA, USA, 1993, p. 251-260
    [139] A. Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J], Acta. Mater., 2000, 48: 279
    [140] A. Inoue. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems [J], Pro. Mater. Sci., 1998, 43: 365
    [141] G.K. Williamson, W.H. Hall. X-ray Line Broadening from Filed Aluminum and Tungsten [J], Acta. Metall. 1953, 1: 22
    [142] P. Schumacher, P. Cizek. Heterogeneous nucleation mechanism in Al–Fe–Si amorphous alloys [J], Mater. Sci. Eng. 2001, A 304-306: 215
    [143] R.O. Suzuki, Y. Komatsu, K.F. Kobayashi, et al., Formation and crystallization of Al-Fe-Si amorphous alloys [J], J. Mater. Sci., 1983, 18: 1195
    [144] E. Matsubara, Y. Waseda, A. Inoue, et al., Anomalous X-ray scattering on amorphous Al87Y8Ni5 and Al90Y10 alloys [J], Z. Naturaforsch, 1989, 44a: 814
    [145] R. Sabet-Sharghi, Z. Altounian, W.B. Muir, Formation, structure, and crystallization of Al-rich metallic glasses [J]. J. Appl. Phys., 1994, 75(9): 4438
    [146] J.Q. Wang, B.J. Zhang, M.K. Tseng, et al., Synthesis, crystallization and properties of novel Al-Fe-V-Si-Mm metallic glass [J], J. Mater. Sci. Lett., 1995, 14(20): 1403
    [147] J.Y. Qin, X.F. Bian, S.I. Sliusarenko, et al., J. Phys-condens Mat. 1998, 10: 1211
    [148] L.V. Meisel, P.J. Cote. Nonisothermal Transformation Kinetics: Application to Metastable Phases [J], Acta. Metall., 1983, 31: 1053
    [149] E. Woldt, The relationship between isothermal and non-isothermal description of Johnson-Mehl- Avrami-Kolmogorov kinetics [J], J. Phys. Chem. Solids., 1992, 53: 521
    [150] D.W. Henderson, Thermal analysis of non-isothermal crystallization kineticsin glass forming liquids [J], J. Non-Cryst. Solids., 1979, 30: 301
    [151] J.M. Criado, A. Ortega, Non-Isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law [J], Acta. Metall., 1987, 35: 1715
    [152] C. Michaelsen, M. Dahms, On the determination of nucleation and growth kinetics by calorimetry [J], Thermochim. Acta., 1996, 288: 9
    [153] C. Michaelsen, M. Dahms. On the determination of. nucleation and growth kinetics by calorimetry [J], Thermochim. Acta., 1996, 288: 9
    [154] A. Borrego, G. González-Docel, Calorimetric study of 6061-Al-15 vol.% SiCw PM composites extruded at different temperatures [J], Mater. Sci. Eng., 1998, A245: 10.
    [155] A. Varschavsky, E. Donoso, Energetic and kinetic evaluations in a quasi-binary Cu–1at.% Co2Si alloy [J], Mater. Lett., 2003, 57: 1266.
    [156] M.E. Valencia, A.N.J. Galeano, L.J. Vega. Kinetic theory of the overlapping phase transformations case of the dilatometric method [J], Acta. Mater., 2004, 52: 1083.
    [157] M. Avrami, Kinetics of phase change i: General theory [J], J. Chem. Phys. 1939, 7: 1103.
    [158] M. Avrami, Kinetics of phase change ii: Transformation-Time Relations for Random Distribution of Nuclei [J], J. Chem. Phys., 1940, 8: 212.
    [159] M. Avrami, Kinetics of phase change iii: Granulation, Phase Change, and Microstructure [J], J. Chem. Phys., 1941, 9: 177.
    [160] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth [J], Trans. Am. Inst. Min. Met. Eng., 1939, 135: 416.
    [161] A.N. Kolmogorov, On the Static Theory of Metal Crystallization [J], Izv Akad Nauk SSSR, Ser Fiz 1937, 3: 355.
    [162] R.E. Lyon, An integral method of nonisothermal kinetic analysis [J], Thermochim. Acta., 1997, 297: 117.
    [163] J. Vázquez, C. Wagner, P. Villares, et al., A theoretical method for determining the crystallization fraction and kinetics parameters by DSC, using non-isothermal techniques [J], Acta. Mater., 1996, 44: 4807.
    [164] J. Vázquez, D. García-Barreda, P.L. López-Alemany, et al. A study on non-isothermal transformation kinetics Application to the crystallization of the Ge0.18Sb0.23Se0.59 glassy alloy [J], Mater. Chem. Phys., 2006, 96: 107.
    [165] G. Ruitenberg, E. Woldt, A.K. Petford-Long, Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions [J], Thermochim. Acta., 2001, 378: 97.
    [166] J. Málek., The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J], Thermochim. Acta., 1995, 267: 61.
    [167] D.W. Henderson, Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids [J], J Non-Cryst. Solids., 1979, 30: 301.
    [168] D.W. Henderson, Experimental analysis of non-isothermal transformations involving nucleation and growth [J], J. Thermal. Anal., 1979, 15: 325.
    [169] T.J.W. DeBruijn, W.A. DeJong, P.J. VanDenBerg, Kinetic Parameters in Avrami-Erofeev Type Reactions from, Isothermal and Non-Isothermal Experiments [J], Thermochim. Acta., 1981, 45: 315
    [170] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer, Determination and interpretation of isothermal and non-isothermal transformation kinetics: the effective activation energies in terms of nucleation and growth [J], J. Mater. Sci., 2002, 37: 1321
    [171] Liu F, Sommer F, Mittemeijer EJ. An Analytical Model for Isothermal and Isochronal Transformation Kinetics [J], J Mater Sci 2004, 39: 1621
    [172] J. Farjas, P. Roura, Modification of the Kolmogorov-Johnson- Mehl-Avrami rate equation for the non-isothermal experiments and its analytical solution [J], Acta. Mater., 2006, 54: 5573
    [173] S. Vyazovkin, Computational aspects of kinetics analysis. Part C. The ICTAC Kinetics Project-the light at the end of the tunnel [J], Thermochim. Acta., 2000, 355: 155
    [174] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer. The Isothermal and Isochronal Kinetics of the Crystallization of Bulk Amorphous Pd40Cu30P20Ni10 [J], Acta. Mater., 2002, 50: 1319.
    [175] F. Liu, F. Sommer, E.J. Mittemeijer, Determination of Nucleation and Growth Mechanisms of the Crystallization of amorphous Alloys; Application to Calorimetric Data [J], Acta. Mater., 2004, 52:3207
    [176] M. Qi, H.J. Fecht, On the thermodynamics and kinetics of crystallization of a Zr-Al-Ni-Cu-based bulk amorphous alloy [J], Mater. Charact., 2001, 47: 215.
    [177] S.O. Park, J.C. Lee, Y.C. Kim, Crystallization kinetics of the Cu43Zr43Al7Ag7 amorphous alloy [J], Mater. Sci. Eng. A, 2007, 449–451: 561.
    [178] K.G. Raval, K.N. Ladb, A. Pratap, et al. Crystallization kinetics of a multicomponent Fe-based amorphous alloy using modulated differential scanning calorimetry [J], Thermochim. Acta., 2005, 425: 47
    [179] H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis [J], Anal. Chem., 1957, 29: 32
    [180]王东江,相变动力学模型的改进及其在非晶晶化过程中的应用[M],天津大学学位论文,2004
    [181] M.J. Starink, On the meaning of the impingement parameter in Kinetic-Equations for Nucleation and Growth Reactions [J], J. Mater. Sci., 2001, 36: 4433
    [182] Y.C. Liu, F. Sommer, E.J. Mittemeijer, The austenite–ferrite transformation of ultralow-carbon Fe–C alloy; transition from diffusion- to interface-controlled growth [J], Acta Mater., 2006, 54: 3383
    [183] C. Michaelsen, M. Dahms, On the determination of nucleation and growth kinetics by calorimetry [J], Thermochim., Acta 1996, 288: 9
    [184] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer, The isothermal and isochronal kinetics of the crystallisation of bulk amorphous Pd40Cu30P20Ni10 [J], Acta Mater., 2002, 50: 1319
    [185] E. Pineda, D. Crespo, Microstructure development in Kolmogorov, Johnson-Mehl, and Avrami nucleation and growth kinetics [J], Phys. Rev. B, 1999, 60: 3104
    [186] B.J. Kooi, Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: Extension of the Johnson-Mehl-Avrami-Kolmogorov theory [J], Phys. Rev. B , 2004, 70: 224108
    [187] B.J. Kooi, Extension of the Johnson-Mehl-Avrami-Kolmogorov theory incorporating anisotropic growth studied by Monte Carlo simulations [J], Phys. Rev. B, 2006, 73: 054103
    [188] A. Borrego, G. González-Docel, Calorimetric study of 6061-Al–15 vol.% SiCw PM composites extruded at different temperatures [J], Mater. Sci. Eng. A, 1998, 245: 10
    [189] A. Varschavsky, E. Donoso, Energetic and kinetic evaluations in a quasi-binary Cu-1 at.% Co2Si alloy [J], Mater. Lett., 2003, 57:1266
    [190] D. Claudio, J. Gonzalez-Hernandez, O. Licea, et al., An analytical model to represent crystallization kinetics in materials with metastable phase formation [J], J. Non-Cryst. Solids., 2006, 352: 51
    [191] S. Venkataraman, E. Rozhkova, J. Eckert, et al., Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: the effect of particulate reinforcement [J], Intermetallics., 2005, 13: 833
    [192] K.T. Liu, J.G. Duh, Kinetics of the crystallization in amorphous NiTi thin films [J], J. Non-Cryst. Solids., 2007, 353: 1060
    [193] T. Car, N. Radi?, J. Ivkov, et al., Crystallization kinetics of amorphous aluminum-tungsten thin films [J], Appl. Phys. A, 1999, 68: 69
    [194] X. Ou, G.Q. Zhang, X. Xu, et al., Crystallization kinetics in Cu35Ag15Zr45Al15 metallic glass [J], J. Alloy. Comp., 2007, 441: 181
    [195] D.V. Louzguine, A. Inoue, Crystallization behavior of AlBased metallic glassed below and above the glass-transition temperature [J], J. Non-Cryst. Solids., 2002, 311: 281
    [196] X.D. Liu, X.B. Liu, Z. Altounian, Formation and thermal stability of an E93-structured NiHf2 phase in Ni33Hf67 [J], Acta. Mater., 2005, 53: 1439
    [197] X.D. Wang, H. Lee, S. Yi, Crystallization behavior of preannealed bulk amorphous alloy Zr62Al8Ni13Cu17 [J], Mater. Lett., 2006, 60: 935
    [198] J. Beck, J. Cvartwli, W.J. Roth, et al., A new Family of Mesoporous Molecular Sieves Prepared with Liquid-crystal Templates. J. Am. Chem. Soc., 1992, 114: 10834
    [199] C.T. Kresge, M.E. Leonowiez, W.J. Roth, et al., Ordered Mesoporous Molecular Sieves Synthesized by A Liquid-crystal Template. Nature., 1992, 359: 710
    [200]申宝剑,黄海燕,徐春明,等.双组元Y/MCM-48中微孔复合分子筛的合成和表征[J],化学学报,2003, 61: 1904
    [201]郭万平,黄立民,陈海鹰,等.新型MCM-41-B-沸石中孔-微孔复合分子筛[J],高等学校化学学报,1999, 20: 356
    [202]马广伟,葛学贵,黄少云.新型中微孔复合分子筛的合成[J],工业催化, 2003, 11: 40
    [203] L.M. Huang, W.P. Guo, P. Deng, et al., Investigation of synthesizing MCM-41/ZSM-5 Composites [J], J. Phy. Chem. B., 2000, 104: 2817
    [204]蔡强,魏长平,许永宜,等.过渡金属(Ti, Zr, Mn, Cu, Mo, Cr, Co)离子掺杂的MCM-48的合成、表征与催化性能研究[J],高等学校化学学报,1999, 20(3):344
    [205] M. Niwa, N. Katada, Measurements of acidic property of zeolites by temperature programmed desorption of ammonia [J], Catal. Surveys from Japan. 1997, 1: 215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700