用户名: 密码: 验证码:
壳寡糖金属配合物对扇贝体内重金属镉的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业化的发展,大量的重金属以多种方式进入海洋,由此造成水环境中的重金属含量不断增加。重金属镉(Cd)是主要的海洋污染物之一,它易被生物体吸收富集,由此已对食物的安全构成了较大的隐患,尤其是水产品,其中贝类污染尤为严重。而人们通常又是以生吃或半生熟吃为主还不去内脏,使得重金属通过食物链传递到人,对人类健康形成了潜在威胁。
     目前,关于提高贝类品质净化的方法主要有净水区暂养和净化工厂净化两种方法。但上述两种方法由于劳动强度大、时间长,在经济上是很难行得通;且贝类从生长区移入暂养区后,存在着污染暂养区水质的可能。贝类净化目前多数针对致病性微生物,对于受石油烃、重金属、农药及海洋毒素污染的贝类还未见有效净化处理技术,因此如何减少Cd在双壳贝类体内残留或有效脱Cd已是当务之急,这对保障我国贝类水产品的质量安全有重要意义。
     本文通过对青岛几个主要的水产品批发市场一年间市售的栉孔扇贝重金属Cd的调查,结果发现栉孔扇贝多数存在重金属Cd超标现象,其中只有33.3%的样品未超过限量标准,说明如何脱除贝类Cd残留已是水产品的当务之急。进一步研究还发现,栉孔扇贝对Cd具有很强的富集能力,且内脏团中重金属Cd含量相当于闭壳肌中的20倍,其对Cd的富集与水温成正相关,栉孔扇贝个体大小对Cd富集差异较小。
     由于壳寡糖(COS)具有良好的水溶性,并且含有大量的羟基(-OH)、氨基(-NH2)或酰氨基(-NHCOCH3),是一些金属离子的良好配体。因此,本文将壳寡糖与Ca、Mg、Zn、Fe及稀土元素(Ree)反应,制备了五种壳寡糖金属配合物,即COS-Ca、COS-Mg、COS-Zn、COS-Fe、COS-Ree。并对其配合条件,时间、温度、pH、金属添加量、反应液浓度及金属盐种类进行优化。采用紫外-可见光谱、红外光谱、荧光光谱对其进行表征,结果证明壳寡糖与金属原子所形成的配合物主要氨基(-NH2)和仲羟基(-OH)上N和O与金属原子形成配价键。
     将制备的五种壳寡糖金属配合物应用到暴露Cd栉孔扇贝,发现配合物对栉孔扇贝体内Cd含量均有一定的清除作用。COS-Ca、COS-Mg和COS-Ree处理组Cd消除效果较好,12天内COS-Ca、COS-Mg和COS-Ree处理组栉孔扇贝体内Cd含量降低了46%、52%和47.8%。COS-Zn和COS-Fe处理组Cd脱除率达到17%、13%。壳寡糖金属配合物在脱Cd同时可以改变栉孔扇贝体内Ca、Mg及Fe的含量。其中配合物添加剂量及温度对栉孔扇贝脱Cd影响较大。按1~1.5kg栉孔扇贝、养殖海水40L计算,分别添加COS-Ca、COS-Mg、COS-Ree、COS-Zn和COS-Fe量为0.35g、0.21g、0.21~0.28g、0.21g和0.35g,其栉孔扇贝体内Cd脱除率就可达到31%、27%、39%、17%和13%。
     壳寡糖金属配合物主要是降低了了栉孔扇贝肾脏及内脏团中与蛋白、小分子物质结合的重金属Cd含量。经COS-Ca、COS-Mg和COS-Ree三种壳寡糖金属配合物处理5天,相比阴性对照组栉孔扇贝肾脏中的Cd含量分别降低25.2%、36.1%和37.5%。栉孔扇贝暴露Cd经COS-Ca、COS-Mg及COS-Ree处理,影响了栉孔扇贝体内的抗氧化酶系统过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)酶活及丙二醛(MDA)含量,发挥了抗氧化作用,维持了自由基的产生与消除平衡,从生理学方面证实了壳寡糖金属配合物对栉孔扇贝体内Cd的清除机理。进而通过壳寡糖与镉金属硫蛋白(Cd-MT)的置换反应,从化学置换上证实了COS-Ca、COS-Mg及COS-Ree对栉孔扇贝体内Cd脱除的机理。
     壳寡糖金属配合物不但可以有效的脱除栉孔扇贝体内Cd,而且对其他贝类紫贻贝(Mytilus edulis)、长牡蛎(Crassostrea gigas)、缢蛏(Sinonovacula constricta)、杂色蛤子(Venerupis variegata)、海湾扇贝(Argopecten irradiams)体内的Cd也有很好的脱除效果。
     我国是贝类养殖大国,2007年我国贝类总产量1073.3万吨,占世界贝类生产总量的60%以上。但养殖贝类重金属污染问题较为严重,Cd含量超标现象尤为严重,已是食物安全重大隐患之一。而目前尚无有效地消除鲜活贝类重金属残留的方法,如果这一问题不能有效解决,将严重影响我国养殖贝类的可持续发展。本文所研究的多糖金属配合物对双壳贝类Cd含量的影响,是开发鲜活水产品脱重金属残留的应用基础研究内容之一,可为今后开发具有减少重金属元素残留的养殖饲料添加剂及鱼、贝类净化或暂养脱金属专用剂提供基础,为水产品安全、人类健康提供保障。
With the development of industry, the large amount of heavy metals have polluted the ocean with all kinds of ways, and the content of heavy metal in water environment have been continuously increasing. And the cadmium is one of the mainest marine pollutant, it is easy to be absorbed and accumulated by the creature, which have formed the serious potential dangers to food safety, especially aquatic product, the shellfish. However, people usually like eating the raw or undercooked, and no removal the viscera, the heavy metals invaded the body by the transport through food chain, which have formed potential threat.
     Now, there are two methods to improve the shellfish cleaning, including temporary raising in clean water and cleaning in factory. Considering the great labour intensity and consuming time, the two methods were difficult to carry out, and it may pollute the water in temporary zone when the shellfish moved the temporary zone from growth zone. The shellfish purification technique is mainly against pathogenic microorganism, there are no available methods to purify the shellfish polluted by petroleum hydrocarbon, heavy metals, pesticide and marine toxin. How to decrease the Cd in shellfish is urgent matter, which have important significance to guarantee the shellfish quality safety.
     The Cd content in Chlamys ferrari collected in aquatic wholesale market in Qingdao was investigated for one year, the results showed the Cd content in the majority Chlamys ferrari were higher than standard limit, only 33.3% were less than the standard, which illustrated how to remove the Cd residue in the aquatic product is urgent matter. The Chlamys ferrari have the higher enrichment ability to Cd, and the Cd content in viscera is more than in meat by 20 times. The enrichment ability is positive correlation with raising temperature, the Cd enrichment among the different size of Chlamys ferrari has no obvious difference.
     Chitosan oligosaccharide(COS) has excellent water-soluble, there are some groups, such as–OH, -NH2, -NHCOCH3, which are the optimum ligand of mental ionic. Therefore, 5 kinds of complexes were prepared by the binding between COS and Ca, Mg, Zn, Fe, Ree. And the preparation condition were optimized, including time, temperature, pH, the addition level of metals, the content of reaction solution, the type of metallic salt. Using the UV, IR, Fluorescence spectra, it was proved that metal elements binded with COS through N and O.
     After Cd exposure, the Chlamys ferrari were treated with COS complexes, it was found that the all complexes can remove the Cd in viscera of Chlamys ferrari. COS-Ca, COS-Mg, COS-Ree have significant removal ability to Cd, the Cd content can be deduced by 46%, 52% and 47.8% respectively in 12 days. The removal rate of Cd reached 17% and 13% respectively by ushing COS-Zn , COS-Fe. The complexes additive dose and raising temperature have effect on removal ability of Cd. 1~1.5kg Chlamys ferrari, exposed with 0.5mg/L Cd , were raised in 40L seawater, the removal rate of Cd were 31%, 27%, 39%, 17%, 13% respectively when treated with COS-Ca, COS-Mg, COS-Ree, COS-Zn, COS-Fe, the additive dose of complexes were 0.35g, 0.21g, 0.21~0.28g, 0.21g and 0.35g respectively.
     The Cd binding with protein and small molecule substances in kidney and viscera was removed by COS complexes with metal elements. Compared with negative control group, the Cd in kidney were reduced 25.2%, 36.1%, 37.5% respectively in 5 days when treated with COS-Ca, COS-Mg and COS-Ree. The COS-Ca, COS-Mg and COS-Ree have effect on the antioxidant enzyme system of Chlamys ferrari exposed with Cd, such as CAT, POD, SOD, GSH-PX and MDA. The complexes have the ability of antioxidant, maintaining the balance between creating and scavenging the free radicals. Based on physiological, theory the mechanism complexes can remove the Cd from viscera of Chlamys ferrari was proved. The mechanism was further confirmed by the replacement reaction between the complexes and Cd-MT.
     The COS complexes with metal elements also can remove Cd from other shellfish except for Chlamys ferrari, such as Mytilus edulis, Crassostrea gigas, Sinonovacula constricta, Venerupis variegate, Argopecten irradiams.
     Our country has the greatest stage on shellfish cultivation. The total yield of shellfish was 10.73 million tons in 2007, account for 60% yield of worldwide raising shellfish. However, the heavy metal pollution of shellfish is very serious, especially Cd, which was the one of food safety. And there are not availably technology to remove the Cd from fresh shellfish. If the problem can be solved availably, which will have great influence to the sustainable development of shellfish farming. The complexes prepared in this paper can remove Cd from fresh shellfish, which is the one of basical study of application of developing the removal of Cd from fresh shellfish, which can provide theoretical basis for exploiting feed additive and special agent of shellfish purification to remove the Cd, providing guarantee for the aquatic product safety and human health.
引文
[1]贺亮,范必.威海洋环境中的重金属及其对海洋生物的影响.广州化学,2006,31(3):63~69
    [2]雷晓凌,吴晓萍.南海八种贝类营养成分和限量元素含量的研究.中国海洋药物,2001,2:48~50
    [3]季相山,赵燕.海湾扇贝对海水中镉的富集规律研究.水产学报,2006,30(6):801~805
    [4] Kaare J, Arne D, et al. Distribution and Food Safety Aspects of Cadmium and Lead in Great Scallops, Pecten maximus L., and Horse Mussels, Modiolus modiolus L., from Norwegian Waters. Bulletin of Environmental Contamination and Toxicology.2008, 80(4):385~389
    [5]江素红,王普生等. 2004~2006年汕头市食品中镉污染调查.中国热带医学,2007,7(6):1012~1013
    [6] Mohamed Maanan. Heavy metal concentrations in marine mollusks from the Moroccan coastal region. Environmental Pollution, 2008, 153(1):176~183
    [7] M.M. Storelli. Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food and Chemical Toxicology, 2008, 46(8):2782~2788.
    [8]叶盛权,黄甫.双壳贝类的净化技术研究.食品研究与开发,2003,24(4):28~30
    [9]莱斯特·布朗.谁来养活中国?-中国未来的粮食危机,贡光禹,摘译。未来与发展,1995(2):8~12
    [10]鲁小波,李悦铮.发展“蓝色农业”解决大连市粮食问题.海洋渔业,2006,(5):169~172
    [11]李杰人.中国水产养殖科技发展现状与展望.见:任泽林,周志刚编.第三届水产动物营养与饲料学术大会论文集.北京:中国农业科学技术出版社,2004.1~5
    [12]张福绥.21世纪我国的蓝色农业.中国工程科学,2000,2(12):21~28
    [13]王子臣.栉孔扇贝人工育苗及试养的研究.大连水产学院学报,1981,(1):1~12
    [14] Chew K. Global bivalve shellfish introductions. World Aquaculture, 1990, 21(3):9~22
    [15]燕敬平,孙慧玲,方建光.日本盘鲍与皱纹盘鲍杂交育种技术研究.海洋水产研究,1999,20(1):35~39
    [16]张起信.扇贝的养殖技术.青岛:青岛海洋大学出版社,1992.
    [17]王如才,王昭萍等.海水贝类养殖学.青岛:青岛海洋大学出版社.1998.
    [18]农业部,国家环境保护总局.中国渔业生态环境状况公报(1999- 2000).中国水产,2001,(7):12~16
    [19]农业部,国家环境保护总局.中国渔业生态环境状况公报(2001-2002).中国水产,2002,(8):13~15
    [20] Allen P. Chronic accmulation of cadmium in edible tissues of Orechramis auratus(Steindachner):modification by wercury and lead. Archives of Environmental Contamination and Toxicology. 1995, 29:8~14
    [21]国家质量监督检验检疫总局.中华人民共和国国家标准GB18406.4-2001.农产品安全质量:无公害水产品安全要求.北京:中国标准出版社,2001
    [22]郑云雁.食品中污染物的中国国家标准及国际法典标准对比(一)化学污染物.中国食品卫生杂志,2002,14(1):47~53.
    [23]香港食物环境卫生署.食物掺杂(金属杂质含量)规例. http://sc.info.gov.hk, 2002-07-06
    [24]郑长春,许昆灿.长江口以南沿岸海域主要贝类卫生质量.台湾海峡,1994,13(2):138~143.
    [25]中国渔市.日本水产品食品卫生要求介绍. http://www.cfm.com.cn, 2001-08-04
    [26]冯志权,冯金祥.北方海洋生态站几种经济动物体内5种重金属残留量.海洋环境科学,2004,23(3):49~51
    [27]梁春穗,邓峰,黄伟雄等.广东省食物中化学污染物的网点监测与动态分析.中国食品卫生杂志,2003,5:359~410
    [28]王咸钢,张卫兵,周颖等.南通沿岸经济贝类体内重金属含量分析.海洋水产研究, 2003,3:4549
    [29]刘桂荣.扇贝中重金属残留及食用风险分析:[硕士学位论文].山东青岛:中国海洋大学, 2005
    [30] http://www.chinasushi.net.4成水产重金属超标. 2008-10-24
    [31]王文仲,徐兆发.Cd的肾脏毒理学.中国工业医学杂志,2001,14(5):291~293
    [32] Wang WX, Fisher NS. Effects of calcium and metabolic inhibitors on trace element uptake in two marine bivalves. Exp Mar Biol Ecol, 1999 (236): 149~164
    [33] Rainbow PS. Trace metal accumulation in marine invertebrates: marine biology or marine chemistry. Mar Bio Ass UK, 1997 (77) : 195~210
    [34] Pan JF, Wang WX. Comparison of the bioavailability of Cr and Fe bound with natural colloids of different origins and sizes to two marine bivalves. Mar Biol, 2002(141) : 915~924.
    [35] Marc M, Michel W. Interspecific comparison of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten maximus). Journal of Experimentl Marine Biology and Ecology, 2007,353:58~67
    [36]柯翎,骆庭伟,林志超.利用菲律宾花蛤的金属硫蛋白作为镉污染的检测指标.漳州师范学院学报(自然科学版),2004,17(1):60~63
    [37]计亮年,黄锦汪,莫庭焕等编著.生物无机化学导论.北京:中山大学出版社,2001,198~204
    [38]汪东风.食品中有害成分化学.北京:化学出版社,2006,88~89
    [39] J.H.R.Kagi. Methods in Enzymology. In:J.F.Riordan, B.L.Vallee(Eds.). Overview of Metallothionein. San Diego:Academic press, 1991,205:613~626
    [40] JinPin Wu, HonCheng Chen. Metallothionein induction and heavy metal accumulation in white shrimp Litopenaeus vannamei exposed to cadmium and zinc. Comparative Biochemistry and Physiology, Part C, 2005, 140:383~394
    [41] Shi Dalin, Wang WenXiong. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Environmental Pollution, 2004, 132:265~277
    [42]励建荣,李学鹏,王丽等.贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1):51~55
    [43]董琛,金泰牍,雷玲等.镉、锌对人胚肾细胞的联合作用.环境与职业医学,2005,22(3):193~196
    [29]刘桂荣.扇贝中重金属残留及食用风险分析:[硕士学位论文].山东青岛:中国海洋大学, 2005
    [30] http://www.chinasushi.net.4成水产重金属超标. 2008-10-24
    [31]王文仲,徐兆发.Cd的肾脏毒理学.中国工业医学杂志,2001,14(5):291~293
    [32] Wang WX, Fisher NS. Effects of calcium and metabolic inhibitors on trace element uptake in two marine bivalves. Exp Mar Biol Ecol, 1999 (236): 149~164
    [33] Rainbow PS. Trace metal accumulation in marine invertebrates: marine biology or marine chemistry. Mar Bio Ass UK, 1997 (77) : 195~210
    [34] Pan JF, Wang WX. Comparison of the bioavailability of Cr and Fe bound with natural colloids of different origins and sizes to two marine bivalves. Mar Biol, 2002(141) : 915~924.
    [35] Marc M, Michel W. Interspecific comparison of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten maximus). Journal of Experimentl Marine Biology and Ecology, 2007,353:58~67
    [36]柯翎,骆庭伟,林志超.利用菲律宾花蛤的金属硫蛋白作为镉污染的检测指标.漳州师范学院学报(自然科学版),2004,17(1):60~63
    [37]计亮年,黄锦汪,莫庭焕等编著.生物无机化学导论.北京:中山大学出版社,2001,198~204
    [38]汪东风.食品中有害成分化学.北京:化学出版社,2006,88~89
    [39] J.H.R.Kagi. Methods in Enzymology. In:J.F.Riordan, B.L.Vallee(Eds.). Overview of Metallothionein. San Diego:Academic press, 1991,205:613~626
    [40] JinPin Wu, HonCheng Chen. Metallothionein induction and heavy metal accumulation in white shrimp Litopenaeus vannamei exposed to cadmium and zinc. Comparative Biochemistry and Physiology, Part C, 2005, 140:383~394
    [41] Shi Dalin, Wang WenXiong. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Environmental Pollution, 2004, 132:265~277
    [42]励建荣,李学鹏,王丽等.贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1):51~55
    [43]董琛,金泰牍,雷玲等.镉、锌对人胚肾细胞的联合作用.环境与职业医学,2005,22(3):193~1966342~6343
    [59]矍飞.稀土元素镧和铈缓解鲫鱼重金属镉和铜中毒的研究:[硕士学位论文].陕西西安,西北农林科技大学,2008
    [60]杨克敌.微量元素与健康.北京:科学出版社,2003,60~61
    [61] Agnieszka Nawirska. Binding of heavy metals topomace fibers. Food Chemistry,2005,90:395~400
    [62]江天久,牛涛.双壳贝类体内重金属的净化方法.中国专利,CN200510036014.X,2006-2-22
    [63] Seki Hideshi, Suzuki Akira. A new method for the removal of toxic metal ions from acid-sensitive biomaterial. Journal of Colloid and Interface Science,1997,190(1):206~211
    [64] Crini G. Recent developments in polysaccharides-based materials used as adsorbents in wastewater treatment. Program and Polymer Science, 2005,30:38~70
    [65]杨贤庆,李来好,戚勃. 4种海藻膳食纤维对Cd2+、Pb2+、Hg2+的吸附作用.中国水产科学,2007,14(1):132~138
    [66] Davis AT, Volesky B. Alfonso M. A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 2003, 37:4311~4330
    [67] Borycka B. Metal sorption capacity of fibre preparation from fruit pomace. Journal of Food and Natural Science, 1998, 1:67~76
    [68] Abia AA. Kinetics of Cd2+ and Cr3+ sorption from aqueous solutions using mercaptoacetic acid modified and unmodified oil palm fruit fibre(Elaeis guineensis) adsorbents. Tsinghua Science & Technology. 2007, 12(4):485~492
    [69]许永安,廖登远.贝类净化中试生产工艺技术.福建水产,2007,(3):14~18
    [70]陈忻,袁毅桦,陈晓刚等.壳聚糖对痕量重金属离子铅、铬、镍的吸附研究.广东化工,2007,34(169):32~34
    [71] Minamisawa H, Iwanami H, Arai N, et al. Adsorption behavior of cobalt(II) on chitosan and its determination by tungsten metal furnace atomic adsorption spectrometry. Anal. Chim. Acta, 1999, 378: 279~285
    [72] Guibal E, Jansson-Charrier M, Saucedo I. Enhancement of metal ion sorption performances of chitosan: effects of the structure on the diffusion properties. Langmuir,11(2) :591~598
    [73]杨洪.壳聚糖对重金属离子的吸附行为.烟台大学学报,1999,(10):309~312
    [74]黄晓佳,王爱勤,袁光谱.壳聚糖对Zn2+的吸附性能研究.离子交换与吸附, 2000, 16(1):60~65
    [75] Kurita K, Sannan T, Iwakura Y. Studies on chitin.VI. Binding of metal cations. Appl Polym Sci , 1979 ,23∶511~521
    [76]陈忻,袁毅桦,陈晓刚.壳聚糖对痕量重金属离子铅、铬、镍的吸附研究.广东化工,2007,34(169):32~34
    [77]刘振南.壳聚糖对重金属离子吸附的研究.广西化工,1996,( 2):8~11
    [78]张虎,杜昱光,虞星炬.几丁聚糖和壳寡糖的制备和功能.中国生化药物杂志,1999,20(2):99~101
    [79]卢凤琦,曹宗顺,王春香等.低分子量壳聚糖的研制.中国生化药物杂志,1997,18(4):178~180
    [80]邵健,杨宇民.低聚氨基葡萄糖的研制.中国医药工业杂志.1999,30(11):481~483
    [81]李邦良,高仕瑛,乔新惠等.甲壳低聚糖的制备和分析.中国生化药物杂志,1999,20(6):292~294
    [82] Kubota N, Tatsumoyo N, Sano T,et al. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr Res, 2000,324(4): 268~274
    [83]王扬,娄永江,杨文鸽.酶法制备几丁寡糖和壳寡糖研究现状与进展.东海海洋,2001,19(4):40~44
    [84] Hu Zhang,Yuguang Du, Xingju Wu, et al. Preparation of chitooligosaccharides from chitosan by complex enzyme.Carbohydrate research,1999,320(3-4):257~260
    [85]任群翔,翟玉春.秦岩壳寡糖铕、铽配合物的合成、表征及抗·O2-活性.中国稀土学报,2008,26(4):385~389
    [86]刘冰.壳寡糖及其配合物对糖尿病的作用研究:[博士学位论文].山东青岛,中国海洋大学,2007
    [87]黄进,汪世龙,孙晓宇,纳米壳寡糖-铁配合物的制备及其生物活性的研究,化学学报,2006,64(15):1570~1574
    [88]许才利,唐星华.新型补铁剂羧甲基壳寡糖-亚铁的制备研究.南昌航空工业学院学报,2006,20(1):43~45
    [1] Allen P. Chronic accmulation of cadmium in edible tissues of Orechramis auratus(Steindachner):modification by wercury and lead. Archives of Environmental Contamination and Toxicology. 1995, 29:8~14
    [2] Marc M, Michel W. Interspecific comparison of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten maximus). Journal of Experimentl Marine Biology and Ecology, 2007, 353:58~67
    [3]刘伟.密闭微波样品消解原理及常识.现代科学仪器,2000,(3):51~54
    [4]彭新君,徐丽霞,刘平安.家兔肝脏中锌-金属硫蛋白提取工艺的优化.药物生物技术,2004,11(2):99~103
    [5]任宏伟,王文清.鲫鱼金属硫蛋白的提纯及性质研究.生物化学与生物物理进展,1993,20(4):281~285
    [6]吴玉霖,崔可铎,刘玉梅等.毛蚶对汞积累和排出的室内实验.海洋与湖沼,1983,14(1):30~34
    [7] DeWolf P. Mercury content of mussels from West European coast. Mar Pollut Bull,1975(6):61~63
    [8] Cunningham PA, Tripp MR. Factors affecting the accumulation and removal of mercury from tissues of the American oyster Crassostrea virginica. Mar Biol, 1975, 31 (4) : 311~320
    [9] Boyden CR. Trace element content and body size in mollusks. Nature, 1974 (251):311~314
    [10]孙平跃,王斌.季节变化和个体大小对河蚬积累重金属的影响.海洋通报, 2004,23(2):19~24
    [11]李玉环,黄海,王佃伟.海湾扇贝体内重金属镉的富集和消除规律的研究.微量元素与健康研究,2008,25(5):30~33
    [12]王晓丽,孙耀.牡蛎对重金属生物富集动力学特性研究.生态学报, 2004, 24(5):1086~1090
    [13]王凡,赵元凤.栉孔扇贝对Cd的累积和排出.湛江海洋大学学报,2005,25(4):95~98
    [14] Szefer P, Fowler SW, et al. A comparative assessment of heavy metal accumulation in soft parts and byssus of mussels from subarctic, temperate, subtropical and tropical marine environments. Environmental Pollution, 2006, 139(1):70~78
    [15]陈海刚,林钦.3种常见海洋贝类对重金属Hg、Pb和Cd的积累与释放特征比较.农业环境科学学报,2008,27(3):1163~1167
    [16] Liu YP, Liu J, Marcus B, et al. Transgenic mice that overexpress metallothionein I are protected from cadmium lethality and hepatoxicity. Toxicol Appl Pharmacol, 1995 ,135: 222~225
    [17]何永吉,马文丽,王兰.镉诱导金属硫蛋白在华溪蟹组织中的表达.动物学杂志,2007,42(3):48~53
    [18] Bervoets L, Blust R, Verheyen R. Effect of temperature on cadmium and zinc uptake by the midge larvae Chironomus riparius, Arch. Environ. Contam. Toxicol., 1996,31:502~511
    [19] Fraysse B, Baudin JP. Cadmium uptake by corbicula fluminea and dreissena polymorpha: effects of pH and temperature. Bull.Environ. Contam. Toxicol. 2000,65:638~645
    [20] Moller V, Forbes VE, Depledge MH. Influence of acclimation and exposure temperature on the acute toxicity of cadmium to the freshwater snail potamopyrgus antipodarum (Hydrobiidae). Environ. Toxicol. Chem, 1994, 13:1519~1524.
    [21] Tessier L, Vaillancourt G, Pazdernik L. Temperature effects on cadmium and mercury kinetics in freshwater mollusks under laboratory conditions. Arch. Environ. Contam. Toxicol., 1994,26:179~184
    [22] Watkins B, Simkiss K, The effect of oscillating temperatures on the metal ion metabolism of Mytilus edulis. Mar.Biol.Ass.U.K,1988,68:93~100
    [1]韩永萍,林强.过氧化氢降解结合超滤后处理制备壳寡糖的研究.北京联合大学学报,2007,21(2):67~70
    [2]李峰,吕淑霞.正交设计法研究壳聚糖降解液的制备工艺.微生物学杂志,2006,26(6):105~107
    [3]汪东风,赵贵文.茶叶中稀土元素总量的快速测定法.茶叶科学,1998,18(2):151~154
    [4]蒋挺大.甲壳素.北京:化学工业出版社,2003
    [5]孙长华,王静.低分子量壳聚糖制备与应用.粮食与油脂,2004(1):44~46
    [6]覃彩芹,肖玲,杜予民.过氧化氢氧化降解壳聚糖的可控性研究.武汉大学学报,2000,46(2):196~198
    [7]李邦良,高仕瑛,乔新惠.甲壳低聚糖的制备和分析.中国生化药物杂志,1999,20(6):292~294
    [8]邵健,杨宇民.低聚氨基葡萄糖的研制.中国医药工业杂志,1999,30(11):481~483
    [9]韩永萍,林强.过氧化氢降解结合超滤后处理制备壳寡糖的研究.北京联合大学学报,2007,21(2):67~69
    [10]毛根年,张云丽,张晓霞.甘露低聚糖铬配合物制备工艺的研究.食品科技,2009,34(2):250~253
    [11]郭振楚,刘福清.壳寡糖与镧、铈配合物的合成、表征及应用.中国稀土学报,2003,21(1):98~101
    [12]陈耀祖.中药现代化研究的化学法导论.北京:科学出版社,2003
    [13]雷永亮,孙伟,王海玉.低分子量水溶性壳聚糖与Cu、Zn配合物的光谱分析.青岛科技大学学报,2003,24(1):31~32
    [14]任群翔,翟玉春,秦岩.壳寡糖铕、铽配合物的合成、表征及抗·O2-活性.中国稀土学报,2008,26(4):387~389
    [15]丁德润.低分子量壳聚糖及其衍生物与金属离子配合物研究.无机化学学报,2005,21(8):1249~1252
    [1]徐韧,杨颖.海洋环境中重金属在贝类体内的蓄积分析.海洋通报,2007,26(5):117~120
    [2]许永安,廖登远.贝类净化中试生产工艺技术.福建水产,2007,(3):14~18
    [3] Brzóska MM, Moniuszko-Jakoniuk J. The influence of calcium content in diet on cumulation and toxicity of cadmium in the organism. Archives of Toxicology. 1998, 72(2) :63~73
    [4] Chang MH, Lin HC, et al. Effects of cadmium on the kinetics of calcium uptake in developing tilapia larvae, Oreochromis mossambicus. Fish Physiology and Biochemistry.1997,16 (6) :459~470
    [5] Chelomin VP, Bobkova EA, et al. Cadmium-induced alterations in essential trace element homoeostasis in the tissues of scallop Mizuhopecten yessoensis. Comparative Biochemistry and Physiology. 1995, 110c (3) :329~335
    [6]励建荣,李学鹏,王丽.贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1):51~55
    [1] Marc M, Michel W. Interspecific comparison of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten maximus). Journal of Experimentl Marine Biology and Ecology, 2007,353:58~67
    [2]陈荣忠,杨丰,徐洵.镉对褐菖鲉金属结合蛋白的诱导.台湾海峡,1997,16(3):280~284
    [3]励建荣,李学鹏,王丽.贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1):51~55
    [4]刁书永,张立志,袁慧.镉中毒机理研究进展.动物医学进展,2005,26(5):49~51
    [5]王晓丽,孙耀,张少娜.牡蛎对重金属生物富集动力学特性研究.生态学报,2004 ,24(5) :1086~1090
    [6] Gebriel NN, Philip SR. Cadmium uptake and accumulation by the decapod crustacean Penaeus indicus.Marine Environmental Research , 2005 , 60 :339~354
    [7]季相山,赵燕,丁雷.海湾扇贝对海水中镉的富集规律研究.水产学报,2006,30(6):801~805
    [8]吴坚.微量金属对海洋生物的生物化学效应.海洋环境科学,1991 ,10 (2) :58~62
    [9]吴众望,潘鲁青.重金属离子对凡纳滨对虾肝胰脏MT含量的影响.水产学报,2005,29 (5) :715~718
    [10] Reid SD, McDonald DG. Mental binding activity of gill of rainbow trout ( Oncorhynchusmykiss). Can J Fish Aquat Sci,1991 ,48 :1061~1068
    [11]王珊珊,王颜红,张红.镉胁迫对花生籽实品质的影响及响应机制.生态学杂志,2007,26(11):1761~1765
    [12]张辉,高泽宣,安飞云.非蛋白结合镉与镉性肾损害的关系.实用预防医学,2002,9(2):103~105
    [13] Silvestre F, Duchene C, Trausch G, et al. Tissue-specific cadmium accumulation and metallothionein-like protein levels during acclimation process in the Chinese crab Eriocheir sinensis.Comparative Biochemistry and Physiology( Part C) , 2005,140: 39~45
    [14]马文丽,王兰,何永吉.镉诱导华溪蟹不同组织金属硫蛋白表达及镉蓄积的研究.环境科学学报,2008,28(6):1192~1197
    [15]高宏,周群.不同类型的金属硫蛋白的振动光谱的观测.光散射学报,2001,13(1):16~20
    [16] Basha PS, Rani AU. Cadmium-induced antioxidant defense mechanism in fresh water teleost Oreochromis mossambicus(Tilapia). Ecotoxicology and Environmental safety, 2003,56:218~221
    [17]孙虎山,李光友.免疫多糖对栉孔扇贝血淋巴中氧化酶活力的影响.高技术通讯,2001,11(5):10~12
    [18] Stegeman JJ, Brouwer M, and Di Giulio RT. Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Huggett RJ, Kimerle RA, Mehrle PM, Bergman HL (Eds.), Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Chelsea, A special publication of SETAC. Lewis Publishers, 1992,235~335
    [19]张红霞,判鲁青,刘静.重金属离子对日本鲟血淋巴抗氧酶(SOD,CAT,GPX)活力的影响.中国海洋大学学报,2006,36:49~53
    [20]王凡,赵元凤,吕景才。Cu2+对栉孔扇贝鳃组织抗氧化酶的影响.湖北农业科学,2007,46(1):117~119
    [21]杨丽华,房展强,郑文彪.镉对鲫鱼鳃和肝脏超氧化物歧化酶活性的影响.安全与环境学报,2003,3(3):13~15
    [22]徐立红,张甬元.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报,1995,19(2):171~185
    [23] Rainbow PS. The accumulation of heavy metal in marine organism and its meaning. Marine Environmental Science,1992,11(1):44~51
    [24] Stohs SJ, Bagchi D, Hassoun E. Oxidative mechanisms in the toxicity of chromium and cadmium ions. Environ Pathol Toxicol Oncol, 2000,18(2):201~213
    [25]李涌泉,王兰,刘娜.镉对长江华溪蟹酶活性及脂质过氧化的影响.水生生物学报,2008,32(3):373~379
    [26] McCord JM, Fridovich I. Superoxide dismutase-An enzymatic function for eiythrocuprein. Biol Chem 1969,244(22):6049~6055
    [27] Thomas JP, Maiorino M, Ursini F and Girotti AW. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. Biol. Chem. 1990,265: 454~461
    [1]魏泰莉,杨婉玲,赖子尼.珠江口水域鱼虾类重金属残留的调查.中国水产科学,2002 ,9(2):172~176
    [2]刘春颖,张正斌,张安慧.中国近岸部分海域海水中金属络合配位体浓度的研究.海洋学报,2005,27(2):54~62
    [3]季相山,赵燕,丁雷.海湾扇贝对海水中镉的富集规律研究.水产学报,2006,30(6):801~805
    [4]王凡,赵元凤,吴益春.栉孔扇贝对Cd的累积和排出.湛江海洋大学学报,2005,25(4):95~98
    [5]李淑丽,孙咏红,于丽华.紫贻贝对海水中镉富集规律的研究.西安文理学院学报,2008,11(1):57~60
    [6]陈海刚,林钦,蔡文贵.3种常见海洋贝类对重金属Hg、Pb和Cd的积累与释放特征比较.农业环境科学学报,2008,27(3):1163~1167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700