用户名: 密码: 验证码:
金属有机化学气相沉积法制备功能梯度材料的方法和机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度材料(Functional Graded Materials,简称FGM)是一种成分、组织、结构、密度和功能特性在宏观上不均匀,但又逐渐变化的新型材料。它较目前广泛使用的隔热性耐热复合材料有许多优点,如可以消除材料间的界面,缓和热应力,具有较高的机械强度,抗热冲击性和耐高温性(达2000℃)等。功能梯度材料是21世纪最有发展前景的新型材料之一,其用途已由原来的宇航工业,扩大到核能源、电子、化学、生物医学等领域;其组成也由金属—陶瓷发展成为金属—金属、金属—合金、非金属—非金属、非金属—陶瓷等多种组合;其制备方法主要包括粉末冶金法,自蔓延高温合成法(SHS)、气相沉积法(CVD和PVD)、电沉积法,激光熔覆法,溶胶—凝胶法(sol-gel)等。金属有机化学气相沉积(MOCVD)法是化学气相沉积法的一种,主要选用金属有机化合物为物源进行化学气相沉积,是目前获取各类特殊功能材料和材料的有效方法之一。该技术能在不太高温度下大面积沉积材料,沉积速率较高,台阶覆盖性好,能够按设计精确控制材料的组成、结构和形态。本文在介绍功能梯度材料的研究进展,CVD、MOCVD技术的研究概况以及Mo(CO)_6,Fe(CO)_5的成膜机制和工艺条件之后,着重报道了利用MOCVD技术制备陶瓷薄膜,金属/金属和金属/陶瓷功能梯度材料。在系统实验的基础上探讨SiO_2薄膜沉积工艺条件及其影响因素,获取了SiO_2薄膜的最佳工艺条件;采用功能梯度材料(FGM)的逆设计思想,在最佳沉积条件的基础上成功制备出Fe/Mo和Mo/SiO_2功能梯度材料,并以X射线衍射,X射线光电子能谱,电镜扫描,膜台阶仪,金相显微镜等手段对材料进行成分测定和表面形态结构分析。
     本研究论文主要研究了以下几个方面:
     (1) 研究了以Si(OC_2H_5)_4为物源,在Al_2O_3陶瓷基片上制备SiO_2薄膜的工艺条件。在成膜机理的基础上,通过对不同沉积条件(如沉积温度,物源温度,沉积时间)下沉积速率和薄膜结构形态的测试和分析,我们发现,当系统的实验条件为:基片温度500℃—600℃,反应室压力260—400Pa,TEOS的温度在60℃左右,流量1mL.S~(-1)时将获得最佳沉积速率和膜的最佳结构形态。若稳定沉积时间越长,膜层厚度越厚。
    
     中文摘要
     (2)采用逆设计系统,对功能梯度材料进行成分优化设计,物理性质计算和
    热应力模拟,研究发现:当成分分布指数p=1时,梯度材料的各物性参数缓和效
    果最好,结构热应力平缓过渡。
     (3)以Mo(CO)6,Fe(CO)5为物源,控制反应物不同的气流量,在基片温度500
    “C,压力150一200 pa,Mo(CO)6和Fe(CO)s温度分别为600C和15oC条件下成功制
    备出Fe侧。功能梯度材料。结果表明:该梯度材料主要由Fe和M。两相组成,成
    分连续梯度变化,符合功能梯度材料的变化规律。Fe从。过渡层表面形貌呈现连续
    固溶体状,晶粒细小,分布均匀且结构致密。各梯度层厚度可随机而取。
     (4)利用Mo(CO)6,51(OCZHS);为物源,通过调节反应气源的温度和气流量,
    在基片温度500℃一600℃,压力170一35OPa,每层沉积60min的条件下制备
    Mo/SIOZ功能梯度材料。实验结果表明:材料组成连续梯度变化,符合功能梯度材
    料的变化规律。Mo/Sio:过渡层表面形貌晶粒分布均匀且结构致密。
Functionally Graded Material(FGM) is a new generation of composites in which the composition of a dispersion phase is gradually and spatially varied, and thus the properties/microstructure relationships have continuous characteristics. FGM has many superior properties such as eliminating interface crack between the two materials, reducing the thermal and residual stress, thermal barrier, thermal shock resistance, anti-corrosion, increasing the bonding strength and toughness, high-temperature strength (to 2000 C) etc., as compared with traditional composite materials. The applications field of FGM include aerospace , electron, chemistry, biology and medicine fields; The composition change also from metal/ceramic to metal/metal, metal/alloy, non-metal/non-metal and non-metal/ceramic. Moreover, various methods including Powder Metallurgy, Self-propagating High-temperature Synthesis(SHS), Chemical and Physical Vapor Deposition (CVD and PVD), Electrodeposition, Laser Cladding Method, Plasma Sputtering and Sol-Gel
     Method have been studed. Metal Organic Chemical Vapor Deposition (MOCVD), using Chemical Vapor Deposition of metal organic compounds, is an effective method for acquiring special function materials and membrane. With MOCVD film technology, film chemical composition is easier to control, deposition temperature lower, deposition speed higher, deposited film more compact, homogenous and flat.
    In this paper, firstly, the study of FGMs ,the study of CVD and MOCVD, and the nucleation mechanism have been introduced. Secondly, the fabracations of metal/metal and metal/ceramic FGMs have been reported. Based on the experiment and analysis, the optimum conditions for preparation of Si02 films have been studied. Furthermore, using the inverse designing idea of FGMs, Fe/Mo and Mo/SiO2 FGMs have been successfully prepared. Finally, the composition and microstructure of the materials have been measured by X-ray Debey Powder Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electon Microscope (SEM), Step Instrument and Metallgical Microscope.
    
    
    The main points of our studies are as following:
    (1).The preparation of SiO2 films on the substrate of Al2O3, using cold-wall reactor (MOII) and Chemical Vapor Deposition of Si(OC2H5)4, has been studied. Based on the analysis of relationship between the deposition rate and the deposition conditions (the main factor : substrate tenperature, TEOS temperature and deposition time), it is proved that the maximum deposition rate and the optimum surface state, structure of thin films are to be gotten, when the temperature of substrate is 500 to 600 C, the pressure of the reactor is 260 to 400 Pa, the temperature of TEOS is about 60 C, current is 1ml.s-1. The longer deposition time is, the deeper films are.
    (2).According to the inverse design system, the structure optimization of FGMs is obtained. Based on the physical properties calculated and the thermal residual stress simulated, it is found that the optimum property parameters and the minimum thermal residual stress are to be gotten when the component distribution exponent P=l.
    (3).The Fe/Mo FGMs have been successfully carried out, when the current of Fe(CO)5 and Mo(CO)6 is controlled, the temperature of substrate is 500 C, the pressure of the reactor is 150 to 200 Pa, the temperature of Fe(CO)5 and Mo(CO)6 is 15 C and 60-70 C. The results showed that the materials are consisted of two phases: Fe and Mo solid solution, in which the compositons are of compact texture, with their parculates being uniformed in distribution, fine grains being small. Furthermore, the compositons of the Fe/Mo FGMs are gradually varied and conformed the law of the gradient materials.
    (4).The Mo/SiO2 FGMs have been developed using MOCVD with Mo(CO)6 and Si(OC2H5)4. By adjusting the temperature and current of the reactors, the most suitable conditions for preparation of the materials appear that the temperature of substrate is 500 to 600掳C, the pressure of the reactor is 170 to 350 Pa, the deposition time is 60min for every layer.
引文
?
    
    
    [1] 吕弋,羰基金属化学气相沉积制各功能材料工艺及应用研究.硕士学位论文,西南师范大学,2000
    [2] Vossen J L. Thin Processes Ⅱ,Boston:Academic Press,1991:256
    [3] 郑子樵.梁叔全,梯度功能材料的研究与展望[J],功能材料,1992,10(1):1-5,16
    [4] 新野正之,平井敏雄,渡边三龙·倾斜机能材料.宇宙机用超耐热材料目指·日本复合材料学会志,1987,13(6):257
    [5] 黄旭涛,严密·功能梯度材料:回顾与展望·材料科学与工程,1997,15(4):35-38
    [6] 王引真.孙永兴,郑修麟等·功能梯度材料的研究动态·机械工程材料,1997,21(4):35-37
    [7] 赵军,艾兴,张建华·功能梯度材料的发展及展望·材料导报,1997,11(4):57-60
    [8] 李碧容,雍歧龙,张国亮·功能梯度材料的发展、制各方法及应用前景·云南工业大学报,1999,15(4):56-58
    [9] 平野澈,若岛健司·倾斜机能材料设计·日本复合材料学会志,1991,7(2):45-52
    [10] Government Idustria Research Institute Tohoku,Japan,Metallurgia,1990,57(7):302-304
    [11] 夏耀勤,王敬生·功能梯度材料的制备方法与研究进展·金属材料研究,1998,24(2):11-14
    [12] M.Murasaki, H.Otsuka, H.G.Suzuki and S.Matsuda, Proc.ICOMAT-86, Jpn.Inst.Metals, 1987:985
    [13] DadmavardhaniD,Gomeza, AbbaschinaR.J,Inter metallics, 1998,229:151
    [14] Show IJ ,Munter ZA .J.Am.Ceram.Soc., 1998, 81:344
    [15] 余茂黎,魏明坤·梯度功能材料的研究动态·功能材料,1992,23(3):184-189
    [16] Yamagata H ,Inoue A ,Masumoto T .Mater.Sci & Eng,1994,181, 1300
    [17] Xiang Xinhua, ZhuJingchuan,etal.Surface and Coatinzs Technology,1996,88:66
    [18] 张宇民,郝晓东,韩杰才.宇航材料工艺,1998,5:5
    [19] 王豫,姚凯伦·功能梯度材料研究的现状与将来发展·物理,2000,29(4):206-211
    [20] Matsumura, Tadashi: Hotta,Yoshiko; Yoshikawa, Itsuji: Control process for a composite deposit.Fr.Demande FR 2,684, 13(CI.C25D15100),28,may 1993,JPAppl.91/339,756,27NOV 1991; 17PP
    [21] Mortensen A, Suresh S' Functionally Graded Metal-Ceramic Composites. Part Ⅰ:Processing[J],International Material Reviews, 1995,40(6):239-265.
    [22] Jasim K M,Rawling R D,West D R F.Metal-Ceramic FGM Produced by laser processing. J.Mater.Sci, 1993,128(10):2820-2826;
    [23] Ravichandran,K.S., Thermal residual stresses in a functionally graded material system.Mater.Sci.Eng.,A 1995,A20 1(1-2),269-76(Eng)
    [24] Pekshev, P.Yu.,Tcherniakov, S.V.; Arzhakin,N,A.; Rutskin, V.V.,Plasma-sprayed multilayer protective coatings for gas turbine units.surf.Coat.Technol.1994,64(1),5-9(Eng)
    [25] Wakashima K and H. Tsukamo to. Micromechanical approach to the thermomechanics of Ceramic-Metal gradient materials.Mater.Sci.Eng, 1991,A146:291
    [26] Yoshinari Miyamoto.Functionally Graded Material manufacture Properties.American Ceramic Society, 1997,54(3):567
    [27] 赵文趁.材料表面工程导论,西安:西安交通大学出版社,1998
    [28] 李耀天·梯度功能材料研究与应用·金属功能材料 2000,17(4):15-23
    [29] Ishibashi,H.; Tobimatsu,H.; Matsumoto,T.; 等Characterization of Mo-SiO_2 functionally graded materials.Metall.Mater.Trans.A2000,31 A(1),299-308(Eng).
    [30] Zhu,Jingchuan; Lai,Zhonghong; Yin,Zhongda; Jeon,Jaeho; Lee, Sooyoung.Fabrication of Zro_2-Nicr functionnally graded material(FGM) by power metallury.Mater.Chem.Phys.2001,68(1-3), 130~135,15(Eng)
    [31] Bsail RM,Jean B.J.AM.Cream.Soc, 1994, 77(10):2 747
    [32] 夏军,梯度功能材料的制各技术与应用前景,化工新型材料,2001,29(6):20
    [33] Eroglu,S.,Birla, N.C.; Demirci,M.; Baykara,T.Synthesis of functionally gradient nickel-chromium-aluminurn/magnesia-Zirconia coatings by plansma spray technique. Meter.Sci.Lett. 1993,12(14), 1099-102(Eng)
    [34] Mott M,Evans JRG.Zirconia/alumina functionally graded materials made by ceramic ink jet printing.Mareial Science and Engineering, 1999,A271:344~352
    [35] 常姗。凌云汗·科技日报:2001,4,25
    [36] 曹文斌,武安华,李江涛等·SiC/C功能梯度材料的制备·北京科技大学学报,2001,23(1):32-34
    [37] 唐新峰,张联盟,袁润章·PSZ—Mo系功能梯度材料的热应力缓和设计与制备·硅酸盐学报,1994,22(1):44-48
    [38] 沈强.张联盟,袁润章·Ni/Ni_3Al—Ti系梯度功能材料的组成结构设计与制备,硅酸盐学报,1997,25(4):406-411
    [39] 范秋林,胡行方.郭景坤·Ni--ZrO_2精细功能梯度材料的设计、制备和分析·无机材料学报,1996,11(4):696-702
    [40] 夏永红,金卓仁,程继贵,等.梯度功能材料及其在机械工程中的应用[J].机械工程材料,2001,25(5)9-11.
    
    
    [41] 王力衡,黄运添.郑海涛,薄膜技术,北京:清华大学出版社,1991,第一版
    [42] 邬祥生,材料,1995,17(3):5
    [43] 1990,P3
    [44] 1990,P4
    [45] (a) V.G.Syrkin, Materials of the Future :Metal Whiskers, Moscow: Nauka., 1990,191;(b) v.G.Syrkin, Metal Carbonyls, Moscow: Khimiya., 1983, 198
    [46] 1980,32.C
    [47] 1978,256
    [48] (Ⅲ). 1985,C,296
    [49] (Ⅳ)1985,C,153
    [50] 1985,245
    [51] K.E.Spear, "Thermochemical Modelling of Steady-state CVD Process", Proceedings of 9th International Conference on Chemical Vapour Deposition, Cincinnati, Ohio, The Electrochemical Society, Inc. Penning Ton., N.J.,p81-97
    [52] 吕弋,章娴君,罗玲,羰基钼化学气相沉积成膜机制及相关因素研究,西南师范大学学报,2000,25(1):28
    [53] Vossen J L. Thin Processes Ⅱ ,Boston:Academic Press,1991:256
    [54] 于翘.材料工艺(下)[M].北京:宇航出版社,1993.67-68
    [55] 刘荣军,周新贵,张长瑞等.化学气相沉积(CVD)法制备先进陶瓷材料[J].高科技纤维与应用.2002,Vol.27(2):16
    [56] Peter E.Liley,译者朱振东,刘小平,陈丽等.化学工程手册—物理和化学数据[M].北京:化学工业出版社.1989年10月第1版
    [57] 傅献彩,沈文霞.姚天扬.物理化学(上)[M].北京:高等教育出版社.1990年5月第4版
    [58] 梁英教.车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社.1993年8月第1版
    [59] Xu Y, Cheng L, Zhang L, etal. Morphology and growth mechanism of silicon carbide chemical vapor deposited at low tem peratures and normal atmosphere[J]. Journal of Materials Science, 1999, 34:551-555
    [60] 陈照峰,成来飞,徐永东,张立同.化学气相渗透制各氧化硅基复合材料[J].航空学报.2002.vol23(1):43
    [61] 孟光耀.化学气相淀积与无机新材料[M].北京:科学出版社.1984年4月第1版
    [62] 马永良,黄英.VLSI中CVD二氧化硅膜的淀积[J].电子器件.1998,vol21(4)
    [63] 王显祥.硕士论文:金属有机化学气相沉积法制备云母珠光颜科新工艺及应用研究[J].西南师范大学 2003,5
    [64] 黄惠忠,论表面分析及其在材科研究中的应用[M],北京:科学技术文献出版社,2002
    [65] 平野彻,若岛健司,倾斜机能材料设计[J],日本复合材料学会社,1991,7(2):45
    [66] 方容生,方德寿编,科技人员常用公式与数表手册[M].北京:机械工业出版社,1991
    [67] Wakashima K,Hirano T, Niino M,Micromechanical approach to the thermomechanics of Functionally gradient materials,Proceedings of an international Conference on Space Applications of Advance Structure Material; Noordwok.the Netherlands_ESA SP-303.March. 1990.97-104
    [68] 王建祺,电子能普学引论[M],北京:国防工业出版社,1992
    [69] 张继成,唐永建,吴卫东等,Cu_2O/C_(60)梯度材料的制备[J],强激光与粒子束,2001,13(5):587
    [70] 黄惠忠.论表面分析及其在材料研究中的应用[M],北京:科学技术文献出版社,2002
    [71] 小泉光惠,浦部和顺.倾斜机能复合材料[J].铁钢,1989,75(6):887
    [72] Neubrand, Roedel. Gradient materials:An over view of an ovel concept[J]. Z eils chift fuer metall kunde, 1977,88(5):358
    [73] Hirait,Chenl.Recentand and prospective development of functionally graded materials in Japan[J] .Materials Science Forum. 1998-1999.308-311:509
    [74] 郑慧雯,茹克也木.章娴君,功能梯度材料的研究进展[J],西南师范大学学报,2002,27(1):788
    [75] 张永俐.罗素华,Si C-Al梯度功能材料(FGM)的制备[J],材料科学与工程,1999,17(4):36
    [76] 方容生.方德寿编,科技人员常用公式与数表手册[M].北京:机械工业出版社,1991
    [77] Wakashima K,Hirano T, Niino M,Micromechanical approach to the thermomechanics of Functionally gradient
    
    materials,Proceedings of an international Conference on Space Applications of Advance Structure Material; Noordwok, the Netherlands,ESA SP-303,March, 1990,97-104
    [78] 殷景华,功能材料概论,哈尔滨工业大学出版社,1999,第一版:48
    [79] 吕弋,章娴君,罗玲,羰基钼化学气相沉积成膜机制及相关因素研究[J],西南师范大学学报,2000,25(1):28
    [80] 王建祺,电子能谱学引论[M],北京:国防工业出版社,1992
    [81] 张继成,唐永建,吴卫东等,Cu_2O/C_(60)梯度材料的制备[J],强激光与粒子束,2001,13(5):587
    [82] 郑慧雯,章娴君,MOCVD法制备Fe/Mo功能梯度材料的研究,西南师范大学学报(己录用)
    [83] 饭田修一等主编,物理学常用数表,科学出版社,1979,8,第一版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700