用户名: 密码: 验证码:
无级变速器控制系统与硬件在环仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规的变速器试验台是以模拟车辆实际运行工况为目标建立的,结构复杂、成本高、功耗大。为克服这些缺点,本文对基于无级变速器(Continuously Variable Transmission, CVT)的空载/轻载型硬件在环试验台的设计理论和试验方法展开研究,主要工作内容如下:
     ①新型硬件在环试验台设计。提出了将真实CVT置于仿真回路中的硬件在环仿真试验台结构,采用小功率电机代替发动机和加载设备,构成小功率电封闭试验台,CVT处于空载/轻载状态运行,在保证试验精度的情况下,大大降低了试验台的成本和功耗。
     ②CVT基本性能试验。1)夹紧力阀特性试验结果表明:稳态系统压力主要取决于工作电压,在主要工作压力范围内呈线性关系;瞬态系统压力具有良好的动态响应性能,能够适应工况的剧烈变化,转速对系统压力的瞬态特性影响较小,只对低速下的压力升高过程有明显影响。2)速比响应特性试验表明,速比响应过程与传递转矩无关,低速时的速比减小过程存在响应延迟,延迟时间随转速的升高而逐渐减小并消失;提出了面向控制的速比变化率测量和计算方法,避免了传统方法依赖于主动轮压力的问题。3)对CVT的功耗和传动效率进行了试验,结果表明:空载转矩损失取决于速比和系统压力,与转速基本无关,当速比小于1时,转矩损失随速比的减小而快速增大,当速比大于1时,转矩损失与速比基本无关;传动效率也基本与转速无关,因此可以通过测量低速下的效率来反映CVT的整体效率特性,从而提出了利用小功率电机测量CVT效率的方法。
     ③控制体系分析与系统建模。1)将CVT控制体系结构分为驾驶员、控制策略、控制算法、执行机构、传动系统五个层次,分别对应于提出需求、设定满足需求的目标、制定实现目标的方法、控制执行机构实现目标、系统响应使需求得到满足。2)在建立传动系统主要部件模型的基础上,采用功率流建模方式构建了传动系统整体模型;更进一步,将仿真模型与试验台相结合构建了CVT硬件在环仿真试验系统。
     ④底层控制算法研究。1)提出了夹紧力半闭环控制算法,由系统压力控制表得到基本控制量,由闭环控制算法计算修正控制量,充分利用对象的已知信息,提高了系统的鲁棒性和动态响应性能。2)提出了基于动态安全系数的夹紧力控制方法,分析目标夹紧力影响因素和发动机转矩波动特性,根据传动系统发生转速突降时的发动机转矩变化趋势和变化范围来设定安全系数,论述了动态安全系数法的计算流程,仿真结果表明:该方法能够保证转矩传递可靠性,明显降低夹紧力。3)在速比控制方面,提出了基于主动耦合干预的无级变速器速比控制方法,利用夹紧力控制与速比控制之间的耦合作用,在保证夹紧力安全的基础上,通过联合调节主、从动轮油缸压力来干预速比控制,扩大速比变化率的可控范围,仿真结果表明:该方法在保证可靠性、经济性和舒适性的前提下,改善速比跟踪性能和提高动力性,增强对驱动轮打滑等恶劣工况的适应性。
     ⑤上层控制策略研究。1)在稳态控制策略方面,针对现有无级变速传动系统效率优化算法的不完整性,以整体效率最优为目标,设计最佳工况点求解算法,制定基于功率需求的传动系统整体优化控制策略,将满足功率需求的最高效率点作为基本控制目标,以实现最佳经济性;当功率需求超出传动系统功率范围时,将当前车速下的最大输出功率点作为控制目标,以实现最佳动力性;求解液力变矩器理想状态切换线,制定实际切换控制线。2)在瞬态控制策略方面,针对无级变速车辆在急加速工况下出现的动力疲软问题,提出了瞬态工况下基于有效功率的通用补偿控制方法,以变速器输入功率作为控制目标,克服了现有控制方法依赖于车辆及路况信息的缺陷,通过分层次量化补偿功率,将控制方法划分为功率维持、零功率、增加后备功率和综合模式等四种控制模式,为灵活设定过渡曲线和优化瞬态工况性能提供量化依据,仿真结果表明:该控制方法能够实现所要求的补偿效果,克服急加速过程中的动力疲软。
     本文研究成果不仅为CVT性能测试和控制系统的研究试验方法开辟新的途径,也为其他类型的自动变速器和传动机构的研究提供借鉴,甚至可作为一种较为通用的传动系统硬件在环仿真试验方法。
The target of normal transmission test bench is to simulate vehicle’s running condition precisely. This kind test bench is characterised by complex, expensive and energy-intensity. To overcome these disadvangages, study on design theory and experiment method of light duty hardware in the loop(HIL) CVT test bench was carried on. The main work as follows:
     ①Novel HIL test bench construction. A new kind HIL structure was presented by involving a real CVT in simulation loop. Compared to normal test bench, engine and load equipment were replaed by double relative small motors, and electric-close-loop bench was established. Accuracy was ensured and while construction cost and power dissipation was reduced dramatically.
     ②CVT main performance test. 1) Experiments on clamping-force static and dynamic performance were carried on. According to the results, system pressure static value was mainly determined by the applied voltage, and has a good linear character in main working range. System pressure has a good dynamic performance which could adapt the transient change of working condition. 2) ratio-shift-rate performance was tested. According to the results, ratio-shift-rate has no relationship with the torque transmitted and the rotate speed except in low speed. A method calculating ratio-shift-rate was presented with on need sampling primary pressure value. 3) Dissipation and efficiency was measured. According to the results, dissipation and efficiency have no relationship with speed, and were mainly determined by ratio and primary torque. When the ratio is less than 1, the torque loss increased rapidly with the decline of ratio. When the ratio is large than 1, the torque loss has no obvious relation with ratio. As a result, it is possible to measure efficency with small poer motor instead larger motor or engine.
     ③Study on control hierarchy and system modeling. 1) CVT control system was devided into driver, control strategy, control algorithm, acturator and transmission system, which correspond to proposing demand, setting target, making solution method, achieve the target, and satisfying the demand. 2) Based on main components models, transmission system model were established. Further more, integrating simulation model and test bench, CVT HIL system was set up.
     ④Study on low hierarchy control algorithm. 1) Clamping-force semi-close loop control algorithm was presented. Control value consisted of basic value and correction value. Basic control value was available by lookuping pressure static character table. Correction value was calculated by close loop control algorithm. Controlled object information was taken full adavantage. Dynamic performance and roubustness were improved. 2) Traditional constant safety factor method and novel slip-control method are extreme different methods of clamping force control strategy. To integrate advantages of both methods, clamping force control strategy base on dynamic safety factor was presented. Study of theoretical clamping force relevant parameters and engine torque wave characteristics was carried on. Safety factor was determined according to engine torque variation trend and range. Target pressure calculating process was described. Simulation and experiment results showed that by adopting dynamic safety factor, transmission reliability was ensured and the performances of clamping-force and fuel efficiency were improved. 3) To enlarge valid ratio shift range of continuously variable transmission, active coupling control strategy was proposed. Utilizing the coupling effect between clamping force and speed ratio, the shift speed is improved by conditioning the pressure of both primary and second pulleys’hydraulic cylinders. System pressure safety must be ensured to satisfy the clamping force which could meet the requirement of torque transmission. As a result, real ratio tracks the target more rapidly and shift speed range is enlarged. Studies on active coupling control strategy was carried on, which included shift speed, clamping force related transmission reliability, fuel economic, dynamic performance, hard condition adaptability, and shift speed related comfortableness. Simulation results showed that by adopting active coupling control strategy, reliability, economic, and comfortableness were ensured while ratio tracking performance and power performance were improved.
     ⑤Study on high hierarchy control strategy. 1) At the aim of highest efficiency of CVT, an optimization algorithm was designed by considering the efficiency of engine and the main dissipation component. Duel-state hydraulic torque converter (TC) was also included in the algorithm. Control strategy based on power demand was designed in order to realize higher efficiency of whole system. The highest efficiency operating condition which satisfies the power demand is set to be the control objective. As a result, the best economical efficiency is available. While the power demand exceeds the maximum output power under the current vehicle speed, the maximum output power condition is set to be the control objective. As a result, the best dynamic performance is available. TC ideal control line was calculated based on which practice operating line was designed. 2) To improve the drivability of CVT vehicle under hard acceleration condition, a compensation control strategy based on effective power was proposed. Different from normal control methods which are dependent on vehicle and road environment information, the novel strategy set CVT input power as the control objective directly. Power compensation mode was ranked to four classes: holding power, zero power, increasing reserve power, and synthesis control. So, quantification criterions for setting transition curve and optimizing transient condition performance are available. Simulations and experiments results showed that power compensation control strategy could eliminate the harmful effect of power decreasing caused by engine-flywheel inertia and too fast ratio shift-rate and drivability was improved under transient condition.
     The achievement in this paper not only presented a novel solution for CVT performance test and control system study, but also provided a referrence method for other kinds automatic transmissions and gear boxes. Further more, a relative universal HIL simulation method for transmission system was available.
引文
[1]百川.我国自动变速器发展现状及未来趋势(上)[J].现代零部件, 2010(10):67-72.
    [2]百川.我国自动变速器发展现状及未来趋势(中)[J].现代零部件, 2010(11):58-61.
    [3]百川.我国自动变速器发展现状及未来趋势(下)[J].现代零部件, 2010(12):61-66
    [4]陈乃士.汽车金属带式无级变速器-CVT原理和设计[M].北京:机械工业出版社,2008.
    [5]蒋强,柳洪义,杨新桦.车辆金属带式无级变速传动效率优化设计[J].机械与电子, 2009(6): 35-38.
    [6]叶明,程越.电驱动无级自动变速传动动态控制研究[J].汽车工程, 2009, 31(8): 751-755.
    [7]张春兰,常思勤.全电调节带式无级变速器的理论分析与试验验证[J].汽车工程, 2009, 31(8): 751-755.
    [8] P.H.W.M.Albers. Fuel economy benefits of advanced techniques for CVT actuation and control [D]. Eindhoven, the Netherlands: Eindhoven University of technology, 2005.
    [9] P.A.Veenhuizen, B.Bonsen, T.W.G.L.Klaassen, etl. Pushbelt CVT efficiency improvement potential of servo-electromenchanical actuation and slip control [C]. 2004 International conference on CVT. 04CVT-49.
    [10] Alex F.A.Serrarens, Shuiwen Shen, Frans E.Veldpaus. Control of a flywheel assisted driveline with continuously variable transimission [J]. Journal of dynamic system, measurement, and control, 2003(125):455-461.
    [11] Lingyuan Kong, Robert G.Parker. Steady mechanics of layered, multi-bande belt drives used in continuously variable transimissions (CVT) [J]. Mechanism and Machine Theory, 2008(43): 171-185.
    [12] Nilabh. Srivastava, I. Haque. Transient dynamics of metal V-belt CVT: effects of band pack slip and friction characteristic [J]. Mechanism and Machine Theory. 2008,43 (4):459–479.
    [13] R. Bhate, N. Srivastava. Transient-dynamic model of a metal V-belt CVT for ratio shift control applications [J] Proceedings of the ASME International Mechanical Engineering Congress and Exposition,2009(17) : 175-185.
    [14] G.Carbone, L.Mangialardi, B.Bonse, etl. CVT dynamics: theory and experiments [J]. Mechanism and Machine Theory, 2007(42):409-428.
    [15] G.Carbone, L.Mangialardi, G.Mantrita. Theoretical model of metal V-belt drives during rapid ratio changing [J]. Journal of dynamic system, measurement, and control, 2001(123):111-117.
    [16] Rolf Pfiffner, Lino Guzzella, Chris H Onder. A control-oriented CVT model with nonzero belt mass [J]. Journal of dynamic system, measurement, and control, 2002(124):481-484.
    [17] Osamu Fujimura, Kazuya Okubo, Toru Fujii. Shifting mechanisms and variation of frictional coefficients for CVT using metal pushing V-belts [C]. SAE 2000-01-0840.
    [18] G Poll, T Kruse, G Meyer. Prediction of losses in belt-tyepe continuously variable transimission due to sliding between belt and disc [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2006(220): 235-243.
    [19] S.Akehurst, N. D.Vaughan, D.A .Parker. Modelling of mechanisms in a pushing metal V-belt continuously variable transmission. part1: torque losses due to band friction [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2004(218): 1269-1281.
    [20] S.Akehurst, N. D.Vaughan, D.A .Parker. Modelling of mechanisms in a pushing metal V-belt continuously variable transmission. part2: pulley deflection losses and total torque loss validation [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2004(218): 1283-1121293.
    [21] S.Akehurst, N. D.Vaughan, D.A .Parker. Modelling of mechanisms in a pushing metal V-belt continuously variable transmission. part3: belt slip losses [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2004(218): 1295-1306.
    [22] Wansik Ryu, Hyunsoo Kim.金属带无级变速器带-带轮的机械损失[J].传动技术,2009,23(3):41-48.
    [23]刘合法,何维廉.金属带式无级变速器的效率计算[J].传动技术,1997(4/97):44-51.
    [24]廖建,孙冬野,秦大同,等.金属带式无级变速器传动效率的理论分析[J].重庆大学学报, 2003, 26(3):12-15.
    [25]卢延辉.双状态无级变速器综合控制策略研究[D].长春:吉林大学,2007.
    [26]张凤和,张德珍,程乃士,等.金属带式无级变速器(CVT)摩擦系数的实验研究[J].机械设计与制造,1999(6):54-55.
    [27]程乃士,刘温,郭大忠,等.金属带式无级变速器传动效率的实验研究[J].东北大学学报(自然科学版),2000,21(4):394-396.
    [28]孙德志,谭振江,郭大忠,等.金属带式无级变速器传动效率的分析[J].东北大学学报(自然科学版),2002,23(1):53-56.
    [29]张伟华,谢里阳,程乃士,等.金属带式无级变速器摩擦因数和传动效率的实验研究[J].机械设计,2006,23(12):41-43.
    [30]李磊,石晓辉,程乃士,等. CVT金属带钢环疲劳试验数据可靠性分析[J].机械设计与制造,2009(8):223-225.
    [31]张伟华,龚云鹏,程乃士,等.提高汽车金属带式无级变速器效率的途径[J].东北大学学报(自然科学版),2009,30(8):1181-1184.
    [32]杨亚联,秦大同,孙冬野,等.金属带式无级变速器传动性能的试验研究[J].机械工程学报,2002, 38(5):66-69.
    [33] Byungsoon Min, Ron Matthews, Michael Duoba, etl. Direct measurement of powertrain component efficiencies for a light-duty vehicle with a CVT operating over a driving cycle [C]. SAE 2003-01-3202.
    [34] K Narita, M Priest. Metal-metal friction characteristics and the transmission efficiency of a metal V-belt-tyepe continuously variable transimission [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2007(221): 11-26.
    [35] Francis van der Sluis. A new pump for CVT applications [C]. SAE 2003-01-3207.
    [36] Thomas H.Bradley, Brian R.Huff, Andrew A.Frank. Energy consumption test methods and results for servo-pump continuously variable transmission control system [C]. SAE 2005-01-3782.
    [37]杨阳,秦大同,杨亚联,等.车辆CVT液压系统功率匹配控制与仿真[J].中国机械工程, 2006, 17(4):426-431.
    [38]毕乾坤,张东波,程秀生. CVT电液系统中电磁阀特性的仿真与试验研究[J].汽车技术, 2007(6): 29-32.
    [39]何仁,吴海啸,张涌,等.比例减压阀的特性及在无级变速器速比控制中的应用[J].汽车工程, 2008, 30(7):618-621.
    [40]吴海啸,张涌,何仁,等.无级变速器用比例减压阀的特性分析与试验[J].轻型汽车技术, 2008(4,总224):4-8.
    [41]何仁,吴海啸,张涌,等.无级变速器用反比例溢流阀特性分析与试验[J].农业机械学报, 2008, 39(7):23-26.
    [42]樊攀.金属带式无级变速器数字比例调压阀的研究[D].长春:吉林大学,2009.
    [43]刘金刚,谭援强,徐慧余,等.无级变速器速比控制阀动态性能仿真与优化[J].农业机械学报, 2010,41(3):6-10.
    [44] Takashhi Shibayama, Hiroyuki Yada, Yoshio Morita, etl. Introduction of the latest hydraulic control system for automatic transimission [J]. Proceddings of the 7th JFPS International symposium on fluid power, Toyama, 2008. September 15-18, 2008. 0S6-2.
    [45]杨阳,汪小平,秦大同,等.速比变化过程中CVT液压系统动态性能仿真[J].重庆大学学报, 2010, 33(4):9-13.
    [46]邹云飞,胡纪滨,苑士华,等.金属带式无级变速器液压控制系统对速比特性的影响分析[J].机械传动, 2009,33(5):76-78.
    [47]孙冬野,王新国,胡建军,等.金属带式无级变速传动液压系统的设计方法[J].重庆大学学报(自然科学版), 2005, 28(12):1-5.
    [48]刘金刚.金属带式无级变速器电液控制系统关键技术的研究[D].长沙:湖南大学,2008.
    [49]罗勇.金属带式无级变速传动系统匹配控制研究[D].重庆:重庆大学,2010.
    [50]贾利国,黄琪.无级变速传动液压系统设计及仿真分析[J].工程设计学报, 2006,13(3):166-169.
    [51] P Kim, W S Ryu, S H Hwang, etl. Astudy on the reduction in pressure fluctuations for an independent pressure-control-type continuously variable transimission [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2008(222): 729-737.
    [52]陈东升,项昌乐,刘辉.液力变矩器的动态特性和动力学模型研究[J].中国机械工程,2002, 13(11):913-916.
    [53]何仁,商高高.液力变矩器特性的优化方法[J].中国公路学报,2001,14(增刊):116-119.
    [54]刘振军,秦大同,胡建军,等.轿车用液力变矩器性能试验分析[J].重庆大学学报(自然科学版), 2002,25(2):103-105.
    [55]刘振军,秦大同,胡建军.无级变速车辆发动机与液力变矩器共同工作特性[J].重庆大学学报(自然科学版),2002,25(12):14-17.
    [56]孙跃东,周萍,尹冰声.液力变矩器与发动机匹配的计算方法研究[J].机械制造, 2003, 41(471): 35-37.
    [57]孙跃东,周萍,邹敏.重型车辆发动机液与力变矩器共同工作性能分析[J].起重运输机械, 2004, (8):25-28.
    [58]边淑君.发动机与液力变矩器匹配计算的软件开发[J].工程机械,2007, 38(6):10-13.
    [59]冯茂林,边淑君.液力变矩器与发动机匹配的计算机分析软件[J].建筑机械,2007 (03上半月刊): 65-68.
    [60]刘振军,秦大同,胡建军.双状态无级变速车辆起步控制[J].汽车工程,2002,24(5):387-390.
    [61]曹建国,秦大同,胡建军,等.液力变矩器在机械无级变速传动系统中的应用[J].重庆大学学报(自然科学版),2002,25(5):5-9.
    [62]霍晓强,申岳国,刘琦,等.液力变矩器闭锁时机对传动系统动态特性影响的仿真研究[J].工程机械,2007,38(4):53-57.
    [63]孙文涛,陈慧岩,关超华,等.液力变矩器闭锁过程控制技术研究[J].汽车工程, 2009, 31(8): 761-764.
    [64]李春芾,陈慧岩,李艳琴,等.重型车辆液力变矩器闭锁控制技术的试验研究[J].汽车工程, 2010, 32(2): 123-127.
    [65]徐安,乔向明,刘圣田.汽车自动变速器锁止离合器控制策略[J].汽车工程, 2004, 26(3): 283-286.
    [66]胡建军,秦大同,蒋小华.液力变矩器锁止离合器性能及滑差控制[J].重庆大学学报, 2004, 27(2): 1-5.
    [67]谢硕,吴光强,周凡华,等.液力变矩器滑摩离合器控制压力计算方法[J].汽车技术,2002(4): 1-4.
    [68] D.Y.Lee, H.H.Ju, J.S.Rhee, etl. Adaptive anti-shock coasting lock-up control of the torque convertier clutch[J]. world academy of science, engineering and technology, 2006(15): 2663-2667.
    [69]苏永清,岳继光,萧蕴诗,等.影响轿车换挡品质主要因素的分析与试验研究[J].汽车技术, 2004(2): 28-30.
    [70]陈清洪,秦大同,叶心.液力变矩器闭锁离合器的最优滑摩控制[J].中国机械工程, 2009, 11(22): 2663-2667.
    [71]李明国,秦大同,胡建军,等.无级自动变速汽车起步综合控制策略[J].重庆大学学报, 2004, 27(7): 6-9.
    [72]胡建军,杨雪梅,张青,等.双状态无级变速车辆起步控制方法[J].重庆工学院学报(自然科学版), 2008, 22(9):10-14.
    [73]张涌,吴海啸,夏晶晶.基于自适应的模糊PID算法的CVT起步离合控制优化[J].轻型汽车技术, 2008, (3,总226):4-7.
    [74]夏晶晶,何仁,张涌,等.基于分段控制的CVT湿式离合器起步控制策略[J].公路交通科技, 2008,25(12):180-183.
    [75]张飞铁,周云山,薛殿伦. CVT起步离合模糊控制算法研究[J].湖南大学学报(自然科学版), 2006 ,33(5):57-60.
    [76]何仁,夏晶晶,张涌,等.无级变速汽车液力变矩器工作策略[J].交通运输工程学报, 2008, 8(5): 10-14.
    [77]罗勇,孙冬野,秦大同,等.双状态无级变速传动系统起步控制优化[J].农业机械学报, 2010, 41(3):1-5.
    [78]冯挽强,程秀生.无级变速器多片湿式离合器起步分析[J].汽车技术,2006, (10):22-24.
    [79] Kazutaka Adachi, Yoshimasa Ochi, Kimio Kanai. Development of CVT control system and its use for fuel-efficient operation of engine [J]. Asian journal of control, 2006, 8(3):219-226.
    [80] Masahiro Yamamoto, Tatsuo Wakahara, Hirofumi Okahara, etl. Hydraulic system, shift and lockup cluch controls developed for a large torque capacity CVT [C]. 2004 International conference on CVT, 2004, 04CVT-7.
    [81]杨新桦,金国栋.金属带式无级变速器控制任务的分解[J].汽车工程, 2009, 31(11): 1017-1029.
    [82]孙冬野,秦大同.金属带无级自动变速车辆调速特性研究[J].农业机械学报, 2002, 33(6): 5-7.
    [83]王立公,王红岩,秦大同,等.金属带式无级变速器速比控制的试验研究[J].汽车工程, 2003, 25(6): 569-573.
    [84]谢先平,温嘉斌,周美兰,等.金属带式汽车无级变速系统建模及动态仿真分析[J].电机与控制学报, 2005,9(1):72-76.
    [85]张飞铁,周云山,薛殿伦,等.汽车无级变速器传动性能评价系统研究[J].汽车工程, 2007, 29(12): 1086-1089.
    [86]胡建军,秦大同,孙冬野,等.金属带式无级变速传动键合图建模及仿真[J].重庆大学学报(自然科学版), 2000,23(2):355-360.
    [87]胡建军,秦大同,孙冬野,等.金属带式无级变速传动系统仿真与控制研究[J].农业机械学报, 2001,32(1):27-30.
    [88]胡建军,秦大同,舒红,等.金属带式无级变速传动系统速比匹配控制策略[J].重庆大学学报(自然科学版), 2001,24(6):12-17.
    [89]薛殿伦,陈伟生,冯显武.金属带式无级变速器速比匹配与控制研究[J].中国公路学报, 2009, 22(2):116-121.
    [90]王红岩,秦大同.汽车无级变速传动系统综合控制的研究[J].机械工程学报, 2000, 36(2): 38-41.
    [91]孙冬野,秦大同.液力变矩器-机械无级变速器自动变速汽车综合控制策略研究[J].机械工程学报, 2003,39(2):102-105.
    [92] Dipak Patel, Jeff Ely, Mike Overson. CVT drive Research study [C]. SAE 2005-01-1459.
    [93] Roland Nasdal, Mathias Link. GALOP-IAV’s universal speed ratio selection strategy for ATs, CVTs and hybrid drivetrains [C]. SAE 2002-01-1256.
    [94] David F. Pick, Dong Yuan, Robert W. Procter. Dead pedal and the perception of performance of a continuously variable transmission [C]. SAE 2005-01-1596.
    [95] Sharon Liu, Brad Paden. A survey of today’s CVT controls [J]. Proceeding of the 36th conference on decision & control, San Diego, California, USA. December, 1997: 4738-4743.
    [96]张宝生,付铁军,周云山,等.金属带式无级变速传动系统与发动机的匹配及其控制策略[J].吉林大学学报(工学版), 2004,34(1):65-70.
    [97]于峰,卢伟.金属带式无级变速传动系统综合控制策略的研究[J].佳木斯大学学报(自然科学版), 2008,26(3):304-307.
    [98]周美兰,王旭东,周永勤.无级变速汽车动力传动系统控制策略研究[J].哈尔滨工业大学学报, 2009,41(3):217-220.
    [99] Mohan Gangadurai, Sreekumar B, Harikrishnan Nagarajan. Development of control strategy for optimal control of a continuously variable transmission operating in combination with a throttle controlled engine [C]. SAE 2005-32-0007.
    [100]罗勇,孙冬野,秦大同,等.考虑CVT效率的无级变速车辆最佳经济性控制[J].机械工程学报, 2010,46(4):80-86.
    [101]罗勇,孙冬野,胡丰宾,等.无级变速汽车最佳动力性优化控制策略[J].重庆大学学报, 2010, 33(3):1-6.
    [102] W.Ryu, H.Kim. CVT ratio control with consideration of CVT system loss [J]. International journal of automotive technology. 2008, 9(4): 459-465.
    [103]张涌,张为公,马承光,等.带效率修正的无级变速器速比控制研究[J].测控技术, 2009, 28(5): 82-86.
    [104] R.Pfiffner, L.Guzzella, C.H.Onder. Fuel-optimal control of CVT powertrains [J]. Control engineering practice. 2003(11): 329-336.
    [105] T.Kim,H.Kim.考虑动力系统功率损失和CVT响应滞后集成发动机-CVT控制的性能[J]. Drive system technique,2003 (12):19-26.
    [106] T Kim, H Kim. Performance of integrated engine-CVT control considering powertrain loss and CVT response lag [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2002(216): 545-553.
    [107] Wansik Ryu, Hyunsoo Kim. Belt-pulley mechanical loss for a metal belt continuously variable transmission [J]. Proc. Instn Mech. Engrs. Part D: J. Automobile engineering. 2007(221): 57-65.
    [108]邓涛,孙冬野.无级变速传动系统综合控制仿真与试验[J].汽车工程,2010,32(1):49-55.
    [109]孙冬野,秦大同.汽车无级变速传动系统离散化的速比控制策略[J].江苏大学学报(自然科学版), 2009,33(4):352-356.
    [110]王加雪,王庆年,周云山,等.基于发动机外特性的CVT速比控制方法研究[J].汽车技术, 2009(10): 1-4.
    [111]孙冬野,秦大同.基于人-车-路环境下汽车无级自动变速传动的智能控制[J].中国机械工程, 2005,16(4):355-360.
    [112]何仁,马承广,张涌,等.基于驾驶意图的无级变速器目标速比确定方法[J].农业机械学报, 2009, 40(5):16-19.
    [113]何仁,夏晶晶,张涌,等.基于滞后特性的无级变速器速比控制策略[J].中国机械工程, 2009, 20(12): 1403-1406.
    [114]董伟,于秀敏,张友坤.汽车下长坡时发动机制动CVT控制策略[J].吉林大学学报(工学版), 2006,36(5):650-653.
    [115]张树培,张友坤,王庆年,等.非稳态工况下无级变速器传动比控制优化[J].吉林大学学报(工学版), 2010,40(4):895-900.
    [116]张树培,张友坤,王庆年,等.坡道行驶工况下CVT传动比控制[J].江苏大学学报(自然科学版), 2010,31 (3):273-277.
    [117]高阳,雷雨龙,谷明起,等.无级变速车辆的牵引力控制策略仿真[J].吉林大学学报(工学版), 2009,39(增刊2):246-250.
    [118] Rolf Pfifner, Lino Guzzella. Optimal operation of CVT-based powertrains [J]. International journal of robust and nonlinear control. 2001(11): 1003-1021.
    [119]付铁军,王建华,周云山,等.金属带式无级变速器夹紧力控制的研究[J].汽车技术, 2006(2): 17-20.
    [120]付铁军,周云山,张宝生.金属带式无级变速器电液控制系统的试验研究[J].汽车工程, 2003, 25(4):384-388.
    [121]夏晶晶,何仁,张涌,等.基于模糊PID的CVT夹紧力控制[J].江苏大学学报(自然科学版), 2008, 29(4):304-307.
    [122]张飚,商高高,张涌,等.急加速工况夹紧力控制策略研究[J].机械设计与制造, 2009(10): 217-219.
    [123] Hiroyuki Nishizawa, Hiroyuki Yamaguchi, Hideyuki Suzuki. Friction characteristics analysis for clamping force setup in metal V-belt type CVTs [J]. Special issue basic analysis towards further development of continuously variable transmission, Research Report, R&D Review of Toyota CRDL 40(3):15-20.
    [124] B.Bosen, T.W.G.L.Klaassen, K.G.O.van de Meerakker, etl. Analysis of slip in a continuously variable transmission [J]. 2003 ASME international mechanical engineering congress, Washington, D.C., November 15-21, 2003. IMECE2003-41360.
    [125] Maaike van der Laan, Mark van Drogen, Arjen Brandsma. Improving push belt CVT efficiency by control stragegies based on new variator wear insight [C]. 2004 Internaltional conference on CVT. 04CVT-39.
    [126] Mark van Drogen, Maaike van der laan. Determination of variator robustness under macro slip conditions for a push belt CVT[C]. SAE paper, 2004-01-0480.
    [127] Maaike van der Laan, Mark van Drogen. Improving push belt CVT efficiency by clamping force control strategies based on variator slip measurement [M].Van Doorne’s Transmissie b.v./Bosch Group Report, 2005.
    [128] B.Bnsen, T.W.G.L.Klaassen, K.G.O.van de Meerakker, etl. Measurement and control of slip in a continuously variable transmission [J]. Eindhoven university of technology, department of mechanical engineering, Eindhoven, The Netherlands. 2005 Report: 43-48.
    [129] B.Bnsen. Efficiency optimization of the push-belt CVT by variator slip control [D]. Eindhoven, The Netherlands:Eindhoven university of technology,2006.
    [130] E. van der Noll, F. van der Sluis, T. van Dongen, A. van der Velde, Innovative self-optimising clamping force strategy for the pushbelt CVT, SAE International Journal of Engines 2 (1) (2009) 1489–1498.
    [131]张树培.汽车无级变速器滑转率与夹紧力控制研究[D].长春:吉林大学,2007.
    [132]冯显武.基于滑移的金属带式无级变速器最佳夹紧力的控制研究[D].长沙:湖南大学, 2008.
    [133]罗勇,孙冬野,秦大同,等.金属带无级变速器滑转率控制建模与仿真[J].系统仿真学报, 2011, 23(9):1995-1999.
    [134]周云山,刘金刚,邹乃威,等.无级变速传动装置夹紧力控制系统建模、辨识及实验验证[J].中国机械工程, 2007,18(19):2291-2294.
    [135]刘金刚,王登峰,何霞辉,等.基于LS-SVM模型的无级变速器夹紧力控制系统故障诊断[J].汽车工程, 2009,31(4):317-320.
    [136] Sharon Liu, Anna G Stefanopoulou. Effects of control structure on performance for an automotive powertrain with a continuously variable transmission [J]. IEEE transactions on control system technology. 2002,10(5): 701-708.
    [137] D.C.Foley, N.Sadegh, E.J.Barth, etl. Model identification and backstepping control of a continuously variable transmission system [J]. proceeding of the American control conference, Arlington, VA June 25-27, 2002 4591-4596.
    [138]刘金刚,周云山,邹乃威,等. DMC-PID串级控制在CVT速比控制系统中的应用[J].湖南大学学报(自然科学版),2007,34(10): 44-48.
    [139]刘金刚,周云山,高帅,等.智能预测控制在无级变速器速比跟踪中的应用[J].中国机械工程, 2008,19(14): 1664-1668.
    [140]栾文博,周云山.金属带式无级变速器Fuzzy_PI复合速比控制系统研究[J].汽车工程, 2010, 32(9): 778-782.
    [141]邹乃威,王庆年,刘金刚,等.金属带式CVT速比的改进PID控制[J].湖南大学学报(自然科学版), 2008,35(8): 29-33.
    [142]王成,李冰怡,宋传学,等.金属带式无级变速器速比控制的改进算法[J].机械设计与研究, 2010, 26(6): 1664-1668.
    [143] Talcheol Kim, Hyunsoo Kim, Jaeshin Yi, etl. Ratio control of metal belt CVT [C]. SAE 2000-01-0842.
    [144] Heera Lee, Chulsoo Kim, Talchol Kim. CVT ratio control algorithm by considering powertrain response lag [C]. SAE 2004-01-1636.
    [145] K.K.Ang, C.Quek, A.Wahab. MCMAC-CVT: a novel on-line associative memory based CVT transmission control system [J]. Neural Networks. 2002(15): 219-236.
    [146]孙冬野,秦大同,汪新国.无级变速传动系统速比变化率的设计方法[J].汽车工程, 2006, 28(10): 910-913.
    [147] T. Ide, A. Udagawa, R. Kataoka. Simulation approach to the effect of the ratio changing speedof a metal V-belt CVT on the vehicle response [J]. Vehicle System Dynamics, 1995,24(4) :377–388.
    [148] G. Carbone, L. Mangialardi, B. Bonsen, C. Tursi, P. Veenhuizen. CVT dynamics: theory and experiments [J]. Mechanism and Machine Theory, 2007, 42(4): 409–428.
    [149]胡建军,秦大同,刘振军.金属带式无级变速传动速比变化特性研究[J].汽车工程, 2003, 25(1): 25-29.
    [150] Jean Philippe Gauthier, Philippe Micheau. A model based on experimental data for high speed steel belt CVT [J]. Mechanism and Machine Theory, 2010(45):1733-1744.
    [151] Talchol Kim, Hyunsoo Kim. Low level control of metal belt CVT considering shift dynamics and ratio valve on-off characteristics [J]. KSME International Journal,2000, 14(6): 645-654.
    [152] Heera Lee, Hyunsoo Kim. Shift speed improvement of a metal belt CVT [J]. KSME International Journal,2001, 15(12): 1623-1629.
    [153] Heera Lee, Hyunsoo Kim. Optimal engine operation by shift control of CVT [J]. KSME International Journal,2002, 16(7): 882-888.
    [154] H Lee, H Kim. Improvement of fuel economy by shift speed control for a metal belt continuously variable transmission [J]. Proc Instn IMech Engrs,2002,216 Part D: J Automobile Engineering: 741-749.
    [155] Wansik Ryu, Juhyun Nam, Hyunsoo Kim, etl. Model based control for a pressure control type CVT [J]. 2004, International conference on CVT, 04CVT-31.
    [156]王红岩,方泳龙,周云山,等.金属带式无级变速传动系统动态特性的理论与试验分析[J].汽车工程, 1999,21(5):257-262.
    [157]陶明,于长义,章骏.基于CVT车辆的速比控制策略及整车仿真研究[J].轻型汽车技术, 2009 (7/8,总239/240):4-9.
    [158]胡建军,秦大同,刘振军,等.双状态无级变速传动综合控制策略[J].重庆大学学报, 2004, 27(1): 5-9.
    [159]邓涛.基于“人-车-路”闭环的无级变速器系统硬件在环仿真研究[D].重庆:重庆大学, 2010.
    [160]罗勇.金属带式无级变速传动系统匹配控制研究[D].重庆:重庆大学,2010.
    [161] Kenji hagiwara, satoshi terayama, yohei takeda, et al. The development and utilization of hardware-in-the-loop simulation for the development of an automatic transmission control system [C]. SAE technical paper, 2002-01-1255.
    [162] Kenji hagiwara, satoshi terayama, yohei takeda, et al. Development of automatic transmission control system using hardware-in-the-loop simulation system [J]. JSAE Review. 2002, 23(1): 55-59.
    [163] Kenji hagiwara, Rei Ito, Ko Yoda, et al. Development of transient state model for CVT-HILS [J]. Honda R&D Technical Review, 2005, 17(1): 65-72.
    [164] Lawrence Mianzo. A transmission model for hardware in the loop powertrain control system software development [J]. International Conference on Control Applications, 2000: 1-8.
    [165] Saeawoot Watechagit. Modeling and estimation for stepped automatic transmission with clutch-to-clutch shift technology [D]. Ohio State University, 2004.
    [166] Shushan Bai, Robert Moseds. Development of a new clutch-to-clutch shift control technology [J]. SAE technical paper, 2002(1): 315-324.
    [167] Toshio Matsumura, Shuji Ichikawa, Fuyuku Katsu, et al. The development of a controller confirmation system for automatic transmissions and its applications [J]. International Conference on Control Applications, 2004: 1415-1419.
    [168]张付军. MATLAB/Simulink及dSPACE系统在车辆动力装置匹配及控制系统开发中的应用[R].第一届MATLAB & Simulink中国用户大会暨技术论坛,北京, 2005.
    [169]王永庭,黄英,张付军.基于硬件在环仿真的变速箱电子控制单元的开发方法[J].兵工学报. 2007, 28(8): 897-902.
    [170]戚晓霞,邱绪云,崔荣章.富康轿车自动变速器(AT)半实物仿真试验台的设计与应用[J].武汉船舶职业技术学院学报, 2006(6): 17-21.
    [171]殷新锋,田晋跃.硬件在环模拟技术在自动变速器控制系统中的应用[J].客车技术与研究, 2007(6): 8-10.
    [172]张新荣,黄宗益.自动变速器电子控制单元硬件在环仿真试验[J].长安大学学报, 2005, 25(6): 78-81.
    [173]江发潮.汽车AMT电控单元虚拟试验系统的研究[D].北京:中国农业大学, 2003.
    [174]江发潮,曹正清,迟瑞娟.车辆传动系虚拟试验系统的研究[J].农业机械学报, 2003,
    [175]吴光强,杨伟斌,杨庆.汽车双离合器式自动变速器硬件在环仿真试验台[P]. CN 101140198A.
    [176]潘良明.自动变速器ECU硬件在环仿真试验台研究与开发[D].上海:同济大学, 2005.
    [177] Quan-Zhong Yan, John M. Williams, Jim Li. Chassis control system development using simulation: software in the loop, rapid prototyping, and hardware in the loop [C]. SAE technical paper, 2002-01-1565.
    [178] Quan-Zhong Yan, Frank C. Thompson, Russell E. Paul. Hardware in the loop for dynamic chassis control algorithms test and validation [C]. SAE technical paper, 2004-01-2059.
    [179] Quan-Zhong Yan, Faisal Oueslati, Jim Bielenda, et al. Hardware in the loop for a dynamic driving System controller testing and validation [C]. SAE technical paper, 2005-01-1667.
    [180] Osman Aliefendioglu, Ferit Kü?ükay. Real-time statistical-based test environment fortransmission control unit of passenger cars [C]. SAE technical paper, 1999-01-1047.
    [181] Peter Waeltermann, Thomas Michalsky, Johannes Held. Hardware-in-the-loop testing in racing applications [C]. SAE technical paper, 2004-01-3502.
    [182] Won Hyun Oh, Jung Hee Lee, Hyoung Geun Kwon. Model-based development of automotive embedded systems: a case of continuously variable transmission (CVT) [C]. Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05), 2005.
    [183]胡朝峰.车辆无级变速器实时控制虚拟实验平台的研究[D].武汉:武汉理工大学, 2006.
    [184]汪斌.无级变速器快速控制原型研究[D].武汉:武汉理工大学, 2005.
    [185] Joe Steiber, Bapiraju Surampudi, Mike Rosati, et al. Modeling, simulation, and hardware-in-the-loop transmission test system software development [C]. SAE technical paper, 2003-01-0673.
    [186] Joe Steiber, Bapiraju Surampudi, Ben Treichel, et al. Vehicle HIL, the near term solution for optimizing engine and transmission development [C]. SAE technical paper, 2005-01-1050.
    [187] Southwest Research Institute. Moving on-road powertrain testing into the test cell [R].2002, www.opal-rt.com.
    [188] Steve Hann, Wensi Jin. An automated design synthesis system involving hardware-in-the-loop simulation [R]. http://www.rt-lab.com/files/engineous_2003.ppt.
    [189] Jean Bélanger. Next-generation HIL design tools for next-generation vehicles [R]. 2005, http://www.rt-lab.com/files/autovision2010.pps.
    [190]伍国强.重型商用车机械自动变速器控制软件开发及试验研究[D].重庆:重庆大学, 2009.
    [191]徐佳曙.基于硬件在环控制的液力机械自动变速传动系统参数匹配与实验研究[D].重庆:重庆大学, 2005.
    [192] Felipe V Brand?o, David F Kelly, Kevin Fan, et al. Using model, software and hardware-in-loop to develop automated transmission [C]. SAE technical paper, 2007-01-2581.
    [193]付畅.基于dSPACE的车辆液力自动变速器的快速控制原型开发研究[D].武汉:武汉理工大学, 2006.
    [194]付畅,过学迅,胡朝峰.金属带式CVT电控单元硬件在环仿真研究[J].汽车工程, 2008, 30(3): 255-259.
    [195] Sun Xianan, Wu Guangqiang, He Lin, et al. Hardware-in-the-loop simulation for electro-control system of continuously variable transmission based on dSPACE [J]. IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, 2008.
    [196] S W Yang, D Q Zhao. Object-oriented modeling and real-time simulation of planetary gearboxwith modelica and simulink [J]. 6th International Symposium on Test and Measurement (ISTM), 2005: 773-776.
    [197] Turbett Marlin R, Senseney Robert M, Nash Steven D, et al. Virtual vehicle transmission test cell [P]. United States Patent 6754603.
    [198]蔡源春,周云山,张飞铁.基于硬件在环仿真技术的无级变速器试验系统研究[J].仪器仪表学报, 2009, 30(5): 960-965.
    [199]蔡源春,周云山,张飞铁. CVT传动系虚拟试验系统研究[J].中国机械工程, 2008, 19(22): 2762-2766.
    [200]皮秋生. CVT硬件在环仿真试验平台研究[D].长沙:湖南大学, 2008.
    [201] Fuyuku Katsu, Toshio Matsumura. Practical use of HILS and an approach to MBCSD for AT and CVT development [J]. International Conference on Control Applications Munich, Germany, 2006: 2111-2114.
    [202]李新城,范光强,朱伟兴.无级变速器电子控制单元硬件在环仿真系统[J].农业机械学报, 2009, 40(7): 6-9.
    [203]颜志鹏.双离合器自动变速器控制系统软件开发[D].重庆:重庆大学, 2009.
    [204]赵玉省.双离合器自动变速系统的综合控制[D].重庆:重庆大学, 2009.
    [205] In Gyu Jang, Inkeun Seo, Jaewook Jeon, et al. Testing 32-bit embedded system using hardware-in-the-loop-simulation of automatic transmission [J]. International Conference on Control, Automation and Systems in COEX, Seoul, Korea. 2007: 399-403.
    [206]李淑英.基于LabCar2 AT硬件在环仿真系统开发[D].长春:吉林大学, 2009.
    [207] Quan Zheng, Woowon Chung, Ken Defore, et al. A hardware-in-the-loop test bench for production transmission controls software quality validation [C]. SAE technical paper, 2007-01-0502.
    [208] Quan Zheng, Asif Habeebullah, Woowon Chung, et al. A 6-speed automatic transmission plant dynamics model for HIL test bench [C]. SAE technical paper, 2008-01-0630.
    [209]陈然.汽车DCT智能控制及电控单元虚拟试验系统研究[D].重庆:重庆大学, 2010.
    [210]杨伟斌.双离合器式自动变速器电子控制系统关键技术的研究[D].上海:同济大学, 2007.
    [211]张飞铁.无级变速器湿式离合器系统起步控制研究[D].长沙:湖南大学,2008.
    [212] Francis van der Sluis, Tom van Dongen, Gert jan van Spijk, etl. Efficiency optimization of the pushbelt CVT[C]. SAE Paper, 2007-01-1457.
    [213] Van der Sluis, Francis van Dongen, Tom. Fuel consumption potential of the pushbelt CVT[C]. F2006P218.
    [214]张辉.压力钢带.式无级变速器技术降低油耗的潜能分析(一)[J].汽车技术,2006(10):1-5.
    [215] Van der Sluis, Francis, Van Dongen, etl.压力钢带.式无级变速器技术降低油耗的潜能分析(二)[J].汽车技术,2006(11):1-4.
    [216] Stan van der Meulen, Bram de Jager, Erik van der Noll, etl. Improving pushbelt continuously variable transmission efficiency via extremum seeking control [C]. 18th IEEE international conference on control applications, part of 2009 IEEE multi-conference on system and control. Saint Petersburg, Russia, July 8-10, 2009.
    [217] Nilabh Srivastava, Imtiaz Haque. A review on belt and chain continuously variable transmissions (CVT): Dynamics and control [J] Mechanism and Machine Theory, 2009(44):19-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700