用户名: 密码: 验证码:
新型金属基金刚石复合材料工磨具的试制和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末冶金金属基金刚石复合材料工磨具以其近净成形、锋利、生产效率高等特点被广泛用于加工石材、陶瓷、半导体等脆硬材料,并且随着科技特别是航空航天、电子、通信等高端领域的快速发展,对工磨具材料的精细化方面提出了更高要求。为降低金属基金刚石工磨具材料的制备成本,并保证工磨具材料的优良机械性能、界面结合性能和摩擦性能,本文对胎体成分设计、烧结工艺优化、界面热力学/动力学、磨头的摩擦磨损几个方面进行研究,以达到材料的组织结构、成分、性能、工艺方法的一体化。为降低工磨具的厚度和提高加工精度,本文亦对金属基金刚石复合材料超薄切锯进行试制,并研究超薄切锯的组织、机械性能和界面特性。得到的结论如下:
     首先用混合实验和极端顶点设计法建立响应曲面模型,以模型的12个顶点和任意两个面的质心为试验点制备试样。用Excel回归分析得到的方程复相关系数趋近于“1”,因此其可用于预测胎体性能。与实验值相比,回归方程的预测值最大误差分别为2.8%、3.4%、2.9%,能可靠预测胎体性能。各元素的最佳含量范围是:Fe60-66wt.%,Cu20.30wt.%和66.68wt.%,Co0-1wt.%,Sn0-O.8wt.%和7-8wt.%;
     根据所得到的最优胎体组分,对Cu/Fe基金刚石复合材料磨头的烧结工艺正交试验结果进行极差分析,可知工艺参数对胎体相对密度、抗弯强度、布氏硬度和弹性模量的影响显著性各异。Cu/Fe基金刚石磨头的最优工艺参数范围是:烧结温度700-740℃、压力17-21MPa、保温时间2-4min:
     用标准反应热效应理论计算930K、970K、1010K烧结温度和下Cr与金刚石C及石墨C反应吉布斯自由能变化,可知在热力学上碳化物形成元素Cr与金刚石C和石墨C反应可自发生成Cr3C2、Cr7C3、Cr23C6。根据经典热力学理论,在烧结温度930K、970K、1010K和烧结压力13MPa、17MPa、21MPa条件下,金刚石在热力学上满足石墨化转变。通过实验验证可知,在烧结温度740℃、压力21MPa、保温时间4min条件下,Cu基金刚石复合材料磨头的金刚石表面出现剥落/粘着层,胎体和金刚石的界面形成冶金结合,没有发生石墨化,与理论一致;
     通过对三种烧结工艺金刚石磨头进行摩擦性能测试可知,烧结温度和压力与Cu/Fe基金刚石磨头的力学性能和摩擦性能密切相关。Cu基金刚石磨头胎体的主要摩擦形式为粘着磨损和磨粒磨损,金刚石的磨损形式为磨粒磨损,随着烧结温度升高或烧结压力增大,摩擦性能提高;Fe基金刚石磨头胎体主要为粘着磨损和磨粒磨损,随着温度的升高或压力的增大,金刚石依次发生严重磨粒磨损、轻微磨粒磨损和热蚀磨损;在740℃/13MPa/6min工艺条件下,Fe基金刚石磨头具有最优的耐磨匹配性,摩擦性能最好;
     根据Cu/Fe基金刚石超薄切锯的冷压工艺研究结果,单轴模压条件下,冷压坯的高径比很小,导致轴/径向的压坯组织存在各向异性。随着冷压力的增大,冷压坯中粉末的变形不均匀、粉间摩擦力不断变化,均决定冷压坯的致密化过程。不同冷压加载速率条件下的粉末变形时间不同,较低的加载速率导致低压下的Cu、Ni粉末变形很大,造成后续变形困难,压坯的孔隙率较高。较高的加载速率使粉末变形不充分,造成脱模弹性后效,压坯组织粉末间存在间隙。随着保压时间的延长,Cu/Fe基冷压坯组织更加致密,粉末变形量增加。烧结胎体的合金化、组织和力学性能受冷压坯组织和密度制约,烧结Cu/Fe基胎体的拉伸端口形貌包括解理、塑坑、沿颗粒脆性断口。Cu基胎体的最优冷压工艺为:冷压力187MPa、加载速率0.1mm/min、保压时间2mmin;Fe基胎体的最优冷压工艺为:168MPa、0.15mm/min、4min;
     冷压-烧结Cu/Fe基金刚石复合材料超薄切锯的界面分别富集Cr、Fe元素,Cu基超薄切锯断口的界面出现缝隙,Fe基超薄切锯断口的界面结合较好。由金刚石的静应力计算公式得到烧结Cu/Fe基超薄切锯中金刚石的静应力分别为-645、-387MPa,远小于热应力计算值,其主要由于界面碳化物的产生、胎体的冷却塑性变形及冷却相变均可释放应力。
P/M metal-based diamond composite tools possess self-sharpening, near-net-forming, and of much higher production efficiency, have been widely used to saw and grind hard-brittle materials such as stone, ceramic, semiconductor. What's more, recent advances in the field of aerospace, electron, communication and so on raise a higher claim to the refining of tools. To reduce the preparation costs of metal based diamonds tools and ensure the excellent machine, interface and friction peoperties, the design of matrix component, optimizing of sintering process, interfacial thermodynamics and dynamics, friction and wear of segments were studied. Then the unified of microstructure, composition, properties and process will be reached. To reduce the thickness and improve the machining precision, the trail-produce, microstructure, mechnical properties and interface of diamond ultra thin sawing were also performed.
     A response surfaces model, whose12vertices and any two centroids are used for the experimental points, has been successfully established by the mixture experiment and extreme vertices design method (EVD). It can be concluded that the mixture experiment and EVD can be usded to calculate the matrix performance because the multiple correlation coefficient solved by regression analysis using Excel. The regression equations, whose calculation errors are2.8、3.4、2.9%compared with experimental value, can reliablely predict the matrix performance. The optimal contents of each component are:Fe60-66wt.%, Cu20-30wt.%and66-68wt.%, Co0-1wt.%, Sn0-0.8wt.%and7-8wt.%;
     According to the optimal matrix component and extreme difference analysis of orthogonal test results for Cu/Fe based diamond composite segments, it can be drawn the conclusion that the process parameters effects on density, hardness, bending strength and elastic modulus of segments are different. The optimal parameter ranges of Cu/Fe based diamond segments are sintering temperature700-740℃, pressure17-21MPa, dwelling time2-4min;
     Thermodynamics analyses show that the Gibbs free energy change of Cr7C3, Cr3C2and Cr23C6by reactions between Cr and diamond/graphite, and diamond graphitization are both negative at specific experimental conditions, indicating that the Cr3C2, Cr7C3and Cr23C6carbides reactions and diamond graphitization can automatically proceed in the experimental condition. According to the experimental verification, it can be seen that the surface of diamond sintered exist adhesive/spalling layers and the diamond graphitization not occurs and the metallurgy interfaces between matrix and diamond are formed, which are cinsistent with the throry;
     According to friction analysis results of diamond segments in there kinds of process, the relationship between sintering temperature, pressure, mechanical and friction properties is much closed. The Cu based diamond segments, whose matrix wear modes are adhensive and abrasive and whose diamonds are abrasive wear modes, are more wear-resisting with increasing sintering temperature or pressure. The wear modes of diamond in Fe based diamong segments are serious abrasive wear, mild abrasive wear and thermal erosion wear. The wear matching and friction properties of Fe based diamond segments are the best in the condition of740℃/13MPa/6min;
     The axial and radial microstructures of green are anisotropy because of much smaller aspect ratio during cold uniaxial compaction (CUC). With increasing pressure, the green densification is affected by non uniform deformation and changing inter-powder force. The deformation time is different at different loading rate, the green prosity is higher because of more deformation at low pressure when the loading rate is lower and the spring back occurs at higher loading rate. The densification is improved with longer dwelling time. The fracture morphologies, containing dimples, cleavages and brittleness along with iron rich particles, are dependent on the lattice types and interfacial bonding of matrix phases which are affected by the microstructure of green samples. The optimal cold compaction process of Cu based matrixes are pressurel87Mpa, loading rate0.1mm/min, dwelling time2min and Fe168Mpa,0.15mm/min,4min;
     The Cr and Fe are enrichment in the interface of Cu/Fe based diamong ultra thin sawing during cold compaction sintering respectively and the interface bonding of Fe based is better than Cu based. According to2D hydrostatic equation of diamond, stress values of diamond in hot pressed Cu/Fe based diamong ultra thin sawing are-645,-387MPa which are much lower than thermal stress because of stress release by carbide, plastic deformation and phase transition during cooling.
引文
[1]肖鸿.中国硅酸盐学会房建材料分会装饰石材专业委员会第五次学术会议论文集.中国广州,1998:10
    [2]F. H. Hughes. The early history of diamond tools. Industrial Diamond Review,1980,40: 16-19
    [3]F. P. Bundy. Application of sintered diamond tipped ultra high pressure apparatus to cryogenic experiments. Nature,1955,176:213
    [4]董洪峰.烧结温度对Cu基胎体性能的影响:[兰州理工大学硕士学位论文].兰州,兰州理工大学,2011,2-4
    [5]LIAO Y. S, LUO S. Y. Effects of matrix characteristics on diamond compositions. Journal of materials science,1993,28:1245-1251
    [6]LI Wensheng, ZHANG Jie, WANG Shuncai, DONG Hongfeng. Characterizations and mechanical properties of impregnated diamond segment using Cu-Fe-Co metal matrix. Rare metals,2012,30(1):81-87
    [7]章文姣,杨凯华,段隆臣.WC对金刚石钻头镍基钎料胎体性能的影响.粉末冶金材料科学与工程,2011,6(16):881-885
    [8]王秦生.超硬材料及制品.郑州:郑州大学出版社,2006,5-20
    [9]张立勇,王孟君,刘心宇,甘春雷.WC含量对弥散强化Cu/WC组织与性能影响研究.稀有金属,2003,16(4):1-5
    [10]成云平.陶瓷抛光砖磨削加工及其金刚石工具的研究.旷西大学硕士学位论文].广西,广西大学,2005:5-8
    [11]Mortimer D. A, Nicholas M. The compatibility of carbon with copper alloys containing chromium. Titanium or vanadium carbon fibers,1974,4:101-104
    [12]戴秋莲,徐西鹏,王永初.金属结合剂对金刚石把持力的增强措施及增强机制评述.材料科学与工程,2002,3:465-468
    [13]孙毓超,宋月清.稀土在金刚石工具胎体中应用研究的新进展.金刚石与磨料磨具工程,2003,2:4144
    [14]宋月青,夏志华.稀土元素镧对金刚石胎体作用的影响机理研究.稀有金属,1998,22:39-42
    [15]吴贻昆.稀土元素强化金刚石工具材料性能研究.粉末冶金技术,1999,4(12):253-256
    [25]高云,宋月青,康志君.镧的不同化合物对金属胎体/金刚石复合材料粘结性能的影响.粉末冶金工业,2001(2):18-22
    [16]戴秋莲,骆灿彬,徐西鹏等.稀土及烧结温度对铁基胎体力学性能的影响.稀土,2003, 24(1):28-32
    [17]孙毓超.金刚石工具制造理论与实践.郑州:郑州大学出版社,2005,6-8
    [18]宋月清.切割石材用金刚石工具胎体优化研究.[北京有色金属研究总院博士论文].北京,北京有色金属研究总院,2001:66-82.
    [19]Liu Jianxiu, Yang Gaiyun, Han Changsheng, Li Yinghua, et al. Damage mechanism of Cu-Fe alloy composite friction material under impact load. MACHINERY MANUFACTURING ENGINEER,2004 (2):16-18
    [20]Y. S. LIAO, S. Y. LUO. Effects of matrix characteristics on diamond composites. JOURNAL OF MATERIALS SCIENCE,1993,28:1245-1251
    [21]Steven W. Webb. Diamond retention in sintered cobalt bonds for stone cutting and drilling. Diamond and Related Materials,1999,8:2043-2052
    [22]Muzaffer Zeren, di Karagoz. Sintering of polycrystalline diamond cutting tools. Materials and Design,2007,28:1055-1058
    [23]汤东华,洪跃生.钻基结合剂对金刚石把持力的研究.华侨大学学报,1994,15(3):253-357
    [24]宋月清,殷声,孙毓超等.钻基金刚石工具胎体材料的研究.机械工程学报,1993,17(3):39-41
    [25]郭桦,苏钰,陈剑章等.Co基金刚石串珠胎体中W添加剂的作用.中国工程机械学报,2007,5(1):108-112
    [26]M. del Villar, P. Muro, J. M. Sanchez, et al. Consolidation of diamond tools using Cu-Co-Fe based alloys as metallic binders. Powder metallurgy,2001,44(1):82-90
    [27]R. R. Thorat, P. K. Brahmankar, and T. R. R. Mohan. CONSOLIDATION BEHAVIOR OF Cu-Co-Fe PRE-ALLOYED POWDERS. International Symposium of Research Students on Materials Science and Engineering,2004,22:1-6
    [28]YU-ZAN HSIEH, JING-FURECHEN, SHUN-TIAN LIN. Pressureless sintering of metal-bonded diamond particle composite blocks. Journal of materials science, 2000,35:5383-5387
    [29]Muzaffer Zeren, di Karagoz. The property optimization of diamond-cutting tools with the help of micro-structure characterization. International Journal of Refractory Metal & Hard Materials,2001,19:23-26
    [30]Ching-Shan Lina, Yue-Lin Yang, Shun-Tian Lin. Performances of metal-bond diamond tools in grinding alumina. Journal of materials processing technology,2008,201: 612-617
    [31]毕晓勤,胡小丽,王洁.金刚石锯片铜基节块的组织与力学性能.金属热处理,2009,34(2):36-39
    [32]吴贻琨,于清.粉末冶金铁基金刚石胎体材料的表面分析.功能材料,1994,25(4):370-375
    [33]左伯铷.金刚石锯片刀头铁基胎体的研制.1999,19(4):48-49
    [34]胡映宁,周满元,曹硕生.铁基金刚石圆锯刀头的关键成分对其锯切性能的影响.金刚石与磨料磨具工程,2000,4(118):15-18
    [35]戴秋莲,吴惠贞.铁基金刚石圆锯片胎体材料的研究.金刚石与磨料磨具工程,2000,4(118):19-21
    [36]肖俊玲,胡国程,丘定辉.高磷铁基金刚石工具胎体合金的研究.湖南冶金,2001,6:21-26
    [37]Q. L. Dai, C. B. Luo, X. P. Xu, Y. C. Wang. Effects of rare earth and sintering temperature on the transverse rupture strength of Fe-based diamond composites. Journal of materials processing technology,2002,129:427-430
    [38]谭松成,杨洋.热压金刚石钻头铁基胎体机械性能的研究.金刚石与磨料磨具工程,2009,2:49-52
    [39]Luciano Jose de Oliveira, Guerold Sergueevitch Bobrovnitchii, Marcello Filgueira. Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix. International Journal of Refractory Metals & Hard Materials,2007,25: 328-335
    [40]姚炯彬.高铁基金刚石工具胎体性能的研究.[钢铁研究总院博士学位论文].北京,钢铁研究总院,2007:5-8
    [41]Anderson de Paula Barbosa, Guerold Sergueevitch Bobrovnitchii, Ana Lucia Diegues Skury, et al. Structure, microstructure and mechanical properties of PM Fe-Cu-Co alloys. Materials and Design,2010,31:522-526
    [42]S. Silva, V. P. Mammana, M. C. Salvadori, et al. WC-Co cutting tool inserts with diamond coatings. Diamond and Related Materials,1999,8:1913-1918
    [43]Hideki Moriguchi, Katsunori Tsuduki, Akihiko Ikegaya, et al. Sintering behavior and properties of diamond/cemented carbides. International Journal of Refractory Metals & Hard Materials,2007,25:237-243
    [44]S. Shina, T. S. Kim, M. S. Song, et al. Binding and dispersion behavior of amorphous powders in diamond particles. Journal of Alloys and Compounds,2009,483:363-365
    [45]Sumin Shin, Min-Seok Song, Taek-Soo Kim. Synthesis of diamond-reinforced Zr65Al10Nil0Cu15 metallic glass composites by pulsed current sintering. Materials Science and Engineering A,2009,499:525-528
    [46]S. A. Oglezneva. Powder materials and coatings diamond tool with iron-nickel system matrices. Russian Journal of Non-Ferrous Metals,2003,44(11):33-37
    [47]K. S. HWANG, T. H. YANG, and S. C. HU. Diamond Cutting Tools with a Ni3Al Matrix Processed by Reaction Pseudo-Hipping. Metallurgical and materials transactions A,2005,36:2801-2806
    [48]N. Chen, X. F. Pan, M. Y. Gu. Microstructure and physical properties of Al/diamond composite fabricated by pressureless infiltration. Materials science and technology,2009, 25(3):400-402
    [49]F. L. Zhang, H. Yuan, C. Y. Wang, et al. Microstructure of Ni-Al-diamond Composite Fabricated by Self-propagating High Temperature Synthesis. Key Engineering Materials, 2005,291-292:531-536
    [50]E. Y. GUTMANAS, A. RABINKIN, M. ROITBERG. On Cold Sintering of Metal-bonded Diamond Composites. Materials Science and Engineering,1980,45: 269-275
    [51]赵永赞,赵民,沈冰.工艺参数对金刚石工具性能的影响.沈阳建筑工程学院学报,1996,12(1):66-70
    [52]王秦生,张慧.烧结工艺对金刚石锯片新型节块无钴结合剂机械性能的影响.金刚石与磨料磨具工程,1997,1(97):8-10
    [53]陈晞.铁基与铜基结合剂刀头的热压烧结机理研究.技术探讨,1998,9:19-20
    [54]戴秋莲,骆灿彬,徐西鹏,王永初.稀土及烧结温度对铁基胎体力学性能的影响.稀土,2003,24(1):28-32
    [55]邓华,隋锦.真空热压烧结工艺及设备在超硬材料制品生产中的应用.金刚石与磨料磨具工程,2004,3:62-65
    [56]张延昭.热压烧结工艺在烧结小锯片生产中的应用.金刚石与磨料磨具工程,2005,3:73-77
    [57]韦统彬,戴秋莲.烧结工艺对铁基胎体合金化程度影响的研究.金刚石与磨料磨具工程,2010,30(1):10-15
    [58]T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. WeiBgarber, B Kieback. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scripta Materialia,2008,58 (4):263-266
    [59]Th. Schubert, B. Trindade, T. Weibgarber. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink supplications. Int. Symposium on Inorganic Interfacial Engineering,2006,6:1-12
    [60]Yu. V. Naidich, A. A. Bugaev, A. A. Adamovskii, V. A. Evdokimov, V. P. Umanskii, N. S. Zyukin. Diamond-hard alloy macrocomposite material:development and application. Powder Metallurgy and Metal Ceramics,2008,47(3-4):46-54
    [61]Naidich, Yu.;Poluyanskaya, V., Puzikov, V., Dan"ko, A. Interaction of silicon-containing melts with single-crystal aluminum oxide. Powder Metallurgy and Metal Ceramics, 1998,37(9-10):512-516
    [62]V. P. Umanskii, T. B. Konovalenko, V. A. Evdokimov, A. A. Bugaev. Effect of chromium and binder on diamond-matrix contact strength. Powder Metallurgy and Metal Ceramics,2007,46(9-10):513-516
    [63]C. Y. Wang, Y. M. Zhou, F. L. Zhang, Z. C. Xu. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy. Journal of Alloys and Compounds,2009,476:884-888
    [64]陈石林,陈启武,陈梨.聚晶金刚石复合体界面组织及界面反应的研究.矿业工程,2003,23(6):82-85
    [65]X. P. Xu, Y. Li. Improvement on the performance of diamond segments for rock sawing, part 2:factors influencing the use of coated diamonds. Key Engineering Materials,2003, 250:54-59
    [66]戴秋莲,徐西鹏,王永初.金属结合剂对金刚石把持力的增强措施及增强机制评述.材料科学与工程,2002,20(3):465-468
    [67]李文生,李国全,路阳,袁柯祥Cu-Fe基粉末烧结金刚石复合材料界面结合特性.材料开发与应用,2010,25(1):23-25
    [68]黄漫,陈哲,王凤荣,唐明强,罗锡裕.孕镶金刚石工具中金刚石与胎体间机械包镶力的研究.金刚石与磨料磨具工程,2004,4:43-45
    [69]H. K. TOnshoff, H. Hillmann-Apmann, J. Asche. Diamond tools in stone and civil engineering industry:cutting principles, wear and applications. Diamond and Related Materials 2002,11:736-741
    [70]Xipeng Xu. Study on the thermal wear of diamond segmented tools in circular sawing of granites. Tribology Letters,2001,10(4):245-250
    [71]W. Polini. Force and specific energy in stone cutting by diamond mill. International Journal of Machine Tools & Manufacture,2004,44:1189-1196
    [72]Xu zhaying, LinZengdong. Modern development sin powder metallurgy,1995,17: 273-277
    [73]M.del Villar, P. Muro, J. M. Sanchez, I.Iturriza, and F. C astro. Consolidation of diamond tools using Cu-Co-Fe based alloys as metallic binders, Powder metallurgy, 2001,44:82-90
    [74]Liu Jianxiu, Yang Gaiyun, Han Changsheng, Li Yinghua, et al. Damage mechanism of Cu-Fe alloy composite friction material under impact load. MACHINERY MANUFACTURING ENGINEER,2004(2):16-18
    [75]Anderson de Paula Barbosa, Guerold Sergueevitch Bobrovnitchii, Ana Lucia Diegues Skury. Structure, microstructure and mechanical properties of PM Cu-Fe-Co alloys. Materials and Design,2010,31:522-526
    [76]V. G. Ralchenko. Diamond and Related Materials,2002,2:904-909
    [77]H. H. Schlossin. Cuting Action. Wear and Fraction of Diamond,1974
    [78]H. Plattner. Primary sawing of granite with circular diamond. Industrial Diamond Review,1978,7:244-247
    [79]Peter Silver. Sharp saw segments increase productivity. Industrial Diamond Review, 1985,6:105-106
    [80]H.Biittner. Diamond saw segments with five zones. Industrial Diamond Review,1986.4 152-153
    [81]M. Akaishi. High Pressure sintering of Diamond. Industrial Diamond Review,1978, 125-130
    [82]H. H. Su, H. J. Xu, B. Xiao. Study on machining of hard-brittle materials with thin-walled monolayer brazed diamond core drill. Materials Science Forum,2004,471: 287-291
    [83]T. Tanaka. New development of metal bonded diamond wheel with pore by the growth of bonding bridge. Japan Soc. Precision Engineering,1992,26(1):27-32
    [84]S. H. Truong, Y. Isono, T. Tanaka. Scanning electron microscopic study and mechanical property examination of a bond bridge:development of a porous metal bonded diamond wheel. Journal of materials processing technology,1999,89-90:385-391.
    [85]H. Onishi, M. Kobayashi, A. Takata, K. Ishizaki, T. Shioura, Y. Kondo, A. Tukuda. Fabrication of new porous metal-bonded grinding wheels by HIP method and machining electronic ceramics. Journal of Porous Materials,1997,4(3):187-198
    [86]S. H. Truong, Y. Isono, T. Tanaka. A study on the Toughening of bond bridge of Ni-Cu-Sn Alloy-development of porous metal bonded diamond wheel. Journal of the Japan Society of Precision Engineering,1998,64(6):923-928
    [87]W. Polini. Force and specific energy in stone cutting by diamond mill. International Journal of Machine Tools & Manufacture 2004,44:1189-1196
    [88]W. Polini-S. Turchetta. Evaluation of diamond tool wear. Int J Adv Manuf Technol,2005, 26:959-964
    [89]A. V. Popov. Assessing Diamond Grinding Wheels on the Basis of the Binder's Relative Wear Rate. Russian Engineering Research,2010,30(10):1029-1031
    [90]A. V. Popov. Failure of diamond grains at the working surface of grinding wheels. Russian engineering research,2009,29(8):838-840
    [91]N. V. Novikov. The Influence of Strength Characteristics of Diamond Grits on Drilling Tool Performance. Journal of Superhard Materials,2009,31(6):413-417
    [92]L. Reis, P. M. Amaral, B. Li, M. de. Freitas, L. G. Rosa. Evaluation of the residual due to the sintering process of diamond-metal matrix hot-pressed tools. Theoretical and Applied Fracture Mechanics,2008,49:226-231
    [93]D. I. Antoniomaria, T. Antotia. A theoretical wear model for diamond tools in stone cutting. International Journal of machine tools and manufacture,2003,43(11): 1171-1177
    [94]K. Mrtin. Tool life modeling for evaluating the effects of cutting speed and reinforcements on the machining of particle reinforced metal matrix composites. International Journal of minerals, Metallurgy and Materials,2010,17(3):353-362
    [95]T. Sun, W. J. Zong. Analysis for the wear resistance anisotropy of diamond cutting tools in theory and experiment. Journal of Materials Processing Technology,2010,210: 858-867
    [96]D. N. Wright, H. Waplera, H. K. Tonshoff. Investigations and Prediction of Diamond Wear when Sawing. Annals of the ClRP,1986,35(1):239-244
    [97]N. Hyuntaek, B. Gyuyeol, K. Kicheol, K. Hyungjun, K. Jay-Jung, L. Changhee. Effect of Thermally softened bronze matrix on the fracturing behavior of diamond particles in hybrid sprayed bronze/diamond composite. Journal of thermal spray technology 2010, 19(5):902-910
    [98]铁晓锐,朱火明,徐西鹏.三种硬度金刚石节块的锯切实验研究.珠宝科技,2003,15(3):5-7
    [99]彭振斌,杨俊德,陈石林.金刚石钻头和金刚石锯片中金刚石粒度设计.矿冶工程,2003,23(6):76-78
    [100]黄辉,詹友基,徐西鹏.磨削花岗石过程中钎焊金刚石磨损特征分析.摩擦学学报,2007,127(3):279-283
    [101]Y. S. Liao. Wear characteristics of sintered diamond composite during circular sawing. Wear,1992,157:325-337
    [102]S. Y. Luo, Y. S. Liao. Study of the behaviour of diamond saw-blade in stone processing. Journal materials processing technology 1995,51:296-308
    [103]L. Ching-Shan, V. Raghuram, P. B. Popat. A new approach to the mechanics of the blanking operation:theoretical model and experimental verification. J. Mechanical Working Technology,1985,11:215-228
    [104]方从富,马云善,徐西鹏.锯切花岗石中金刚石节块形貌变化过程跟踪.金刚石与磨料磨具工程,2006,5:20-23
    [105]徐西鹏,沈剑云,黄辉.锯切花岗石过程中金刚石节块磨损特征及影响因素分析. 摩擦学学报,1998,18(2):162-164
    [106]R. A. Mclean, V. L. Anderson. Extreme Vertices Design of Mixture Experiments. Techno metrics,1966,8(3):448-454
    [107]A. D. Jounson, V. L. Anderson, G. E. Peck. A Statistical Approach for the Development of an Oral Controlled-Release Matrix Tablet. Pharmaceutical Research,1990,10: 1092-1097
    [108]J. T. Ding, P. Y. Yan, S. Lin, J. Q. Zhu. Extreme vertices design of concrete with combined mineral admixtures. Cement and Concrete Research,1999,29:957-960
    [109]P. Kanjilal, S. K. Majumdar, T. K. Pal. Prediction of submerged arc weld-metal composition from flux ingredients with the help of statistical design of mixture experiment. Scandinavian Journal of Metallurgy,2004,33:146-159
    [110]K.S. C. Ali. The use of mixture experiments in tolerance allocation problems. Int J Adv Manuf Technol,2008,35:769-777
    [111]S. J. Park, C. M. Lee, Y. K. Hwang. Lightweight design of 45000r/min spindle using full factorial design and extreme vertices design methods. J.Cent. South Univ. Techno, 2011,18:153-158
    [112]G. C. Wang, G. Q. Zhao, Y. X. Jia, Y. Yang. Densification laws and properties of sintered powder compacts in rotary forging progress. The Chinese Journal of Nonferrous Metals,2000,10(1):85-89
    [113]J. Q. Luciano, S. B. Gueriod, F. Marcello. Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix. Int J of Refractory metals & Hard materials,2007,25:328-335
    [114]S. C. Tan, Y. Yang. Study on mechanical performance of iron-based matrix for hot pressed diamond bit. Diamond & Abrasives Engineering,2009,2:49-52.
    [115]Y. Q. Song, S. Yin, Y. C. Sun, H. Y. Lai. Investigation on Co-based matrix of diamond tool. Materials & Mechanical Engineering,1993,17:39-42.
    [116]S. W. Webb. Diamond retention in sintered cobalt bonds for stone cutting and drilling. Diamond and related materials,1999,8:2043-2052.
    [117]黄培云.粉末冶金原理,北京:冶金工业出版社,2011,287-291
    [118]叶大伦.实用无机物热力学数据手册.北京:冶金工业出版社,2002,38-42
    [119]徐瑞,荆天辅.材料热力学与动力学.哈尔滨:哈尔滨工业大学出版社,2003,178-195
    [120]李丽.高温高压金刚石生长机理的价电子理论及热力学分析.济南:山东大学,2008,32-36
    [121]J. Sung. Graphite-diamond transition under high pressure:A kinetics approach. J. Mater. Sci.,2000,35:6041-6054
    [122]Y. Z. Zhu, Z. M. Yin, Z. D. Xiang, Z. Zhe. Cold densification behavior of multiple alloy powder containing Fe-Cr and Fe-Mo hard particles. Powder Metallurgy,2008, 51(2):143-149
    [123]M. Viliar, P. Muro, J. M. Sanchez, I. Iturriza, F. Castro. Consolidation of diamond tools using Cu-Co-Fe based alloys as metallic binders. Powder Metallurgy,2001,44 (1):82.
    [124]S. A. Solin, A. K. Ramadas. Raman spectrum of diamond. Physical Review B,1970, 1(4):1687-1698
    [125]Y. W. Zhu, X. M. Zhang, G. Z. Xie, Z. P. Zhou. Study on interface between titanium-coated diamond and metal matrices. Trans. Nonferrous Met. Soc. China,2001, 11(5):717-720
    [126]C.Y. Wang, Y.M. Zhou, F.L. Zhang, Z.C. Xu. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy. Journal of Alloys and Compounds,2009,476:884-888
    [127]陈惠,贾成厂,褚克,梁雪冰,刘兆方,郭宏.通过改善界面状态提高金刚石-Cu复合材料导热性的研究.粉末冶金技术,2010,28(2):143-149
    [128]P. Harrison, M. Henry, J. Wendland. Enhanced cutting of polycrystalline diamond with a Q-switched diode pumped solid state laser. ICALEO,2004
    [129]Hiroaki Tanaka, Shoich Shimada, Naoya Ikawa, M. Yoshinaga. Wear mechanism of diamond cutting tool in machining of steel. Key Engineering Materials,2001,196: 69-78
    [130]A. Alizadeh'E. Taheri-Nassaj. Wear behavior of nanostructure Al and Al-B4C nan composites produced by mechanical milling and hot extrusion. Tribol Lett,2011,44: 59-66
    [131]张亚菲,陈光华.金刚石和石墨之间相转变几率的研究.高压物理学报,1995,9(2):155-160
    [132]果世驹.粉末烧结理论.北京,冶金工业出版社,2007:254-261
    [133]E. Taheri-Nassay·A. A. Wear Behavior of Nanostructure Al and Al-B4C nanocomposites Produced by Mechanical Milling and Hot Extrusion, Tribology Letters, 2011,44:59-66.
    [134]Q. L. Dai, C. B. Luo, X. P. Xu, Y. C. Wang. Effects of rare earth and sintering temperature on the transverse rupture strength of Fe-based diamond composites. Journal of Processing Technology,2002,129:427-430.
    [135]Y. S. Zhao, J. Qian, L. L. Daemon, C. Pantea, J. Z. Zhang. Enhancements of fracture toughness in nanostructure diamond-SiC composites. Applied physics letters,2004,84: 1356-1358.
    [136]K. A. Weidenmann, R. Tavangar, L. Weber. Mechanical behavior of diamond reinforced metals. Materials Science and Engineering A,2009,523:226-234.
    [137]J. Jinkwan and K. Shinhoo. Compaction as a Critical Factor for Success in the Sintering of Ultra-Fine WC-Co Powders. J. Am. Ceram. Soc.,2005,88(11):3032-3036
    [138]M. Kyoung, S. H. Hyun, K. H. Kyung, Kyung L. Sub and J. K. Seon. Consolidation behavior of L12 phase (Al+12.5 at.% Cu) Zr powder with nanocrystalline structure during CIP and subsequent sintering. Materials Science and Engineering A,2004, 380:46-51
    [139]A. K. Eksi, A. H. Yuzbasioglu. Effect of sintering and pressing parameters on the densification of cold isostatically pressed Al and Fe powders. Materials and Design, 2007,28:1364-1368
    [140]Z. L. Lu, J. H. Liu, Y. S. Shi. Microstructures and Properties of Cu-AISI304 Parts Fabricated by Improved Selective Laser Sintering. Journal of Manufacturing Science and Engineering,2009,131:041018
    [141]O. Tobi Even-Zur·R. Chaim. Effect of green density and electric field direction on densification of YAG nano-powders by spark plasma sintering. J Mater Sci,2009,44: 2063-2068
    [142]E. Y. Gutmanas and A. Rabinkin. On Cold Sintering of Metal-bonded Diamond Composites. Materials Science and Engineering,1980,45:269-275
    [143]张小军,徐西鹏.新型高强度超薄金刚石锯片.中国专利:ZL 200720009141.5,2008-11-5
    [144]Y. Z. Zhu, Z. M. Yin, Z. D. Xiang, Z. Zhe. Cold densification behavior of multiple alloy powder containing Fe-Cr and Fe-Mo hard particles. Powder Metallurgy,2008, 51(2):143-149.
    [145]H. Abdoli, H. Farnoush, E. Salahi, K. Pourazrang. Study of the densification of a nanostructured composite powder Part I:Effect of compaction pressure and reinforcement addition. Materials Science and Engineering A,2008,486:580-584
    [146]P. J. Denny. Compaction equations:A comparison of the Heckel and Kawakita equations. Powder Technology,2002,127:162-173.
    [147]K. Kawakita, K. H. Ludde. Some considerations on powder compression equations. Powder Technology,1971,4:61-68
    [148]黄培云.粉末冶金原理.北京:冶金工业出版社,2011,166-297
    [149]M. F. Moreno, J. R. G. C. Oliver. Densification of Al powder and Al-Cu matrix composite (reinforced with 15% Saffli short fibres) during axial cold compaction. Powder Technology,2011,206:297-305
    [150]C. L. Martin, D. Bouvard, S. Shima. Study of particle rearrangement during powder compaction by the Discrete Element Method. Journal of the Mechanics and Physics of Solids,2003,51:667-693
    [151]王盘鑫,粉末冶金学.北京:冶金工业出版社,1997
    [152]Z. Wang, J. F. Liu, Y. S. Ding, et al. Fabrication and Properties of Fe/A12O3 Composites. Chinese journal of materials reseach,2012,26(2):206-210
    [153]钟群鹏,赵子华,断口学.北京:冶金工业出版社,2006
    [154]O. Florent, L. Paul, L.Rene. Properties of diamond under hydrostatic pressures up to 140 GPa. Nature materials,2003,2:151-514
    [155]S. Serra, G. Benedek, M. Facchinetti, L. Miglio. Possible high-pressure phase of diamond. PHYSICAL REVIEW B,1998,57(10):5661-5667
    [156]P. J. Withers, M. Turski, L. Edwards, P. J. Bouchardc, D. J. Buttle. Recent advances in residual stress measurement. International Journal of Pressure Vessels and Piping,2008, 85:118-127
    [157]B. Sebastian, L. Christian, S. Ralph, W. Konrad. Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond-metal joints. J Mater Sci,2010,45:4358-4368
    [158]S. Nieto, D. Loubeyre, P. Mezouar. Equation of state and pressure induced amorphization of β-boron from X-ray measurements up to 100 GPa. Phys. Rev. Lett, 2002,89:245-501
    [159]R. E. Cohen, O. H. J. Gulseren. Accuracy of equation of state formulations. Am. Mineral,2000,85:338-344
    [160]R. Vogelgesang, A. Ramdas, K. Rodriguez. M. Grimsditch, T. R. Anthony. Brillouin and Raman scattering in natural and isotopically controlled diamond. Phys. Rev. B, 1996,54:3989-3999
    [161]T. Grogler, E. Zeiler, A. Horner, S. M. Rosiwal, R. F. Singer. Micfowave-plasma CVD of diamond coatings onto titanium and titanium alloys. Surface and Coatings Technology,1998,98:1079-1091
    [162]董洪峰,路阳,李文生,张杰.粉末冶金Fe基孕镶金刚石刀头的热处理强化.粉末冶金技术,2012,30(4):188-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700