用户名: 密码: 验证码:
空间滑动电接触材料的性能及其寿命增长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以卫星用银基固体自润滑电刷材料为研究对象,以实现该材料空间应用寿命的增长。通过对银基固体自润滑材料性能的测试分析,全面了解材料的基本力学性能及其摩擦磨损性能的基础上,分别研究了固溶强化和碳纤维增强两种方式在提高银基固体自润滑材料抗磨损性能方面的作用规律及实施效果,并与现役材料进行对比,揭示了材料寿命增长机理;对AuNi9、AgCu10丝式电刷材料进行了载流摩擦磨损性能的研究,掌握了该类材料的滑动电接触特性,通过与银基固体自润滑材料的性能对比,清晰而全面地掌握了主流国产空间滑动电接触材料的综合性能及应用特点;采用所得固溶强化银基固体自润滑材料作为环体材料,开展了空间导电环工程样机制备工作,对样机的各项电器性能进行测试,评估了所得样机的使用性能,为开发新一代大功率、长寿命空间导电环产品提供了有力的支撑。
     论文获得如下结论:
     1)采用化学法掺铜工艺制备了Ag-Cu复合粉末,然后采用气氛保护热压方法制备了Ag-2.5Cu-8MoS2复合材料,所得材料的组织结构均匀、稳定,各功能层界面清晰,结合良好;所得材料的相对密度大于96.5%,自润滑功能层的抗弯强度为167.2MPa,硬度大于HB50,摩擦系数0.12~0.20,磨损率<2×10-13m3/N·m,静态接触电阻<0.54mΩ;摩擦磨损性能测试结果表明,该材料在3A电流下其稳态摩擦系数在0.2左右,稳态工作寿命在10km以上,上述性能全面满足某型号卫星对滑动电接触材料所提出的工艺技术指标要求。
     2)采用粒度细小、分布合理的气雾化AgCu合金粉末取代原有化学法制备的Ag-Cu复合粉末制备了新型Ag-2.5Cu-8MoS2材料,实现了对该材料的固溶强化,所得材料的磨损率由前期的50x10-14m3/N·m降低到5-8×10-14m3/N·m,材料磨损率降低程度达一个数量级,表明气雾化粉末电刷材料具有较好的耐磨性,延长了电刷的使用寿命。
     3)研究发现粉末粒度及级配效果对Ag-2.5Cu-8MoS2复合材料的力学性能和MoS2分布状态的作用影响显著。气雾化Ag-2.5Cu-8MoS2复合材料的硬度和抗弯强度随着合金粉末粒度的减小而提高,当粉末粒度从-300+400目减小至-500目时,复合材料的硬度和抗弯强度分别从HB45.9、88.08MPa提高至HB56.8、179.08MPa;随着银铜合金粉末粒度的减小,MoS2团聚体在Ag-2.5Cu-8MoS2复合材料基体中的分布均匀性得到提高,材料的摩擦系数波动和稳定摩擦系数都随着减小,显著改善了材料服役的稳定性。
     4)采用经石墨化处理的碳纤维对Ag-2.5Cu-8MoS2复合材料进行磨损强化,获得了多种组分的Ag-2.5Cu-8MoS2-xCf材料。结果表明,随着碳纤维含量的增加,复合材料的摩擦系数略有上升,但材料的磨损率获得了有效的改善,当碳纤维体积分数从0%增加到15%时,复合材料的磨损率从6.31×10-14m3/N-m降低到2.07×10-14m3/N-m,即材料的磨损率获得了三倍的提升,磨损强化作用显著。
     5)对Ag-2.5Cu-8MoS2-xCf材料的载流摩擦磨损性能的研究表明,电流的加载对各材料磨损率的影响较小,但碳纤维的加入对材料的接触压降影响显著。结果表明,所制备的各组分材料的接触压降基本在0.03-0.09V范围内动态变化,但材料的接触压降值及波动幅度明显随碳纤维含量增加而升高,即接触状态变差。因此认为对于Ag-2.5Cu-8MoS2-xCf材料来说,在保障材料获得良好接触压降水平的同时还要有较好的耐磨性,碳纤维的添加量控制在6vo1%左右为宜(Ag-2.5Cu-8MoS2-6vol%Cf的磨损率为3.02×10-14m3/N·m)。
     6)通过对单丝/多丝AuNi9、AgCu10电刷材料常规摩擦磨损性能及载流摩擦磨损性能的测试,发现了该类材料的配对特点,其中AuNi9适于同具有的Au、Ni复合镀层进行配对,而AgCu10适于与黄铜镀金层配对;AuNi9与Au、Ni复合镀层配对获得了最佳的载流摩擦磨损性能,平均摩擦系数0.9,平均接触电压0.5mV/A,其平均接触电压值较采用AgCu10所得数据低3倍。
     7)采用银基固体自润滑电刷材料作为导电环环体,制造了一款新式的导电滑环样机,在导电环结构设计上获得的了创新。导电环样机性能测试指标完全符合设计要求,样机10.5万转(1s/r)跑合实验表明,长时间跑合后,各环的静态接触电阻经历了先升高再降低并趋于稳定的过程,整个跑合阶段接触电阻波动范围约为3-5mΩ,表明环刷材料接触性能稳定可靠。
Silver matrix solid self-lubricating brush materials used for satellites were investigated in this paper, and the duration of this kind of materials in space application was increased. The physical and mechanical properties, along with friction and wear behaviors, of silver matrix brush materials were known after tests and analysis, so the mechanism and effect of the wear-resistance improvement of this material was investigated by two strength methods such as solid solution and carbon fiber reinforced. The improved materials were also compared with the application material, so as to find the mechanism of lifetime growth. The sliding electrical contact performance of AuNi9and AgCu10wire brushes were researched by friction and wear tests under electrical current. Comparing the silver matrix composite brushes with noble metal wire brushes, we clearly and completely know the properties and application characteristics of sliding electrical contact materials for space application. A model slip ring was made and its electrical properties were tested, the ring of this slip ring was made using solid solution strengthen silver matrix composite material. The application behavior of this slip ring was assessed, and this will be an important support for the development of new generation slip ring with high power and long duration in space.
     The main conclusions and results are summarized as follows:
     1) Ag-Cu composite powder was prepared by chemical adding copper method, and then it was used to prepare the Ag-2.5Cu-8MoS2composite by hot-pressing. The structure of the prepared composite is uniform and stable, and the interfaces of each function layer are clear and well combined. The relative density of prepared composite is above96.5%, and the bending strength of self-lubricating function layer is167.2MPa, and the hardness, friction coefficient, wear rate and static contact resistance are HB50,0.12-0.20,<2×10-13m3/N·m, and<0.54mΩ, respectively. The results of friction and wear test under3A current indicate that the stable friction coefficient of the material is about0.2and the stable operation life is above10km. The properties of the prepared Ag-2.5Cu-8MoS2composite satisfy the technology demand of some type of satellite.
     2) A new kind of Ag-2.5Cu-8MoS2composites was prepared with small size atomized AgCu alloy powder instead of Ag-Cu composite powder. The prepared material was strengthened by solid solution, and the wear rate of the composite was reduced from former50×10-14m3/N-m to5-8×10-14m3/N-m. The reduction degree of wear rate is almost a magnitude. The result turned out that the brush material prepared with atomized powder has high wear resistance, and the duration of the brush is increased.
     3) It was found that the influence of powder size and distribution to the mechanical properties and MoS2distribution of Ag-2.5Cu-8MoS2composite is significant. The hardness and bending strength of the composite increase with decreasing the size of alloy powder. As the size of alloy powder decreasing from-300+400mesh to-500mesh, the hardness and bending strength of composites increase from HB45.9,88.08MPa to HB56.8,179.08MPa. The distribution of MoS2particle in Ag-2.5Cu-8MoS2composites was improved when small size alloy powder was used, which caused the reduction of friction coefficient and its fluctuation. The operation stability of the material is significant improved.
     4) The Ag-2.5Cu-8MoS2composite was reinforced by graphitized carbon fiber, and Ag-2.5Cu-8MoS2-xCf composites with different volume fraction of carbon fiber were prepared. It is found that the friction coefficient of the composites increase slightly and the wear rate is improved a lot with increasing the amount of carbon fiber. The wear rate of the composite decreases from6.31×10-14m3/N-m to2.07×10-14m3/N·m when the volume fraction of carbon fiber increases from0%to15%. There is three times of increase with the wear rate the composite, and the strength effect to wear is remarkable.
     5) The friction and wear behaviors of Ag-2.5Cu-8MoS2-xCf composites were investigated under current. It is found that the influence of current on the wear rate of composites is insignificant. However, the influence of carbon fiber addition on contact voltage drop is apparent. The contact voltage drop values of all prepared composites are in the range of0.03-0.09V, but the value and fluctuation of contact voltage drop increase with the increase of carbon fiber content. Therefore, it is believed that the carbon fiber content in composite should be around6vol%, so that it has low contact voltage drop and good wear resistance (the wear rate of Ag-2.5Cu-8MoS2-6vol%Cf is3.02×10-14m3/N-m).
     6) The friction and wear behavior of AuNi9and AgCu10brush of one wire type and fiber type were investigated with or without current, and the match characteristic of this kind brush was found. AuNi9fiber brush matches well with gold plated Ni coating, and AgCu10fiber brush matches well with gold plated brass. The sliding electrical contact behavior of AuNi9brush sliding on the gold plated Ni coating is best among them. The friction coefficient of it is0.9, and the average contact voltage drop is0.5mV/A, which is three times lower than that of AgCu10.
     7) A new type of model slip ring was made using the silver matrix solid self-lubricating brush material as the ring material, and this is an innovation to the structure of slip ring. The test properties of the slip ring fit well with the design demand. The running test with one hundred thousand revolutions (1s/r) turned out that the static contact resistance increases at first, then decrease and finally maintain stable. The variation of contact resistance is about3-5mΩ during the running process, which shows that the contact between brush and ring is reliable.
引文
[1]马兴瑞,于登云,孙京,等.空间飞行器展开与驱动机构研究进展[J].宇航学报,2006,27(6):1123-1131.Ma X R, Yu D Y, Sun J, et al. The researching evolvement of spacecraft deployment and driving mechanism [J]. Journal of Astronautics,2006,27(6): 1123-1131.
    [2]Prybyszewski J S. A review of lubrication of sliding-and rolling-element electrical contacts in vacuum[R]. NASA-TN D 4476.
    [3]Moberly L E, Johnson J L. Electrical sliding contacts for application in space environments [J]. Supplement to IEEE Transactions on Aerospace,1965, 252-257.
    [4]Mausli P A, Gisiger A, Gavira J M. Long life, elevated velocity slip ring contacts investigation [C]. W.R. Burke, Sixth European Space Mechanisms and Tribology Symposium, Zurich, Switzerland. European Space Agency,1995:21-26.
    [5]Fritsch C, Mondier J B. Sliver-based brush electric contacts performances [C]. D. Danesy, Proceedings of the 8th European Symposium, Toulouse France, European Space Agency,1999:37-42.
    [6]Lewis N E, Cole S R, Glossbrenner E W. Friction, wear, and noise of slip rings and brush contacts for synchronous satellite use [J]. IEEE Transactions on Parts, Hybrids, and Packaging.1973,9(1):15-22.
    [7]张雷,周科朝,刘文胜,等.梯度结构Ag-Cu-MoS2电刷材料的制备及性能[J].中国有色金属学报,2005,15(11):1766-1769.Zhang L, Zhou K C, Liu W S, et al. Preparation and properties of Ag-Cu-MoS2 brush materials [J]. The Chinese Journal of Nonferrous Metals,15(11): 1766-1769.
    [8]天津市工业展览馆二硫化钼组.二硫化钼[M].天津:天津人民出版社,1972,20-25.
    [9]松永正久.固体润滑手册[M].北京:机械工业出版社,1986:97.Masahisa M. Solid Lubrication Handbook [M]. Beijing:Mechanical Industry Publishing,1986:97.
    [10]Savan A, Pfluger E, Voumard P, et al. Modern solid lubrication:recent developments and applications of MoS2 [J]. Lubrication Science,2002,122: 185-203.
    [11]Horton J C. Electrical Contacts [M]. Orono Maien:University of Maine,1966, 145.
    [12]Space Tribology Handbook 3rd edition [M]. AEA Technology plc.2002:72-76.
    [13]Lee P K. High-current brush material development, Part I:Sintered metal-coated graphite [J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1980,3(1):4-8.
    [14]Don E. N. Motor brush testing for mars and vacuum [R]. Aerospace Mechanisms Pasadena, CA, USA,1999,5.
    [15]David B, Don N. Long Life DC brush motor for use on the Mars Surveyor Program[R]. Aerospace Mechanisms Pasadena, CA, U.S.A.1998.5.
    [16]Braterskaya G N, Zatovskii V G. Wear resistance of sliding electrical contacts of sliver-based composite materials [M]. Plenum Publishing Corporation,1984, 397-401.
    [17]Merstallinger A, Fink M, Neubauer E. Self lubricating copper composites for tribological applications at medium temperatures in space [J].12th European Space Mechanisms and Tribology Symposium-ESMATS 2007, Liverpool, UK. 2007.
    [18]Merstallinger A, M.Fink E N. Tribo-component testing of self lubricating copper composites at medium temperatures in space [J].13th European Space Mechanisms and Tribology Symposium-ESMATS 2009, Vienna, Austria.2009.
    [19]Prasad B K. Sliding wear behaviour of bronzes under varying material composition, microstructure and test conditions [J]. Wear 2004,257 (1-2): 110-123.
    [20]http://www.sino-platinum.com.cn/Products/Djd/39.html.
    [21]Stephen G B, Hons B. E3000 high power SADM development [C].12th European Space Mechanisms and Tribology Symposium-ESMATS 2007, Liverpool, UK.2007.
    [22]Feusier G, Mausli P A, Gass V. Improved characteristics of slipring assemblies making use of gold on gold metallic contacts [C]. Proceedings of the 10th European Space Mechanisms and Tribology Symposium,24-26 September 2003, San Sebastian, Spain.2003,9:169-175.
    [23]Sjoholm M, Mausli P A, Bonner F, Gass V. Development and qualification of the international space station centrifuge slip ring assembly [C].11th European Space Mechanisms and Tribology Symposium ESMATS 2005. Lucerne, Switzerland.2005,9.
    [24]http://www.goldbulletin.org/assets/file/goldbulletin/downloads/Antler_3_4.pdf
    [25]Brown L, Kuhlmann W D, Jesser W. Testing and evaluation of metal fiber brush operation on slip rings and commutators [J]. IEEE Transactions on components and packaging technologies.2008,31(2):485-494.
    [26]Mausli P A, Feusier G, Inguimbert V. Arc phenomena in space environment and equipments (APSEE) [C].12th European Space Mechanisms and Tribology Symposium-ESMATS 2007, Liverpool, UK.2009,9:19-21.
    [27]Conter A A, J R, Agarwala V S. An investigation of gold alloy slip ring capsule wear failures [J]. Wear,1989,133(2):355-371.
    [28]Santoro C, Hayes R, Herman J. Brushless slipring for high power transmission [C].13th European Space Mechanisms and Tribology Symposium-ESMATS 2009, Vienna, Austria.2009.
    [29]Michael T H. Maintenance-free alternatives to brush-based electrical transfer systems capable of increased power handling across a rotary inter face [J]. Diamond-Roltran, LLC, Roll-Ring White Paper 2009.
    [30]Glenn D, P E. Fiber brushes:The low maintenance, long life, high power slip ring contact material.
    [31]Rabin J, Michaud S, Sicre J. SEPTA(?)41 EV-A fully integrated solar array drive mechanism.
    [32]Michaud S, Rabin J, Sicre J. A fully integrated solar array drive mechanism.
    [33]http://www.Pandect.com.
    [34]http://www.fabricast.com. Slip ring assemblies. PDF
    [35]Dorsey G, Hayes R. The effects of apparent contact area on thermal and electrical properties of Ag-MoS2-Cgraphite brushes in contact with coin-silver slip rings [J]. IEEE,1997,272-280.
    [36]Simeonova Y M, Sotirov G S. Triboparameters of new antifrictional materials under dry friction vacuum condition for space application [J]. IEEE,2003, 579-582.
    [37]Kazuhisa M. Solid lubrication and coatings for extreme environments: state-of-the-art survey [R]. NASA,2007.
    [38]Jones R W, Jansen J M. Lubrication for space application [R]. NASA,2005.
    [39]李庶,凤仪,陈淑娴,等.含量变化对银-二硫化钼复合材料电磨损性能的影响[J].功能材料,2008,7(39):1111-1114. Li S, Feng Y, Chen S X, et al. Effect of content change of Ag-MoS2 composite on electrical sliding wear performance [J]. Journal of Functional Materials,2008, 7(39):1111-1114.
    [40]Li S, Feng Y, Yang X T, et al. Structure and formation mechanism of surface film of Ag-MoS2 composite during electrical sliding wear [J]. Rare Metal Materials and Engineering,2009,38(11):1881-1885.
    [41]Johnson R L, Swikert M A, Bisson E E. Friction and wear of hot-pressed bearing materials containing molybdenum disulfide [J]. NACA,1950.
    [42]堵永国,张为军,胡君遂.电接触与电接触材料(六)[J].电工材料,2006,3:49-54.
    [43]布朗洛维克,康奇兹,米西金.电接触理论、应用与技术[M].北京:机械出版社,2010:78.Braunovic M, Konchits V, Myshin N. Electrical contacts fundamental, applications and technology [M]. Beijing:Mechanical Industry Publishing,2010: 78.
    [44]Johnson J L, Moberly L E. High-current brushes, part Ⅰ:effect of brush and ring materials [J], IEEE,1978.
    [45]Lee P K, Johnson J L, High-current brushes, part Ⅱ:effects of gases and hydrocarbon vapors [J]. IEEE,1978.
    [46]Senouci A, Frene J, Zaidi H. Wear mechanism in graphite-copper electrical sliding contact [J]. Wear,1999,225-229:949-953.
    [47]Zhang L, Xiao J K, Zhou K C. Sliding wear behavior of silver-molybdenum disulfide composite [J]. Tribology Transactions,2012,55:473-480.
    [48]Bares J A, Argibay N, Dickrell P L, et al. In situ graphite lubrication of metallic sliding electrical contacts [J]. Wear,2009,267:1462-1469.
    [49]Kovacik J, Emmer S, Bielek J, et al. Effect of composition on friction coefficient of Cu-graphite composites [J]. Wear,2008,265:417-421.
    [50]刘夏静,丁春华.不同自润滑相尺寸和分布位置对自润滑表面膜形成的影响[J].无机材料学报,2011,26(1):97-101.Liu Xia-Jing, Ding Chun-Hua. Effect of size-refinement and distribution of lubricants on the formation of self-lubricating films [J]. Journal of Inorganic Materials,2011,26(1):97-101.
    [51]Moustafa S F, El-badry S A, Sanad A M, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders [J], Wear,2002,253:699-710.
    [52]Yoshitada, Watenabe, Composite materials containing solid lubricants as the new sliding contact materials [J]. IEICE, E82-C-1,1999,19-24.
    [53]Gibson R P, Clegg J A, Das A A. Wear of cast Al-Si alloys containing graphite [J]. Wear,1984,95:193-198.
    [54]Lancaster J K. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films [J]. Wear,1967,10:103-117.
    [55]Feng Y, Yuan H L, Zhang M. Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes [J]. Materials Characterization,2005, 55:211-218.
    [56]Bowden F P, Tabor D. The friction and lubrication of solids [M]. Oxford:the Clarendon Press,1964.
    [57]温诗铸,黄平.摩擦学原理(第二版)[M].北京:清华大学出版社,2002:180-190.Wen S Z, Huang P. Principle of Tribology,2nd Edition [M]. Beijing:Tsinghua University Press,2002:180-190.
    [58]王新平,肖金坤,张雷,等.银合金粉末粒度对Ag-MoS2复合材料摩擦磨损性能的影响[J].中国有色金属学报.(已接收)Wang X P, Xiao J K, Zhang L, et al. Effect of silver alloy particle size on the friction and wear behavior of Ag-MoS2 composites [J]. The Chinese Journal of Nonferrous Metals.
    [59]Li S, Feng Y, Yang X T. Influence of adding carbon nanotubes and graphite to Ag-MoS2 composites on the electrical sliding wear properties [J]. Acta Metall. Sin. (Engl. Lett.),2010,23(1):27-34.
    [60]Ma W L, Lu J J. Effect of surface texture on transfer layer formation and tribological behaviour of copper-graphite composite [J]. Wear,2011,270: 218-229.
    [61]Ma W, Lu J, Wang B. Sliding friction and wear of Cu-graphite against 2024, AZ91D and Ti6A14V at different speeds [J]. Wear,2009,266:1072-1081.
    [62]Akhlaghi F, Zare-bidaki A. Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method [J]. Wear,2009,266:37-45.
    [63]Menezesa P L, Kishorea, Kailas S V. Studies on friction and formation of transfer layer when Al-4Mg alloy pins slid at various numbers of cycles on steel plates of different surface texture [J]. Wear,2009,267:525-534.
    [64]Kato H, Takama M, Iwai Y, et al. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide [J]. Wear, 2003,255:573-578.
    [65]Sebo P, Stetanik P. Copper matrix carbon fiber composites [J]. Int J of Materials&Product Techn,2003,18:141-159.
    [66]车建明.炭纤维增强铜基复合材料摩擦磨损性能同其磨损表面形貌相关性研究[J].摩擦学学报,2004,24(2):144-147.Che J M. Correlation between the tribological behavior of carbon fiber reinforced copper matrix composite and its worn surface feature [J]. Tribology,2004,24(2): 144-147.
    [67]严深浪,张兆森,宋招权,等.含炭纤维湿式铜基摩擦材料的性能[J].粉末冶金材料科学与工程,2010,15(2):186-190.Yan S L, Zhang Z S, Song Z Q, et al. Properties of wet copper-based friction materials containing carbon fiber [J]. Materials Science and Engineering of Powder Metallurgy,2010,15(2):186-190.
    [68]Stinson R F, Sarro J A. The use of carbon fiber composites in sliding contacts [J].IEEE Holm Conference (48th),2002,175-183.
    [69]Daoud A. Wear performance of 2014A1 alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration [J]. Mater Lett,2004,58:3206-3213.
    [70]Xie N, Shao W Z, Zhen L, et al. Electrical conductivity of inhomogeneous Cu2O-10CuAlO2-xCu cermets [J]. J. Am. Ceram,2005,88:2589-2593.
    [71]Li H Q, Misra A, Zhu Y T, et al. Processing and characterization of nanostructured Cu-carbon nanotube composites, Materials Science and Engineering A [J].2009,523:60-64.
    [72]Rajkumar K, Aravindan S. Tribological studies on microwave sintered copper-carbon nanotube composites [J]. Wear,2011,270:613-621.
    [73]Daoush W M, Lim B K, Mo C B, et al. Electrical and mechanical properties of carbon nano-tube reinforced copper nano-composites fabricated by electroless deposition process, Materials Science and Engineering A [J].2009,513-514: 247-253.
    [74]韩晓明,高飞,宋宝韫,等.摩擦速度对铜基摩擦材料摩擦磨损性能影[J].摩擦学学报,2009,29(1):89-95. Han X M, Gao F, Song B Y, et al. Effect of friction speed on friction and wear performance of Cu-matrix friction materials [J]. Tribology,2009,29(1):89-95.
    [75]许玮,胡锐,高媛,等.碳纳米管增强铜基复合材料的载流摩擦磨损性能研究[J].摩擦学学报,2010,30(3):303-307.Xu W, Hu R, Gao Y, Kou H C, et al. Friction and wear properties of carbon nanotubes reinforced copper matrix composites with and without electric current [J]. Tribology,2010,30(3):303-307.
    [76]马超,王新平,张雷,等.碳纤维增强Ag-MoS2复合材料的摩擦磨损性能研究[J].中国有色金属学报,2012,22(11):3074-3080.Ma C, Wang X P, Zhang L, et al. Study of friction and wear properties of Ag-MoS2/Carbon fibers composites [J]. The Chinese Journal of Nonferrous Metals,2012,22(11):3074-3080.
    [77]Rajkumar K, Aravindan S, Microwave sintering of copper-graphite composites [J]. Journal of Materials Processing Technology,2009.209:5601-5605.
    [78]Berner A, Mundim K C, Ellis D E, et al. Microstructure of Cu-C interface in Cu-based metal matrix composite [J]. Sensors and Actuators,1999,74:86-90.
    [79]高媛,胡锐,李金山,等.载流条件下碳纤维细编穿刺织物增强铜复合材料摩擦磨损性能研究[J].摩擦学学报,2010,30(2):163-167.Gao Y, Hu R, Li J S, et al. Tribological properties of fine weave pierced carbon fiber fabric reinforced copper composites under electric current [J]. Tribology, 2010,30(2):163-167.
    [80]Toth G, Maklin J, Halonen N, Palosaari J, et al. Carbon-nanotube-based electrical brush contacts [J]. Advanced materials,2009,21:1-5.
    [81]Yasar I, Canakci A, Arslan F. The effect of brush spring pressure on the wear behavior of copper-graphite brushes with electrical current [J]. Tribology International,2007,40:1381-1386.
    [82]日本碳素材料学会.电机用电刷及其使用方法[M].北京:机械工业出版社,1982.Japanese Society of carbon materials. Electrical power brush and use [M]. Beijing: Mechanical Industry Press,1982.
    [83]虞澜,冯本政. Au-Cu-Ni-RE合金摩擦副磨损特性研究[J].贵金属,1999,20(4):7-11.Yu Lan, Feng B Z. The study on friction and wear behaviour of Au-Cu-Ni-RE alloys sliding pairs [J]. Precious Metals,1999,20 (4):7-11.
    [84]冯本政,童泽新,杜军,等.几种金基合金的耐磨特性[J].贵金属,1995,16(1):16-23.Feng B Z, Tong Z X, Du J, et al. The wear resistance of several gold base alloys [J]. Precious Metal,1995,16(1):16-23.
    [85]虞澜.金-稀土合金电刷丝的磨损机理研究[J].摩擦学学报,2002,4(22):282-285.Yu L. Study on the wear mechanism of Au-Rare earth alloy wires [J]. Tribolog, 2002,4(22):282-285.
    [86]Michael E, Rene S. Space mechanisms and tribology challenges of future space missions [J]. Acta Astronautica,2004,55:935-943.
    [87]Antler M, Gold in electrical contacts [J]. Gold Bulletin,1971,3(4):42-46.
    [88]Antler M, Corrosion control and lubrication of plated noble metal connector contacts [J]. IEEE,1996,3(19):304-312.
    [89]Conte A A, J R, Agarwala V S. An investigation of gold alloy slip ring capsule wear failures [J]. Wear,1989,133:355-371.
    [90]Antler M. Tribological properties of gold for electric contacts [J]. IEEE Transactions on Parts, Hybrids and Packaging,1973,9 (1):4-14.
    [91]Banerjee A, Zhang J G, Garshasb M, et al. Wear debris analysis in rotating Ag-Cu electrical contacts [J]. Wear,1983,84:97-109.
    [92]Brown L, Wilsdorf D K, Jesser W. Testing and evaluation of metal fiber brush operation on slip rings and commutators [J]. IEEE Transactions on Parts, Hybrids and Packaging,2008,31(2):485-494.
    [93]Tian H, Saka N, Rabinowicz E. Friction and failure of electroplated sliding contacts [J]. Wear,1991,142:57-85.
    [94]Antler M, Drozdowicz M H. Fretting corrosion of gold-plated connector contacts [J]. Wear,1981-1982,74:27-50.
    [95]Antler M. Wear of electroplated gold [J]. ASLE Transactions,1962,11:240-260.
    [96]Garshasb M, Vook R W. Fundamental analysis of Cu brush-Ag slip ring sliding electrical contacts [J]. IEEE Transactions on Parts, Hybrids and Packaging,1986, 9(1):23-29.
    [97]Stoyanov P, Chromik R R, Gupta S, et al. Micro-scale sliding contacts on Au and Au-MoS2 coatings [J]. Surface & Coatings Technology,2010,205:1449-1454.
    [98]Chen H H, Ma K J, Vattikuti S P, et al. Tribological behaviour of MoS2/Au coatings [J]. Thin Solid Films,2010,518:7532-7534.
    [99]Stoyanov P, Chromik R R, Goldbaum D, et al. Microtribological performance of Au-MoS2 and Ti-MoS2 coatings with varying contact pressure [J]. Tribol. Lett., 2010,40:199-211.
    [100]王新平,肖金坤,张雷,等.载荷对AuNi9/金镀层摩擦副摩擦磨损性能的影响[J].中国有色金属学报,2012,22(12):3427-3431.Wang X P, Xiao J K, Zhang L, et al. Effect of load on the tribological behavior of AuNi9/Au coating tribo-couple [J]. The Chinese Journal of Nonferrous Metals, 2012,22(12):3427-3431.
    [101]Argibay N, Bares J A, Keith J H, et al. Copper-beryllium metal fiber brushes in high current density sliding electrical contacts [J]. Wear,2010,268:1230-1236.
    [102]Argibay N, Bares J A, Sawyer W G. Asymmetric wear behavior of self-mated copper fiber brush and slip-ring sliding electrical contacts in a humid carbon dioxide environment[J]. Wear,2010,268:455-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700