用户名: 密码: 验证码:
纤维尺寸及分布对WPCs力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料,简称木塑(wood-plastic composites,缩写为WPCs),为生物质-聚合物复合材料的俗称,是一种由木质纤维材料与聚合物材料复合而制成的复合材料。它是新型的高性能、高附加值环保材料,在环境保护和节约能源等方面发挥了重要的作用。然而,抗蠕变性能差严重影响和制约了WPCs的拓展应用。论文以杨木纤维增强高密度聚乙烯(HDPE)复合材料为研究对象,重点分析了纤维尺寸和分布对WPCs的力学性质和抗蠕变性能的影响。
     采用10~20目、20-40目、40-80目和80-120目四种木纤维及它们的混合纤维制备了七种木纤维增强HDPE复合材料,对其弯曲性能、冲击强度、流变性能、动态热机械性能、24h蠕变-24h回复性能和1000h蠕变性能等进行分析,并引入数学模型拟合WPCs的蠕变-回复过程,取得如下结果:
     (1)纤维的尺寸过大或者过小都不利于WPCs的弯曲强度和模量的提高,增强效果以20-40目纤维为佳,而80-120目木纤维增强HDPE复合材料的弯曲强度和弹性模量均是最小值。四种目数木纤维混合增强HDPE复合材料的抗弯性能较好,长短不同,粗细不均的纤维搭配起来增强HDPE,既能填补纤维之间的间隙,又能扩大与基质的接触面积,有助于提高材料界面的结合强度,增强力学性能。
     (2)引入成分对弯曲力学性能的贡献因子λ作为参数修正ROM模型,通过方差分析和配对样本T检验证明该模型预测木纤维增强HDPE复合材料的弯曲性能优于三个传统ROM模型,通过材料的断裂强度验证了该模型。
     (3)24h蠕变-24h回复性能和1000h蠕变测试结果表明,单一目数木纤维增强HDPE复合材料中抗蠕变性能最差的是80-120目木纤维增强HDPE复合材料,该材料蠕变实验后弯曲性能值下降最大,不适合长期在负载的条件下工作。增加纤维长度有利于蠕变后弯曲性能的保留。在较小应力水平下,40-80目木纤维增强HDPE复合材料的抗蠕变性能最好;当载荷超过材料弯曲极限载荷的30%时,20-40目木纤维增强HDPE复合材料的抗蠕变性能最好且受载荷的影响较小
     (4)混合目数木纤维增强HDPE复合材料的抗蠕变性能优于单一目数木纤维增强HDPE复合材料,抗蠕变性能最好的是20-80目木纤维增强HDPE复合材料,最差的是80-120目和10-20目混合木纤维增强HDPE复合材料。材料在不同载荷水平蠕变后,回复率的变化不大(回复率范围81.81%~85.58%)。
     (5)分别利用Findley指数模型、两参数指数模型和四元件Burgers模型来拟合WPCs的24h蠕变曲线,经过模型检验和参数检验,四元件Burgers模型拟合效果最好,可以应用于热压成型的WPCs的蠕变性能的预测中。建立四元模型来模拟WPCs的回复过程,该回复模型模拟效果较好,可以应用于热压成型WPCs的蠕变-回复性能的预测中。
     (6)上层40~80目、下层20~40目木纤维增强HDPE复合材料的弯曲性能值最大,其次是四种目数纤维混合均匀分布增强HDPE复合材料,而上层80~120目、下层10~20目木纤维增强HDPE复合材料的弯曲性能最差。长度相差大的纤维无论是分层分布还是均匀分布,用其增强HDPE复合材料的弯曲性能值都小于长度相近的木纤维增强HDPE复合材料,后者弹性应变最小,蠕变速度较慢,24h应变最小,蠕变后剩余弯曲性能值均最大。
     (7)上层40~80目、下层20~40目木纤维增强HDPE复合材料最适合长期在载荷作用下工作。而含有短纤维(80~120目)的WPCs不适合长期在载荷作用下工作,短纤维含量越多,其抗蠕变性能越差。不同目数纤维均匀混合分布的WPCs抗蠕变性能均优于纤维分层分布的WPCs,且24h回复率也大于纤维分层分布的WPCS;不同目数纤维均匀混合分布的WPCs弹性应变和24h应变受加载力增加的影响较纤维分层分布的WPCs更敏感。
     (8)分别利用Findley指数模型、两参数指数模型和四元件Burgers模型来拟合叠层材料的24h蠕变曲线,并求出参数,经过模型检验和参数检验,四元件Burgers模型拟合效果最好,可以应用于叠层WPCs的蠕变性能的预测中。建立四元模型来模拟叠层WPCs的回复过程,该回复模型模拟效果较好,可以应用于叠层WPCs的蠕变回复性能的预测中。
     (9)对WPCs的安全系数进行考察,20~80目木纤维混合增强HDPE复合材料在弯曲性能和抗蠕变性能方面表现出最安全的使用性。
Wood plastic composites is composed mainly of wood or wood cellulose as base material with one or more plastics. The abbreviation for wood plastic composites is WPCs. WPCs is a kind of the high performance, and high value-added environmental protection material, and WPCs plays an important role in protecting the environment and saving energy. However, poor creep properties seriously affected and restricted the development of the application of WPCs. This paper takes composites reinforced high density polyethylene (HDPE) with poplar wood fiber as a research object, analyses the influence of fiber size and distribution on mechanical properties and creep resistance of WPCs.
     Seven kinds of different mesh size fiber reinforced HDPE composite was prepared. The seven kinds of reinforced fibers of different size includes four kinds of single mesh size fibers (80-120mesh size,40-80mesh size,20-40mesh size and10-20mesh size) and three mixed fibers of single mesh size fibers. The flexural properties, impact resistance properties, rheological properties, dynamic mechanical properties,24hours creep-24hours recovery and1000hours creep properties of the resulted WPCs was studied. The results were described as bellow.
     (1) Excessively large or small fiber proved unconducive to the enhancement of the strength and modulus of composites. The strengthening effect of fibers of20-40mesh size was best. The flexural strength and the flexural modulus of WPCs with fiber of80-120mesh size were minimum values. The flexural strength and the flexural modulus of resulted WPCs with fibers of four mesh size were maximum. Reasonable collocation of fiber with different lengths, uneven thickness reinforced HDPE composites can fill the gap or space between fibers, and can extend the area of effective contact between fibers and matrix. It is helpful to improve the bonding strength of the material interface, enhanced mechanical properties.
     (2) The modified ROM model by introducing an parameter as contribution factor of component WPCs to flexural properties can be used to predict the flexural mechanical properties of mixed fiber of different mesh size reinforced HDPE composites. The results of variance analysis and paired samples T test proved that the modified ROM model is better than the ROM model, IROM model and Hirsch model. The model is verified by the fracture strength of the resulted WPCs.
     (3) The results of24hours creep-24hours recovery tests and1000hours creep tests show that for the single mesh fiber reinforced HDPE composites, the creep performance of the WPCs with80-120mesh size is the worst. Residual flexural properties of WPCs with fiber of80-120mesh size decreased maximum after the creep experiment. Therefore it was not suitable for long-term work in the load conditions. The increase of the fiber length had a positive impact on the creep properties of WPCs. At a smaller load, creep resistance properties of WPCs reinforced by fiber of40-80mesh size was best. While at a higher load (higher than30%of maximum flexural loads of WPCs), creep resistance properties of WPCs reinforced by fiber of20-40mesh size was best, and effect of loading on its creep resistance properties was smaller.
     (4) Creep resistance properties of WPCs reinforced by fiber of mixed mesh size were higher than that of WPCs reinforced by fiber of single mesh size. For the WPCs with fiber of mixed mesh size, the creep resistance properties of WPCs reinforced by mixed fiber of20-40mesh size and40-80mesh size were best, while the creep resistance properties of WPCs reinforced by mixed fiber of80-120mesh size and10-20mesh size were worst. After creep experiments at different load levels, recovery rates of WPCs were no change (81.81%-85.58%).
     (5) Findley's power law model, a simpler two-parameter power law model and Burgers model were used to describe the24hour creep curve of seven WPCs. Through model testing, parameter testing, the SSE value of four elements Burgers model was successfully simulated with the creep resistance properties of WPCs prepared by hot pressing. The four element model was established to stimulate the recovery process of WPCs, and it can be applied to prediction of the recovery performance of WPCs.
     (6) The flexural properties of WPCs whose upper layer was reinforced fiber of40-80mesh size and the lower layer was20-40mesh size, were greatest. While the flexural properties of WPCs whose upper layer was reinforced fiber of80-120mesh size and the lower layer was10-20mesh size, were worst. For composites, the flexural properties of fiber of long-span in length, whether different fibers are hierarchically distributed or uniformly distributed, reinforced HDPE composites were lower than that of fiber of continuous length reinforced HDPE composites. The elastic strain, creep speed, and creep strain24hours of the WPCs reinforced by medium-length fiber distributed hierarchically were least, and after creep experiment, its residual flexural properties were greatest.
     (7) The WPCs whose upper layer was reinforced fiber of40-80mesh size and the lower layer was20-40mesh size, were most suitable for long-term load to work. While the WPCs with shorter fiber of80-120mesh size were not suitable for long-term load to work. The more content of short fiber in WPCs is, the worse creep performance of WPCs is. The creep resistance of the WPCs reinforced by mixed uniformly fiber of different mesh size better than that of the WPCs reinforced by different mesh size fiber of hierarchical distribution. The24hour recovery rate of the former was higher than that of the latter. The effect of flexural load on the elastic strain and24hours strain of WPCs with mixed uniformly fiber of different mesh size was more significant than that of WPCs with different mesh size fiber of hierarchically distribution. The effect of the increase of flexural load on the instantaneous recovery rate of WPCs with different mesh size fiber of hierarchically distribution was more significant than that of WPCs with mixed uniformly fiber of different mesh size.
     (8) Findley's power law model, a simpler two-parameter power law model and Burgers model were used to describe the24hour creep curve of six resulted double layer WPCs. Through model testing and parameter testing, the SSE value of four elements Burgers model was successfully simulated with the creep resistance properties of resulted double layer WPCs prepared by slab paving molding method. The four element model was established to stimulate the recovery process of double layer WPCs, and it can be applied to prediction of the recovery performance of WPCs.
     (9) The safety coefficient of WPCs were investigatedm. Mixed fibers of40-80mesh size and20-40mesh size reinforced HDPE composite showed the most serviceability safety.
引文
[1]Rowell RM. Challenges in biomass-thermoplastic composites [J]. J. Polym. Environ.,2007, 15(4):229-235.
    [2]王清文,王伟宏.木塑复合材料与制品[M].北京:化学工业山版社,2007:11-15.
    [3]应伟斌,袁新华,程晓农.两种不同基体木塑复合材料的制备及性能研究[J].塑料,2006,35(4):12-16.
    [4]于艳滨,唐跃,姜蔚.木塑复合材料成型工艺及影响因素的研究[J].工程塑料应用,2008,36(11):36-40.
    [5]赵永生,薛平,朱复华.木塑复合材料的研究进展[J].塑料制造,2006,(6):67-71.
    [6]林翔,李建章,毛安.木塑复合材料应用于研究进展[J].木材加工机械,2008,(1):46-49.
    [7]刘波.木塑复合材料制备及性能的研究[J].辽宁化工,2007,36(12):797-799.
    [8]李跃文,陈兴华.木塑复合材料的制备及其研究进展[J].塑料助剂,2008,71(5):1-6.
    [9]钟鑫,薛平,丁箔.改性木粉爪vc复合材料的性能研究[J].中国塑料,2004,18(3):62-66.
    [10]赵娟,崔怡,李丙海.木塑复合材料改性研究进展[J].塑料科技,2007,35(2):90-98.
    [11]Hill C A S, Abdul Khalil H P S. The effect of environmental exposure upon the mechanical properties of coir or oil palm fiber reinforced composites[J].Journal of Applied Polymer Science,2000,77:1322-1330.
    [12]Joseph S, Sreekala M S, Oommen Z, Koshy P, Thomas S. A comparisonof the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres[J]. Composites Science and Technology,2002,62:1857-1868.
    [13]Maffezzoli A, Calo'E, Zurlo S, Mele G, Tarzia A, Stifani C. Cardanol based matrix biocomposites reinforced with natural fibres[J]. Composites Science and Techno logy,2004,64:839-845.
    [14]Keener T J, Stuart R K, Brown T K. Maleated coupling agents for natural fibre composites[J]. Composites Part A:Applied Science and Manufacturing,2004,35:357-362.
    [15]Sgriccia N, Hawley M C, Misra M. Characterization of natural fiber surfaces and natural fiber composites[J]. Composites Part A:Applied Science and Manufacturing,2008,39:1632-1637.
    [16]Vilay V, Mariatti M, Taib R M, Todo M. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites[J]. Composites Science and Technology,2008,68:631-638.
    [17]Harish S, Michael D P, Bensely A, Lal D M, Rajadurai A. Mechanical property evaluation of natural fiber coir composite[J]. Materials Characterization,2009,60:44-49.
    [18]Medina L, Schledjewski R, Schlarb A K. Process related mechanical properties of press molded natural fiber reinforced polymers[J]. Composites Science and Technology,2009,69:1404-1411.
    [19]Mano B, Araujo J R, Spinace M A S, De Paoli M A. Polyolefin composites with curaua fibres:effect of the processing conditions on mechanical properties, morphology and fibres dimensions[J]. Composites Science and Technology,2010,70:29-35.
    [20]Mohanty A K, Wibowo A, Misra M, Drzal L T. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites[J]. Composites Part A:Applied Science and Manufacturing,2004,35:363-370.
    [21]Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M. Kenaf natural fiber rein-forced polypropylene composites:a discussion on manufacturing problems and solutions[J]. Composites Part A:Applied Science and Manufacturing,2007,38:1569-1580.
    [22]Monteiro S N, Terrones L A H, D'Almeida J R M. Mechanical performance of coir fiber/polyester composites[J]. Polymer Testing,2008,27:591-595.
    [23]Luz S M, Del Tio J, Rocha G J M, Goncalves A R, Del'Arco Jr A P. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites:effect of acetylation on mechanical and thermal properties[J]. Composites Part A:Applied Science and Manufacturing,2008,39:1362-1369.
    [24]Ibrahim N A, Ahmad S N A, Yunus W M Z W, Dahlan K Z. Effect of electron beam irradiation and poly(vinyl pyrrolidone) addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB) composite[J]. eXPRESS Polymer Letters,2009,3:226-234.
    [25]Baiardo M, Zini E, Scandola M. Flax fibre-polyester composites[J]. Composites Part A: Applied Science and Manufacturing,2004,35:703-710.
    [26]Yang H S, Kim H J, Son J, Park H J, Lee B J, Hwang T S. Rice-husk flourfilled polypropylene composites;, mechanical and morphological study[J]. Composite Structures,2004,63:305-312.
    [27]Jacob M, Thomas S, Varughese K T. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites[J]. Composites Science and Techno logy,2004,64:955-965.
    [28]Shibata M, Oyamada S, Kobayashi S I, Yaginuma D. Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric[J]. Journal of Applied Polymer Science,2004,92:3857-3863.
    [29]Herrera F P J, Valadez G A. A study of the mechanical properties of short natural-fiber reinforced composites[J]. Composites Part A:Applied Science and Manufacturing,2005,36:597-608.
    [30]Herrera-Franco P J, Valadez-Gonzalez A. Mechanical properties of continuous natural fibre-reinforced polymer composites[J]. Composites Part A:Applied Science and Manufacturing,2004,35:339-345.
    [31]Demir H, Atikler U, Balkose D, Tihminlioglu F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites[J]. Composites Part A:AppliedScience and Manufacturing,2006,37:447-456.
    [32]Lee S H, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent[J]. Composites Part A:AppliedScience and Manufacturing,2006,37:80-91.
    [33]Sapuan S M, Leenie A, Harimi M, Beng Y K. Mechanical properties of woven banana fibre reinforced epoxy composites. Materials and Design 2006;27:689-63.
    [34]Rao K M M, Rao K M. Extraction and tensile properties of natural fibers:vakka, date and bamboo[J]. Composite Structures,2007,77:288-295.
    [35]Ben Brahim S, Ben Cheikh R. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite[J]. Composites Science and Technology,2007,67:140-147.
    [36]Liu L S, Finkenstadt V L, Liu C K, Coffin D R, Willett J L, FishmanM L, Hicks K B. Green composites from sugar beet pulp andpoly(lactic acid):structural and mechanical characterization[J]. Journal of Biobased Materials and Bioenergy,2007,1:323-330.
    [37]Kaci M, Djidjelli H, Boukerrou A, Zaidi L. Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites[J].eXPRESS Polymer Letters,2007,1:467-473.
    [38]Chow C P L, Xing X S, Li R K Y. Moisture absorption studies of sisal fibre reinforced polypropylene composites[J]. Composites Science and Technology,2007,67:306-313.
    [39]Bachtiar D, Sapuan S M, Hamdan M M. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites[J]. Materials and Design,2008,29:1285-1290.
    [40]John M J, Francis B, Varughese K T, Thomas S. Effect of chemical modification on properties of hybrid fiber biocomposites[J]. Composites Part A:Applied Science and Manufacturing,2008,39:352-363.
    [41]Pasquini D, de Morais Teixeira E, da Silva Curvelo A A, Belgacem M N, Dufresne A. Surface esterification of cellulose fibres:processing andcharacterisation of low-density polyethylene/cellulose fibres composites[J]. Composites Science and Techno logy,2008,68:193-201.
    [42]Gu H. Tensile behaviours of the coir fibre and related composites after NAOH treatment[J]. Materials and Design,2009,30:3931-3934.
    [43]Seki Y. Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites[J]. Materials Science and Engineering A,2009,508:247-252.
    [44]Nakamura R, Goda K, Noda J, Ohgi J. High temperature tensile properties and deep drawing of fully green composites[J]. eXPRESS Polymer Letters,2009,3:19-24.
    [45]Xue Y, Du Y, Elder S, Wang K, Zhang J. Temperature and loading rate effects on tensile properties of kenaf bast fiber bundles and composites[J]. Composites Part A:Applied Science and Manufacturing,2009,40:189-196.
    [46]Chen H, Miao M, Ding X. Influence of moisture absorption on the interfacial strength of bamboo/vinylester compo sites [J]. Composites Part A:Applied Science and Manufacturing,2009,40:2013-2019.
    [47]Hassan M M, Wagner M H, Zaman H U, Khan M A. Study on the performance of hybrid jute/betel nut fiber reinforced polypropylene composites[J]. Journal of Adhesion Science and Technology,2010;25:615-626.
    [48]Yousif B F. Effect of oil palm fibres volume fraction on mechanical properties of polyester composites[J]. International Journal of Modern Physics B,2010,24:4459-4470.
    [49]Singh B, Gupta M, Hina T. Jute sandwich composite panels forbuilding applications[J]. Journal of Biobased Materials and Bioenergy,2010,4:397-407.
    [50]Bakar A A, Hassan A. Impact properties of oil palm empty fruit bunch filled impact modified unplasticised poly (vinyl chloride) composites[J]. Jurnal Teknologi,2003,39:73-82.
    [51]Nechwatal A, Mieck K P, ReuBmann T. Developments in thecharacterization of natural fibre properties and in the use of natural fibres for composites[J]. Composites Science and Technology,2003,63:1273-1279.
    [52]Lei Y, Wu Q, Yao F, Xu Y. Preparation and properties of recycled HDPE/natural fiber composites[J]. Composites Part A:Applied Science and Manufacturing,2007,38:1664-1674.
    [53]Yuanjian T, Isaac D H. Impact and fatigue behaviour of hemp fibrecomposites[J]. Composites Science and Technology,2007,67:3300-3307.
    [54]Dhakal H N, Zhang Z Y, Richardson M O W, Errajhi O A Z. The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites[J]. Composite Structures,2007,81:559-567.
    [55]Huda M S, Drzal L T, Ray D, Mohanty A K, Mishra M. Natural-fiber composites in the automotive sector. In:Pickering K, editor. Properties and performance of natural-fibre composites[M]. Cambridge, UK:Woodhead Publishing,2008,221-268.
    [56]Yao F, Wu Q, Lei Y, Xu Y. Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading[J]. Industrial Crops and Products,2008,28:63-72.
    [571 Oksman K, Mathew A P, Langstrom R, Nystrom B, Joseph K. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene[J]. Composites Science and Technology,2009,69:1847-1853.
    [58]De Farias M A, Farina M Z, Pezzin A P T, Silva D K. Unsaturated polyester composites reinforced with fiber and powder of peachpalm:mechanical characterization and water absorption profile[J].Materials Science and Engineering A,2009,29:510-513.
    [59]Ruksakulpiwat Y, Sridee J, Suppakarn N, Sutapun W. Improvement of impact property of natural fiber-polypropylene composite byusing natural rubber and EPDM rubber[J]. Composites Part A:AppliedScience and Manufacturing,2009,40:619-622.
    [60]Alamgir Kabir M, Monimul Huque M, Rabiul Islam M, Bledzki A K. Mechanical properties of jute fiber reinforced polypropylene composite:effect of chemical treatment by benzenediazonium salt in alkaline medium[J]. Bioresources,2010,5:1618-1625.
    [61]王伟宏,曹岩,王清文.木塑复合材料力学模型的研究进展[J].高分子材料科学与工程,2012,28(10):179-182.
    [62]Cao Y, Wang W H, Wang Q W, Wang H G. Application of Mechanical Models to Flax Fiber /Wood Fiber/Plastic Composites[J]. Bioresources,2013,8(3):3276-3288.
    [63]Kalaprasad G, Joseph K, Thomas S, et al. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites[J]. J. Mater. Sci.,1997, 32(16):4261-4267.
    [64]Sebastien M, Ahmed K, Fouad E, et al. Application of micromechanical models to tensile properties of wood-plastic composites[J]. Wood. Sci. Technol.,2010,45(3):521-532.
    [65]Beckermann G W, Pickering K L. Engineering and evaluation of hemp fibre reinforced polypropylene composites:micro-mechanics and strength prediction modelling[J]. Compos. Part A:Appl. Sci. Manuf.,2009,40(2):210-217.
    [66]Fukuda H, Chou T W. A probabilistic theory for the strength of short fibre composites[J]. J. Mater. Sci.,1981,16(4):1088-1096.
    [67]Fukuda H, Chou T W. A probabilistic theory of the strength of short-fibre composites with variable fibre length and orientation[J]. J. Mater. Sci.,1982,17(4):1003-1011.
    [68]Zhu Y T, Zong G, Manthiram A, et al. Strength analysis of random short-fibre-reinforced metal matrix composite materials[J]. J. Mater. Sci.,1994,29(23):6281-6286.
    [69]Rangaraj S S, Bhaduri S B. A modified rule-of-mixture for prediction of tensile strengths of unidirectional fibre-reinforced composite materials[J]. J. Mater. Sci.,1994,29(10):2795-2800.
    [70]Simonsen J. Efficiency of reinforcing materials in filled polymer composites[J]. Forest Prod. J.,1997,47(1):74-81.
    [71]Doan T T L, Gao S L, Mader E. Jute/polypropylene composites I. Effect of matrix modification[J]. Compos. Sci. Technol.,2006,66(7-8):952-963.
    [72]Hill R. Theory of mechanical properties of fibre-strengthened materials-Ⅲ. self-consistent model[J]. J. Mech. Phys. Solids,1965,13(4):189-198.
    [73]Lundquist L, Marque B, Hagstrand P O, et al. Novel pulp fibre reinforced thermoplastic composites[J]. Compos. Sci. Technol.,2003,63(1):137-152.
    [74]Bogren K M, Gamstedt E K, Neagu R C, et al. Dynamic-mechanical properties of wood-fiber reinforced polylactide:experimental characterization and micromechanical modeling[J]. J. Thermoplas. Compos. Mater.,2006,19(6):613-637.
    [75]Facca A G, Kortschot M T, Yan N. Predicting the elastic modulus of natural fibre reinforced thermoplastics[J]. Compos. Part A:Appl. Sci. Manuf.,2006,37(10):1660-1671.
    [76]张立群,金日光,耿海萍,等.短纤维橡胶复合材料临界长径比数学模型研究[J].复合材料学报,1998,15(3):86-91.
    [77]Kelly A, Tyson W R. Tensile properties of fibre-reinforced metals:Copper/tungsten and copper/molybdenum [J]. J. Mech. Phys. Solids,1965,13(6):329-338.
    [78]Galiotis C, Young R J, Batchelder D N. The study of model polydiacetylene/epoxy composites[J]. J. Mater. Sci.,1984,19(11):3640-3648.
    [79]Monette L, Anderson M P, Ling S. Effect of modulus and cohesive energy on critical fiber length in fiber-reinforced composites[J]. J. Mater. Sci.,1992,27(16):4393-4405.
    [80]Fu S Y, Lauke B. Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers[J]. Compos. Sci. Technol.,1996,56(10):1179-1190.
    [81]Fukuda H, Chou T W. A probabilistic theory of the strength of short-fiber composites with variable fiber length and orientation [J]. J. Mater. Sci.,1982,17(4):1003-1011.
    [82]Pipes R B, Mccullough R L, Taggart G Behavior of discontinuous fiber composites:Fiber orientation [J].Polym. Compos.,1982,3(1):34-39.
    [83]Sanadi A R, Rowell R M, Young R A. Evaluation, of wood-thermoplastic-interphase shear strengths[J]. J. Mater. Sci.,1993,28(23):6347-6352.
    [84]Garkhail S K, Heijenrath R W H, Peijs T. Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene[J]. Appl. Compos. Mater., 2000,7(5-6):351-372.
    [85]Joffe R, Andersons J, WallstroEm L. Strength and adhesion characteristics of elementary flax fibres with different surface treatments[J]. Compos. Part A:Appl. Sci. Manuf.,2003, 34(7):603-612.
    [86]Sanomura Y, Hayakawa K, Mizuno M. Effects of process conditions on Youngps modulus and strengt h of ext rudate in short-fiber-reinforced polypropylene [J]. Polym. Compos., 2007,1002(10):30-35.
    [87]王瑞,王春红.亚麻落麻纤维增强可降解复合材料的拉伸强度预测[J].复合材料学报,2009,26(1):43-47.
    [88]Takao Y, Chou T W, Taya M. Effective longitudinal Young's modulus of misoriented short fiber composites[J]. J. Appl. Mech,1982,49(3):536-540.
    [89]Chen C H, Cheng C H. Effective elastic moduli of misoriented short-fiber composites[J]. Int. J. Solids Struct.,1996,33(17):2519-2539.
    [90]Hashin Z, Rosen B W. The elastic moduli of fiber-reinforced materials[J]. J. Appl. Mech. 1964,31(2):223-232.
    [91]Hashin Z. Analysis of properties of fiber composites with anisotropic constituents[J]. J. Appl. Mech.,1979,46(3):543-550.
    [92]Nairn J A. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites [J]. Mech. Mater,1997,26(2):63-80.
    [93]Mendels D A, Leterrier Y, Manson J A E. Stress transfer model for single fibre and platelet composites [J]. J. Compos. Mater.,1999,33(16):1525-1543.
    [94]薛菁等HDPE/木粉复合材料抗蠕变性能研究[J].工程塑料应用,2010,38(4):9-13.
    [95]田先玲,李大纲,蒋永涛,何强,吴春渝.不同加载方式下木塑复合材料蠕变性能的研究[J].塑料工业,2008,36(10):43-46.
    [96]陆晓中,方庆海,陆庆章,程福强,孙晓民.PP/木粉复合材料的蠕变特性研究[J].塑料,2009,38(2):81-84.
    [97]岳孔,张伟,夏炎,卢晓宁.木质材料蠕变研究进展[J].木材加工机械,2008,3:48-51.
    [98]宋旼.多晶冰蠕变机制的研究进展[J].冰川冻土,2007,29(3):482-486.
    [99]大纲,蒋本浩,徐永吉.温湿处理对杉木弯曲蠕变性能的影响[J].建筑人造板,1994(1):9-11.
    [100]Pomeroy C D. Creep of engineering materials[M]. Cambridge (UK):Heffers:1978.
    [101]Silverman E M. Creep and Impact Resistance of Reinforced Thermoplastics:Long Fibers vs. Short Fibers[J].40th Annual Conference, Reinforced Plastics/Composites Institute, Society of the Plastics Industry,1985,4-E(1).
    [102]Morlier, P. and Palka, L. C. Basic Knowledge-Creep in Timber Structures,1994,164.
    [103]Park BD, Balatinez JJ. Short term flexural creep behavior of wood-fiber/polypropylene composites[J]. polymer composites,1998,19(4):377-382.
    [104]Xu Bin, Simonsen J, RochefortW E. Creep resistance of wood-filled polystyrene/high-densitypolyethylene blends[J]. JournalofApplied Polymer Science,2001,79:418-425.
    [105]Sain, M.M., Balatinecz, J., Law, S..Creep fatigue in engineered wood fiber and plastic compositions[J]. Journal of Applied Polymer Science,2000,77:260-268.
    [106]Bledzki K. Andrzej, Faruk Omar..Creep and impact properties of wood fibre-polypropylene composites:influence of temperature and moisture content Composites[J]. Science and Technology,2004,64:693-700.
    [107]Seyed Majid Zabihzadeh, Foroogh Dastoorian. Effect of Wood Species and Coupling Agent on Mechanical Properties of Wood Flour/HDPE. Composites Journal of Reinforced Plastics and Composites OnlineFirst,2009,5:1-7.
    [108]Abdollah Najafi,Saeed kazemi najafi.effect of load levels and plastic type on creep behavior of wood Sawdust/HDPE Composites[J].Journal of Reinforced Plastics and Composites,2009,28:2645-2653.
    [109]Kazemi-Najafi, S., Hamidinia, E., Tajvidi, M. and Chaharmahali, M.. Mechanical Properties of Composites from Sawdust and Recycled Plastics[J]. Journal of Applied Polymer Science,2006,100:364-645.
    [110]PULNGERN T, PADYENCHEAN C, ROSARPITAK V, etal. Flexural and creep strengthening for wood/PVC composite members using flat bar strips[J].Mater Des, 2011,32(6):3137-3146.
    [111]NAJAFI S K, KORDKHEILI H Y. Effect of sea water on water absorption and flexural properties of wood-polypropylene composites[J].Eur J Wood Wood Prod,Published online: 12 January 2011.
    [112]周吓星,李大纲,吴正元.环境因子对塑木地板蠕变性能影响研究[J].新建筑材料,2009,4:81-84.
    [113]蒋永涛,李大纲吴正元,丁建生.稻壳/HDPE木塑复合材料蠕变性能的研究[J].包装工程,2008,29(8):4-6.
    [114]蒋永涛,李大纲,吴正元,丁建生.木塑复合材料的蠕变和应力松弛性能研究[J].林业机械与木工设备,2009,37(4):24-26.
    [115]王伟宏,宋永明,高华.木塑复合材料[M].科学出版社,2010.
    [116]王伟宏,王清文,宋永明.木塑复合材料老化性能研究进展[J].林业科学,2008,44(5):143-149.
    [117]朱迅,王明寅,王荣国,刘文博.纤维增强聚合物基复合材料的蠕变力学研究进展[J].纤维复合材料,2004(3):51-53.
    [118]王克俭,赵永生,朱复华.蒙脱土填充木塑复合材料的弯曲性能和蠕变特性[J].高分子材料科学与工程,2007,23(6):109-112,116.
    [119]Sternstein S S, Van Buskirk C S. Polymer creep', in Kroschwitz J I, Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York,1988,12:470-486.
    [120]Lin W S, Pramanik A K, Sain M. Determination of material constants for nonlinear viscoelastic predictive model[J]. J Composite Mater,2004,38(l):19-29.
    [121]Kobbe, R. G. Creep Behavior of a Wood-Polypropylene Composite, M.Sc. Thesis, Department of Civil and Environmental Engineering, Washington State University, USA,2005.
    [122]Lee S Y, Yang H S, Kim H J, Jeong C S, Lim B S and Lee J N. Creep Behavior and Manufacturing Parameters of Wood Flour Filled Polypropylene Composites[J]. Composite Structures,2004,65(3-4):459-469.
    [123]Li T Q, Ng C N, Li R K Y. Impact Behavior of Sawdust/Recycled-PP Composites[J], Journal of Applied Polymer Science,2001,81(6):1420-1428.
    [124]Tajvidi M. Study on the Engineering and Viscoelastic Properties of Natural Fiber Thermoplastic Composites using Dynamic Mechanical Analysis (DMA). PhD Dissertation, Faculty of Natural Resources,University of Tehran, Karaj, Iran,2003,202.
    [125]康国政,高庆δAl2O3f/Al基复合材料弹性模量的有限元能量法预测[J].复合材料学报,1999,16(2):139-144.
    [126]Dragone T L, Nix W D. Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals[J]. Acta Metal Mater, 1990,38(10):1941-1953.
    [127]Laws N, McLaughlin J R. Self-consistent estimates for the viscoelastic creep compliances[J]. Proceedings of the Royal Society.1978,39:251-273.
    [128]Wang Y M, Weng G J.The influence of inclusion shape on the overall viscoelastic behavior of composites [J].Journal of Applied Mechanics,1992,59:510-518.
    [129]王逢瑚,李坚.木质材料流变学[M].哈尔滨:东北林业大学出版社,2005.
    [130]姜云鹏,岳珠峰,王心美,王亚芳.金属基复合材料的蠕变力学研究进展[J].燃气涡轮试验与研究.2003,16(2):53-57,61.
    [131]Hashin Z. Viscoelastic behavior of hetemgeneous media [J].Journal of Applied Mecchanics,1965,29:630-636.
    [132]Yen S C, and Moms D H,40th Annual Conference, Reinforced Plastics/Composites Institute[J]. Society of the Plastics Industry,1985,5-F, (1).
    [133]Nichols K, Doonan T, Mather J, SPEANTEC Tech Papers,1991,57.800.
    [134]Brockenbrough J R, Suresh S, Wienecke. Deformation of metal-matrix composite scontinuous fibers:geometrical effect of fiber distribution and shaper[J].Acta Metall Mater, 1991,39:735-742.
    [135]Luciano R, Barbero E J. Analytical expression for the relaxation moduli of the linear viscoelastic composites with periodic microstructure[J]. Journal of Applied Mecchanics,1995,62:786-793.
    [136]Shibuya Y. Evaluation of creep compliance of carbon-fiber - reinforced composites by homogenization theory[J].JSME Int Ser A,1997,40:313-319.
    [137]Pierce C B, Dinwoodie J M, Paxton B H. Creep in chipboard. Part 2:The use of fitted response curves for comparative and predictive purposes[J]. Wood Science and Technology,1979,13:265-282.
    [138]Dinwoodie J M, Pierce C B, Paxton B H. Creepin chipboard. Part 4:The influence of temperature and moisture content on the creep behaviour of a range of boards at a single stress level[J]. Wood Science and Technology,1984,18:205-224.
    [139]Pierce C B, Dinwoodie J M, Paxton B H. Creep in chipboard. Part 5:An improved model for prediction of creep deflect ion[J]. Wood Science and Technology,1985,19:83-91.
    [140]Dinwoodie J M, Robson D J, Paxton B H, Higgins J S. Creep in chipboard. Part 8:The effect of steady-state moisture content, temperature and level of stressing on the relative creep behaviour and creep modulus of a range of boareds[J]. Wood Science and Technology, 1991,25:225-238.
    [141]Mundy J S, Bonfield P W, Dinwoodie J M, Paxton B H. Modelling the creep behaviour of chipboard:The rheological approach[J]. Wood Science and Technology,1998,32:261-272.
    [142]刘文辉,张淳源.渐近均匀化方法在粘弹性复合材料的应用[J].湘潭大学自然学报,2003,25(4):91-97.
    [143]Lee S Y, Yang H S, Kim H J, Jeong C S, Lim B S, Lee J N.Creep behavior and manufacturing parameters of wood flour filled polypropylene composites[J]. Composite Structures,2004,65:459-469.
    [144]Nunez J A, Marcovich E N. Analysis of the Creep Behavior of Polypropylene-Woodflour Composites[J]. Polymer Engineering and Science,2004,44(8):1594-1603.
    [145]Acha A, Reboredo M M, Marcovich E N.Creep and dynamic mechanical behavior of PP-jute composites:Effect of the interfacial adhesion[J]. Composites:Part A,2007,38:1507-1516.
    [146]王克俭,赵永生,朱复华.蒙脱土填充木塑复合材料的弯曲性能和蠕变特性[J].高分子材料科学与工程,2007,23(6):109-112,116.
    [147]Xu Bin, Simonsen J, Rochefort W E. Creep resistance of wood-filled polystyrene/high-densitypolyethylene blends[J]. Journal of Applied Polymer Science,2001,79:418-425.
    [148]Chand N, Dwivedi U K. Effect of coupling agent on abrasive wear behaviour of chopped jute fibre-reinforced polypropylene composites[J]. Wear,2006,261:1057-1063.
    [149]Kumar A P, Singh R P, Sarwade B D. Degradability of composites, prepared from ethylene-propylene copolymer and jute fiber under accelerated aging and biotic environments[J]. Materials Chemistry and Physics,2005,92:458-469.
    [150]Corradini E, Ito E N, Marconcini J M, Rios C T, Agnelli JAM, Mattoso LHC. Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber[J]. Polymer Testing,2009;28:183-187.
    [151]Zou Y, Huda S, Yang Y. Lightweight composites from long wheat straw and polypropylene web[J]. Bioresource Technology,2010,101:2026-2033.
    [152]Jacobs W. Is NF always the best material choice for a product? Example:an automotive doorpanel[J].In:Proceedings of the 6th global wood and natural fibre composites symposium,2006,B 1:1-8.
    [153]Idicula M, Malhotra S K, Joseph K, Thomas S. Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites[J]. Composites Science and Technology,2005,65:1077-1087.
    [154]Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S. Thermophysical properties of natural fibre reinforced polyester composites[J].Composites Science and Technology,2006,66:2719-2725.
    [155]Stark N M, Rowlands R E. Effects of wood fiber characteristics on mechanical properties ofwood/polypropylenecomposites[J].Wood Fiber Sci,2003,35(2):167-174.
    [156]Stark N M, Berger M J. Effect of particle size on properties of wood-flour reinforced polypropylene composites[J]. In:Fourth international conference on woodfiber-plastic composites. (Madison WI):Forest Product Society,1997.
    [157]Zaini M J, Fuad M Y A, Ismail Z, Mansor M S, Mustafah J. The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites[J]. Polym Int,1996;40(1):51-55.
    [158]Dikobe D G, Luyt A S. Effect of filler content and size on the properties of ethylene vinyl acetate copolymer-wood fiber composites[J]. J Appl Polym Sci,2007;103(6):3645-3654.
    [159]高华.木粉/马来酸酐接枝聚烯烃共混物复合材料[D].东北林业大学博士论文,2011.
    [160]周持兴.聚合物流变实验及应用[M].上海:上海交通大学出版社,2003.45.
    [161]Ferry, J D. Viscolelastic properties of polymers [M]. John Wiley Sons, Inc:New York,1980.
    [162]Govindarajan S, Langrana N A, Weng G J. The influence of imperfections on the creep behavior of woven polymer composites at elevated temperatures[J]. Finite Elem Anal Des,1996,23:333-347.
    [163]Doh G H, Kang I A, Lee S Y, Kong Y T, Jeong C S, Lim B S. Mechanical properties and creep behavior of liquefied wood polymer composites(LWPC)[J]. Compos Struct,2005,68(2):225-233.
    [164]Betiana A A, Maria M R, Norma E M. Creep and dynamic mechanical behavior of PP-jute composites:Effect of the interfacial adhesion[J]. Composites:Part A 2007,38:1507-1516.
    [165]Nun-ez A J, Marcovich N E, Aranguren M I. Short-term and long-term creep of polypropylene-wood flour composites[J]. Polym Eng Sci,2004,44(8):1594-1603.
    [166]Marcovich N E, Villar M A. Thermal and mechanical characterization of linear low density poly(ethylene)-wood flour composites[J]. J Appl Polym Sci,2003;90(10):2775-2784.
    [167]Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Krause C, et al. Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites[J]. J Appl Polym Sci,2008,110(2):1085-1092.
    [168]Gamstedt K E, Nygard P, Lindstrom M. Transfer of knowledge from papermaking to manufacture of composite materials[J]. In:Proceedings of the 3e symposium international sur les composites bois polymeres, Bordeaux, France,2007,3:26-27.
    [169]Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Wolcott MP. Effect of processing method and fiber size on the structure and properties of wood-plastic composites[J]. Compos Part A,2009,40:80-85.
    [170]Lee B J M C, Donald A G, James B. Influence of fiber length on the mechanical properties of wood-fiber/polypropylene prepreg sheets[J]. Mater Res Innov,2000;4(2/3):97-103.
    [171]Sanschagrin B, Sean S T, Kokta B V. Mechanical properties of cellulose fibers reinforced thermoplastics[J]. J Thermoplast Compos Mater,1988,1:184-195.
    [172]Maldas D, Kokta B V, Daneault C. Thermoplastic composites of polystyrene:effect of different wood species on mechanical properties[J]. J Appl Polym Sci,1989,38(3):413-439.
    [173]Rowell R M, Han J S, Rowell J S. Characterization and factors effecting fiber properties[J]. In:Natural polymers and agrofibers composites, San Carlos (Brazil); 2000,292.
    [174]Neagu R C, Gamstedt E K, Berthold F. Stiffness contribution of various wood fibers to composite materials[J]. J Compos Mater,2006,40(8):663-699.
    [175]Chen H C, Chen T Y, Hsu C H. Effects of wood particle size and mixing ratios of HDPE on the properties of the composites[J]. Holz Roh Werkst,2006,64(3):172-177.
    [176]Hassine B, Ahmed K, Patrick P, Alain C. Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites[J]. Composites:Part A, 2009,40:1975-1981.
    [177]Martin C N Y, Ahmed K, Alain C, Patrice S, Michael W. Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites[J]. Composites:Part A, 2010,41:131-137.
    [178]郭垂根,王清文.木粉聚丙烯复合材料的等温结晶动力学[J].高分子材料科学与工程,2009,25(4):62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700