用户名: 密码: 验证码:
原位合成CeB_6/B_4C陶瓷材料的力学性能和显微组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硼是一种重要的特种陶瓷,具有高硬度、低密度、高熔点、良好的中子吸收能力和抗化学侵蚀能力等优良性能,但是韧性较差限制了其更广泛的应用。本论文以提高碳化硼材料的韧性为目标,首次采用原位合成和热压烧结相结合的方法制备了CeB6/B4C陶瓷材料,分别对纯B4C陶瓷材料、热压烧结CeB6/B4C陶瓷材料和原位合成CeB6/B4C陶瓷材料的力学性能和显微组织进行了研究;并对CeO2-B4C-C反应体系的热力学和动力学进行了分析。在此基础上,进一步研究了原位合成CeB6/B4C陶瓷材料的界面微结构、原位反应热压烧结机理和增韧补强机制。研究结果表明:
     在2040℃×20MPa×40min优化条件下热压烧结制备的纯B4C陶瓷材料的体积密度为2.419g/cm3,维氏硬度为31.34 GPa,抗弯强度为268.76 MPa,断裂韧性为3.14MPa·m1/2。随着温度的升高,纯B4C陶瓷材料的气孔率先降低后略有增大;保温时间对纯B4C陶瓷材料的气孔率影响不明显,但其晶粒随着保温时间的增加而变大,尤其在高温下保温时间太长,晶粒会急剧长大。
     在1950℃×20MPa×40min的优化条件下制备的热压烧结CeB6/B4C陶瓷材料的相对密度为96.95%,维氏硬度为39.97GPa,抗弯强度为313.81 Mpa,断裂韧性为4.55 MPa-m1/2,相对于纯B4C材料分别提高了0.96%、27.53%、16.76%和44.90%。第二相CeB6的添加,降低了碳化硼陶瓷材料的烧结温度。热压烧结CeB6/B4C陶瓷材料的气孔率大幅度降低,没有出现明显的晶粒长大现象。
     在1950℃×20MPa×40min的条件下制备的原位合成CeB6/B4C陶瓷材料的相对密度为97.92%,维氏硬度为42.01GPa,抗弯强度为346.75 Mpa,断裂韧性为5.95 MPa-m1/2,相对于热压烧结CeB6/B4C陶瓷材料分别提高了1.01%、5.10%、10.50%和30.77%,相对于纯B4C材料分别提高了2.01%、34.04%、29.02%和89.49%。Ce02和B4C原位生成CeB6的化学反应导致Ce02和B4C两相之间产生约5 nm的非晶过渡层,使相界面结合良好,对其界面结合强度起到了增强作用。原位生成的CeB6对晶界活动性产生很大的影响,其具有抑制晶粒长大的作用,故CeB6弥散分布在组织中,在晶粒细化方面大有裨益。细晶增韧补强、第二相颗粒和基体之间的热膨胀系数不匹配产生的残余应力导致的裂纹偏转、第二相拔出和沿晶断裂是原位合成CeB6/B4C陶瓷材料的主要增韧补强机制。
     CeO2、B4C和C的高温化学反应属于CeO2-B4C-C多组元化学反应体系。TG-DTA和XRD的实验结果表明,CeO2、B4C和C反应生成CeB6经历了5个步骤:①650~910℃时,CeO2和B4C反应生成CeBO3、CeBC和B,表观活化能E1为271.5kJ·mol-1,反应级数n1为0.24;②1270~1309℃时,Ce02和B4C反应生成CeBO3、B、CeB4和CO,CeBC、CeBO3和B4C反应生成CeB4和CO,其表观活化能E2为241.9kJ·mol-1,反应级数n2为0.16;③1317~1370℃时,CeBO3、B4C和C反应生成CeB4、B和CO,其表观活化能E3为715.1kJ·mol-1,反应级数n3为0.41;④1371~1420℃时,CeO2、B4C和C反应生成CeB4和CO;⑤1460℃时,CeB4和B反应生成CeB6,表观活化能E4为327.1kJ·mol-1,反应级数n4为0.13。1460℃时,随着时间延长,CeB6量增加,CeB4和单质B量减少,2h时,CeB6量达到了97.8%,CeB4基本上已全部转化为CeB6。1460℃以上的温度,CeO2、B4C和C反应原位合成CeB6/B4C陶瓷材料是可行的。
Boron carbide is a kind of important special ceramics, which has excellent properties, such as high hardness, low density, high melting point, and high capability for neutron absorption, as well as good resistance to chemical corrosion. However, the shortage of boron carbide material is its extreme susceptibility to brittle fracture, which limit its application. In order to improve its fracture toughness, CeB6/B4C ceramic material were prepared by in-situ synthesis and hot pressed sintering method. The mechanical properties and microstructure of pure B4C ceramic material, hot pressed sintering CeB6/B4C ceramic material and in-situ synthesis CeB6/B4C ceramic material were studied respectively, and the thermodynamics and kinetics of CeO2-B4C-C system were researched, the interface microstructure, and in-situ reaction hot pressed sintering mechanism, as well as toughening and reinforcing mechanisms of in-situ synthesis CeB6/B4C ceramics were also investigated. The studied results indicated that:
     In the case of 2040℃×20MPa×40min, the density of pure B4C ceramic material is 2.419g/cm3, the Vickers-microhardness 31.34 GPa, the bending strength 268.76 MPa, the fracture toughness 3.14 MPa·m1/2. With the temperature increasing, its porosity decreases first, then increases. The effect of sintering time on the porosity of pure B4C ceramic material isn't obvious. However, its crystal grain grows with sintering time, and especially grows more fast when sintering time is much longer at high temperature.
     In the case of 1950℃×20MPa×40min, the relative density of hot pressed sintering CeB6/B4C ceramic material is 96.95%, the Vickers-microhardness 39.97 GPa, the bending strength 313.81 MPa, the fracture toughness 4.55 MPa-m1/2, which enhance 0.96%, 27.53%,16.76% and 44.90% respectively compared to that of pure B4C ceramic material. The sintering temperature of boron carbide ceramics is decreased by adding second-phase CeB6. The porosity of hot pressed sintering CeB6/B4C ceramic material decreases and there is no crystal grain growth.
     In the case of 1950℃×20MPa×40min, the relative density of in-situ synthesis ceramic material is 97.92%, the Vickers-microhardness 42.01 GPa, the bending strength 346.75 MPa, the fracture toughness 5.95 MPa·m1/2 which improve 1.01%, 5.10%,10.50% and 30.77% respectively compared to that of hot pressed sintering CeB6/B4C ceramic material, and improve 2.01%,34.04%,29.02% and 89.49% respectively compared to that of pure B4C ceramic material. A amorphous transition layer of 5nm-width CeB6, synthesized in-situ by CeO2 and B4C, make the interface combine very well, and intensify the combination strength of interfaces. The in-situ synthesized CeB6 greatly impact grain boundary mobility, and inhibits grain growth. Therefore, in-situ synthesized CeB6 disperse among the structure, and play good role at grain refinement. The main toughening and reinforcing mechanisms of in-situ synthesis CeB6/B4C ceramic material were:fine grain toughening and reinforcing, the crack deflection caused by the residual stress resulting from the difference in thermal expansion coefficient between CeB6 and B4C, the second-phase CeB6 pullout and intergranular crack.
     The chemical reaction among CeO2, B4C and C under high temperature belongs to CeO2-B4C-C multicomponent chemical reaction system. The TG-DTA and XRD experimental results illustrates the process of CeO2, B4C and C generating CeB6 undergo five steps, firstly, at 650~910℃, CeO2, B4C and C react into CeBO3, CeBC and B, and the apparent activation energy (E1) is 271.5kJ·mol-1, the series (n1) is 0.24; secondly, at 1270~1309℃, CeO2 and B4C react into CeBO3, B and CeB4, at the same time, CeBO3, CeBC and B4C react into CeB4, and the apparent activation energy (E2) is 241.9kJ·mol-1, the series(n2) is 0.16; thirdly, at 1317~1370℃, CeBO3, B4C and C react into CeB4 and B, and the apparent activation energy (E3) is 715.1kJ·mol, the series(n3) is 0.41; fourthly, in 1371~1420℃, CeO2, B4C and C react into CeB6 and CO; fifthly, at the temperature of 1460℃,CeB4 and B further react into CeB6, and the apparent activation energy (E4) is 327.1 kJ·mol-1, the series(m4) is 0.13. With the prolonging time, the content of CeB6 increases but the content of CeB4 and B decrease, the content of CeB6 is 97.8% at 2 h, and most CeB4 changes into CeB6. It is feasible that in-situ synthesis CeB6/B4C ceramic material by the reaction of CeO2, B4C and C above 1460℃.
引文
1.王零森.特种陶瓷[M],长沙:中南工业大学出版社,1994,3645.
    2.工业调查会编辑部.最新精细陶瓷技术[M],北京:中国建筑工业出版社,1988,4349.
    3.吴芳,吕军.碳化硼陶瓷的制备与应用[J],五邑大学学报,2002,16(1):4549.
    4.唐国宏,张兴华,陈昌麟.碳化硼超硬材料综述[J],材料导报,1994,(4):69-72.
    5.李世波,温广武,葛勇,张宝生.碳硼化合物的晶体结构[J],哈尔滨建筑大学学报,1998,31(4):61-65.
    6.Thevent F. A boron carbide comprehensive review[J], Europ. Cera. Soc.,1990,6:205-225.
    7.王永兰,金志浩,郭生武.核反应堆控制材料B4C的研究[J],西安交通大学学报,1991,25(4):25-30.
    8.Thevent F. A review on boron carbide[J], Key Engineering Materials,1991,56:59-88.
    9. Weth G D. Note on the temperature dependence of the hardness of boron carbide[J], Journal of the Less-Common Metals,1983,95:133-136.
    lO.Bouchacourt M, Thevenot F. The structure and properties of the boron carbide phase[J], Journal of the Less-Common Metals,1981,82:227-234.
    11.吴祯干,顾明元,张国定.碳化硼的氧化特征研究[J],工程材料,1997,5(2):30-34.
    12. Schwetz K A, Grellner W, Lipp A. Mechanical properties of HIP treated sintered boron carbide[M].Institute of Physics Conference Series,1986,98-102.
    13.堂山昌男,山本良一.尖端陶瓷[M],北京:电子工业出版社,1987,78-83.
    14.徐润泽.粉末冶金结构材料[M],长沙:中南工业大学出版社,1999,83-90.
    15.樊毅,张金生.B4C在铁铜基摩擦材料中的作用[J],中南工业大学学报,2001,32(2):141-143.
    16.Hunold K. A thermocouple for high temperatures[J], Advanced Materials & Processes,1986, (9):4-9.
    17.王零森,吴芳,尹邦跃.快中子堆用碳化硼材料的成分和性能设计[J],粉末冶金材料科学与工程,1999,4(2):105-109.
    18.王零森, Koczak M J, Avco. SiC纤维力学性能的研究[J],中南矿冶学院学报,1988,19(5):530-538.
    19.佘继红,江东亮,谭寿洪.碳化硅陶瓷的热等静压烧结[J],硅酸盐学报,1997,25(4):395400.
    20.美陆军装备部.终点弹道学原理[M],北京:国防工业出版社,1988,356-361.
    21.狲志杰,吴燕,张佐光.防弹陶瓷的研究现状与发展趋势[J],宇航材料工艺,2000,(5):10-14.
    22.黄培云.粉末冶金原理[M],北京:冶金工业出版社,1981,251-274.
    23.周荣兴,王零森,邓克勤,杨菊美.热压微晶碳化硼材料[J],稀有金属与硬质合金,1994,13(1):16-19.
    24.唐国宏,陈昌麟,张兴华.B4C-TiB2-W2B5复合材料研究[J],航空学报,1994,(6):761-764.
    25.Yanal T, Naknhira A, Suganuma K. Prepartion and properties of B4C-SiC composite[J],Soc.Powder and Metall.,1999,37(4):571-574.
    26.Katz D, Blake R D, Petrovic J J. Microwave sintering of boron carbide[J], MPR,1998, (12):835-837.
    27.Liu CH. Structure and properties of boron carbide with alumimum in corporation [J],Materials Science and Engineering,2000,72(1):23-29.
    28.Gursoy A S, Ferhat K A, Servet Turan. Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide-aluminium composites [J],Journal of the European Ceramic Society,2003,23:1243-1250.
    29.郭全贵,宋进仁,刘朗.B4C-SiC/C复合材料氧化过程的TG/DTA分析[J],炭素技术,1999,(2):12-16.
    30.Sing H M. Thermodynamic analysis for the combustion synthesis of SiC-B4C composites [J],Scripta Materialia,1996,34(6):923-927.
    31.Sigl L S. Processing and mechanical properties of boron carbide sintered with TiC [J], Journal of the European Ceramic Society,1998,18:1521-1528.
    32.唐军,谭寿洪,陈忠明,江东亮.原位生成TiB2颗粒增韧B4C陶瓷的研究[J],粉末冶金技术,1996,14(3):168-173.
    33.Wen G W, Li S B, Zhang B S, etal. Processing of insitu toughened B-W-C composites by Reaction hot precessing of B4C and WC[J], Scripta MATER,2000,43(9):853-859.
    34.丁硕,温广武,雷廷权.自生法制备纳米-微米颗粒增强B4C基复合材料[J],材料工程,2002,(5):14-19.
    35.李爱菊,尹衍升,甄玉花(SiC,TiB2)/B4C复合材料的烧结机理[J],复合材料学报,2004,(04):129-133.
    36.李爱菊,甄玉花,张继明(SiC,TiB2)/B4C复合材料的微观结构及性能[J],硅酸盐学报,2006,(01):10-14.
    37.喻亮,茹红强,左良.热压烧结C-SiC-B4C复合材料组织与性能(Ⅰ)[J],东北大学学报(自然科学版),2007,(11):1571-1576.
    39.王昕,孙康宁,尹衍升.纳米复合陶瓷材料研究进展[J],复合材料学报,1999,16(1):105-109.
    40.丁硕,温广武,雷廷权,周玉.由聚碳硅烷生成纳米SiC颗粒增强B4C基复相陶瓷的结构与性能[J],无机材料学报2002,17(5):10-13.
    41.丁硕.原位形成碳化硼陶瓷基复合材料的制备与组织性能研究[D],哈尔滨工业大学,2001.
    42.王宏志,高濂,陈红光.Al2O3基复合材料中纳米SiC对微观结构的影响[J],无机材料学报,1998,13(4):603-607.
    43.Balmer M L, Lange F F, Jayara M V. Development of nanocomposite microstructures in Z1O2-Al2O3 via the solution precursor method[J], American Ceramic Society,1995,78(6):1489-1494.
    44.Tan H L, Yan G W. Toughening mechanisms of nanocomposite of ceramics[J],Materials,1998,30: 111-123.
    45.靳喜海,高濂.纳米复相陶瓷的制备、显微结构和性能[J],无机材料学报,2001,16(2):200-206.
    46.Whittenberger J D. Estimation of crack closure stresses for in situ toughened silicon nitride with 8% Scandia[J],J Mater Sci,1990,25:35-40.
    47.Newkirk M S, Urhart A W, Zwicker H R, et al. Formation of lanxide ceramic composite materials [J],Mater Res.1986,1(1):81-87.
    48.Hirai T, Goto T. Tailoring multiphase and composite ceramics[M],Plenum Publishing Corp,1986,81-88.
    49.Wang Y. Thermodynamics for the preparation of SiC-C nano-compoisites by chemical vapour depositon[J],Mater Sci.1990,25:4607-4612.
    50.Padture N P. In situ toughened silicon carbide[J], Am Ceram Soc.1994,77(2):519-525.
    51.吴人洁.复合材料[M],天津:天津大学出版社,2000,79-84.
    52..Choi S R. Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 K and 1300K[J], Am Ceram Soc.1992,75(6):1508-1513.
    53.Washburn M E, Coblenz W S. Reaction-formed ceramics [J],Ceram Bull,1988,67 (2):356-363.
    54. Hillig W B.Making ceramic composites by melt infiltration[J],Am Ceram Soc Bull,1994,73(4):56-61.
    55. Halverson D C.Processing and microstructural characterization of B4C-Al cermets[J], Ceram Eng Sci Proc.1985,(6):736-742.
    56.Travitzky N A,Claussen N.Microstructure and properties of metal infiltrated RBSN composites[J],Eur Ceram Soc.1992,(9):61-66.
    57.Whitehead A J, Page T F. Fabrication and characterization of some novel reaction bonded silicon carbide materials[J],Mater Sci.1992,27:839-845.
    58.Hillig W B.Application of fiber-reinforced polymer to rotation superconducting [J],Am Ceram Soc Bull,1975(12):1054-1061.
    59.Breval E, Jnhnson W B. Microstructure of platelet-reinforced ceramics prepared by the directed reaction of zirconium with boron carbide[J],Am Ceram Soc,1992,75(8):2139-2143.
    60.Lee S K, Kim D H, Kim C H, Fabrication of TiB2/TiC composites by the directional reaction of
    titanium with boron carbide[J],Mater Sci.1994,29:4125-4130.
    61.Breslin M C. Alumina/alurninum co-continuous ceramic composite materials produced by solid/liquid displacement reaction:processing kinetics and microstructures [J],Ceram Eng SciProc,1994,15:104-110.
    62.周新木,赵光好.无机稀土杂化功能材料的研究进展[J],江西化工,2005,(1):1-4.
    63. K.Sato, H.Yugami, T.Hashida.Effect of rare-earth oxides on fracture properties of ceria ceramics[J], Journal of Materials Science,2004,39(18):5765-5770.
    64.杨秋红.Al2O3透明陶瓷显微结构的研究[J],功能材料与器件学报,2004,3(10):299-302.
    65.Ruigang Wang, Wei Pan, Jian Chen, et al. Properties and microstructure of machinable Al2O3/LaPO4
    ceramic composites[J],Ceramics International,2003,29(1):19-25.
    66.姚义俊,丘泰Y2O3, La2O3, Sm2O3对氧化铝瓷烧结及力学性能的影响[J],中国稀土学报,2005,2(23):156-161.
    67.杨秋红.La203对氧化铝透明陶瓷显微结构和透光性能的影响[J],中国稀土学报,2005,6(23):713-715.
    68.唐志阳.稀土氧化物在陶瓷中的应用[J],山东陶瓷,2005,2(28):16-19.
    69.刘国玺,赵昆渝.常压下制备氮化硅陶瓷材料的研究[J],机械工程材料,2004,28(11):22-24.
    70.穆柏春,李明.稀土对Si3N4陶瓷力学性能和显微组织的影响[J],中国稀土学报,2000,1(18,):38-40.
    71.毛豫兰,杨海涛.氮化硅-氧化镁-氧化钇陶瓷的常压烧结[J],武汉理工大学学报,2006,28(6):17-19.
    72.孟秀霞,杨乃涛Y2O3/ZrO2中空纤维陶瓷膜的制备与表征[J],高等学校化学学报,2006,27:599-601.
    73.马伟民,孙旭东.真空烧结法制备ZrO2(Y2O3)/Al2O3复合材料[J],金属学报,2006,42(4):431-436.
    74. Hai Gao, Jiachen Liu, Haiyan Du, et al.Effects of interlayer composition on joining of 25%CePO4/ZrO2-ZrO2 ceramics on green state[J],Ceramics International,2004,30(6):823-827.
    75.赵文广,安胜利.MgO掺杂对CeO2-ZrO2材料阻抗特性的影响[J],包头钢铁学院学报,2004,23(2):113-117.
    76.刘荣梅,马桂林(ZrO2) 0.86(Sm2O3) 0.14纳米粉体的水热法合成及其烧结体的电性能[J],化学学报,2005,63(6):491-496.
    77.王建武,杨辉.溶胶-凝胶法引入烧结助剂制备SiC-Y3Al5O12复相陶瓷[J],耐火材料,2005,39(3):192-195.
    78. Wan D T, Zhou Y C, Bao Y W, et al.In situ reaction synthesis and characterization of Ti3Si(Al)C2/SiC composites[J], Ceramics Internantional,2006,32(8):883-890.
    79. Larpkiattaworn S, Ngernchuklin P, Khongwong W.The influence of reaction parameters on the free Si
    and C contents in the synthesis of nano-sized SiC[J]. Ceramics International,2006,32(8):899-904.
    80.周伟,蔡智慧.烧结助剂对SiC液相烧结行为的影响[J],厦门大学学报(自然科学版),2006,45(4):530-534.
    81.陈维平,刘城.SiC多孔陶瓷预成形坯的制备[J],陶瓷学报,2006,27(2):227-231.
    82.帅瑞霞,尹衍升.氮化铝陶瓷制备及其在复合材料中的应用研究[J],硅酸盐通报,2004,(1):58-60.
    83.Liang Qiao, Heping Zhou, Renli Fu.Thermal conductivity of A1N ceramics sintered with CaF2 and YF3[J],Ceramics International,2003,29(8):893-896.
    84.郑锐.A1N低温烧结助剂的研究现状[J],稀有金属材料与工程,2001,30(5):396-398.
    85.黄小丽,胡晓青.氮化铝陶瓷的低温烧结研究[J],兵器材料科学与工程,2006,29(4):15-17.
    86.谭清华,王玺堂.稀土氧化物在Sialon陶瓷材料中的应用研究进展[J],耐火材料,2005,6(39):455-459.
    87.谷小华,王瑞生Sialon材料的制备方法[J],陶瓷,2006,(3):47-49.
    88. Zhijian Shen, Nygren M, Halenius U.Absorption spectra of rare-earth-doped-Sialon ceramics[J], Journal of Materials Science Lettlers,1997,16(4):263-266.
    89.刘茜,许钫钫.Sialon基陶瓷材料制备工艺及显微结构变化对力学性能的影响[J],无机材料学报,1999,14(6):900-907.
    90.王零森,王有才Sialon陶瓷的常压烧结[J],中南工业大学学报,2001,32(3):277-280.
    91.詹志洪.稀土在功能陶瓷中的应用及市场前景[J],稀土信息,2005,(3):8-10.
    92. Yan Lin Aung, Nakayama S, Sakamoto M.Electrical Properties of MAREGeO4 (M=Li, Na, K;RE=rare earth)ceramics[J], Journal of Materials Science,2005,40(1):129-133.
    93. Adamczyk M, Ujma Z, Szymczak L, et al. Influence of external field on relaxor behaviour of (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3 ceramics[J].Ceramics International,2006,32(8):877-881.
    94.黄小卫,庄卫东.稀土功能材料研究开发现状和发展趋势[J],稀有金属,2004,28(4):711-715.
    95.解竹青,张继松.稀土永磁材料在微电机中的应用[J],电子元器件应用,2005,7(3):22-25.
    96.王静,刘冬梅.稀土分散剂对羟基磷灰石的影响[J],佳木斯大学学报(自然科学版),2006,24(1):9-12.
    97.杨粉荣,文洪杰,钟勤.几种粒度测定方法的比较[J],物理测试,2005,23(5):36-39.
    98.都兴红.Sialon结合刚玉的研究[D],沈阳:东北大学,1998.
    99.姚德超.粉末冶金实验技术[M],长沙:冶金工业出版社,1990,37-48.
    100.周玉.陶瓷材料学[M],哈尔滨:哈尔滨工业大学出版社,1995,336-339.
    101. Anya C C, Roberts S G. Pressureless sintering and elastic constants of Al2O3-SiC nanocomposites[J], Journal of the European Ceramic Society,1997,17(4):565-573.
    102.Wu C C, Rice R W. Porosity dependence of wear and other mechanical properties on fine-grained Al2O3 and B4C[J],Ceram.Eng.Sci.Proc.1985,6:977-984.
    103.曾朝伟,李文恩,钱天宇.六硼化镧电子枪[J],电子显微学报,1990,(1):71-75.
    104.Shimizu R, Shinike T, Lchimura S. Crystal LaB6 Cathode for Conventional Electron Microprobe Instruments[J], Journal of Vacuum Science&Technology,1987,15(3):23-26.
    105.Hmed H A, Broers A N.Lanthanum Hexaboride Electrom Emitter[J], Journal of Applied Physics1972,43(5):53-56.
    106.Kua Ma, Paderno Y. Crystall chemistry of borides[J],Soviet Powder Metallurgy and Metal Ceramics, 1973,12(125):124-127.
    107.Orday S S,Yurchenko V O, Vikhman S V. Polythermic section B4C-LaB6 in the ternary system La-B-C[J], Russian Journal of Applied Chemistry,2005,78(2):333-336.
    108.Ordan S S, Paderno Y, Khoroshilova I K,etal.Inter-action in the LaB6-ZrB2 system [J], Soviet Powder Metallurgy and Metal Ceramics,1983,22(251):946-949.
    109.Zeliang Ding, Jianxin Deng, Jianfeng Li. Wear surface studies on coal water slurry nozzles in industrial boilers[J],Materials&Design,2007,28(5):1531-1538.
    110.邓建新,张希华B4C/SiC陶瓷喷嘴的制备及其冲蚀磨损机理研究[J],硅酸盐通报,2004,(3):18-20.
    111.Deng Jianxin, Zhou Jun, Feng Yihua, et al. Microstructure and mechanical properties of hot-pressed B4C/(W,Ti)C ceramic composites[J], Ceramics International,2002,28(4):425-430.
    112.Schwetz K A, Lorenz S S. Mechanical properties of injection molded B4C-C ceramics[J], Journal of solid state chemistry,1997,133 (1):68-76.
    113. Kalandadze G I, Shalamberidze S O, Peikrishvili A B. Sintering of boron andboron Carbide[J], Journal of Solid State Chemistry,2000,154 (1):194-198.
    114.Deng Jianxin, Zhang Xihua, Niu Pingzhang, et al. Wear of ceramic nozzles by dry sand blasting[J],Tribology International,2006,39(3):274-180.
    115.Deng Jianxin. Erosion wear of boron carbide ceramic nozzles by abrasive air jet[J],Materials Science and Engineering.2005(1-2):227-233.
    116. Haris S J, Krauss G G, Simko S J, et al. Abrasion and chemical-mechanical polishing between steel and a sputtered boron carbide coating[J],Wear,2002,252 (1-2):161-169.
    117. Zorzia J E, Perottoni A J, Jornada A H. Hardness and wear resistance of B4C ceramics prepared with several additives [J].Materials Letters,2005,59 (23):2932-2935.
    118. Radev D D, Zakharie Z V. Structural and mechanical properties of activated sintered boron carbide-based materials [J], Journal of Solids State Chemistry,1998,137 (1):1-5
    119.唐军,谭寿洪,陈忠明.B4C/TiB2复相陶瓷的强韧化研究[J],无机材料报,1997,12(2):169-174.
    120.李青,华文君,崔岩.无压浸渗法制备B4C/A1复合[J],材料工程,2003,(4):17-20.
    121.Bond C M, Inal O T. Shock-compacted aluminum/boron carbide composites [J],Composites Engineering,1995,5 (1):9-16.
    122.李文辉,李文新.铝、硅对碳化硼陶瓷性能的影响[J],哈尔滨理工大学学报,2002,7(4):30-32
    123.蒋国新,王声宏.碳化硼的低温热压[J],粉末冶金技术,1995,13(2):107-111.
    124.江东亮,郭景坤.复相陶瓷[J].硅酸盐学报,1991,19(3):258-262.
    125.郭景坤,诸培南.复相陶瓷材料的设计原则[J],硅酸盐学报,1996,24(1):7-17.
    126. Guo Jingkun. The frontiers of research in ceramics science[J], Journal of Solid State Chemistry,1992, 96(1):108-114.
    127.Joel Hemanth. Fracture toughness and wear resistance of aluminum-boron particulate composites cast using metallic and non-metallic chills[J], Materials and Design,2002,23 (1):41-50.
    128.唐军,谭寿洪,陈忠明,江东亮.B4C陶瓷的协同增韧[J],无机材料学报,1997,12(6):297-301.
    129.Gosset D, Provot B. Boron carbide as a potential inert matrix:an evaluation[J].Progress in Nuclear Energy,2001,38 (3-4):263-266.
    130.Levin L, Frage N, Dariel M P.A novel approach for the preparation of B4C-based cermets [J].International Journal of Refractory Metals & Hard Materials,2000,18 (2-3):131-135.
    131.Cai Kefeng, Nan Cewen. The influence of W5B2 addition on microstructure and thermoelectric properties of B4C ceramic[J],Ceramics International,2000,26 (5):523-527.
    132.梁英教,车荫昌.无机热力学手册[M],沈阳:东北大学出版社,1993,83-111.
    133.杨燕生,李源英,利国才.稀土物理化学常数[M],北京:冶金工业出版社,1978,185,180-200.
    134.王盘鑫.粉末冶金学[M],北京:冶金工业出版社,1996,79-85.
    135.施剑林.固相烧结-气孔显微结构、模型及其热力学稳定性,致密化方程[J],硅酸盐学报,1997,25(5):499-504.
    136. Subrahmanyam J, Vijayakumar M. Review self-propagation high-temperature synthesis[J], Mat Sci,1992,27:6249-6258.
    137. Rice R W. Freiman S W. Grain-size Dependence of Fracture Energy in Ceramics:Ⅰ [J], Am. Ceram. Soc.,1981,64:345-350.
    138.Rice R W. Freiman S W. Grain-size Dependence of Fracture Energy in Ceramics:Ⅱ [J], Am. Ceram. Soc.,1981,64:350-354.
    139.田彦文,翟秀静,刘奎仁.冶金物理化学简明教程[M],北京:化学工业出版社,2007,261-262.
    140.王常珍.冶金物理化学研究方法[M],北京:冶金工业出版社,2002,438-440.
    141.于伯龄,姜胶东.实用热分析[M],北京:纺织工业出版社,1990,163-166.
    142.谢希文,过梅丽.材料科学基础[M],北京:北京航空航天大学出版社,1999,78-84.
    143.邱关明.工程陶瓷学[M],北京:兵器工业出版社,1999,46-51.
    144.Hongyu Gong, Yansheng Yin, Xin Wang. Fabrication and microstructure of in situ toughened Al2O3/Fe3Al[J],Materials Research Bulletin,2004,39 (4-5):513-521.
    145.岳云龙,公衍生,沈强.原位(In-Situ)反应合成技术在制备金属基复合材料中的应用[J],硅酸盐通报,2002,21(4):45-55.
    146.步文博,徐洁,李晓云.原位反应合成法制备AlN-SiC固溶体的研究[J],硅酸盐通报,2001,20(4):41-44.
    147.都剑英,蒋明学,王刚.原位合成MoSi2反应烧结SiC-MoSi2复合材料[J],耐火材料,2003,37(5):259-261.
    148.王辉虎,许伯藩,吴新杰.多种氧化物原位反应制备的Al2O3/Al复合材料[J],中国有色金属学报,2003,13(3):662-666.
    149.王含英SiC-MoSi2原位反应高温热压复合工艺的研究[J],材料科学与工程学报,2006,24(4):603-606.
    150.王耐艳,涂江平,杨友志.原位反应纳米TiB2/Cu复合材料的制备和微结构[J],中国有色金属学报,2002,12(1):151-154.
    151. Ma S Y, Tong S C. Gen. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process[J], Scripta mater,2000,42 (4):367-372.
    152. Tong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J], Materials science and Engineering,2000,29 (3-4):49-113.
    153.金云学.自蔓延合成技术及原位自生复合材料[M],哈尔滨:哈尔滨工业大学出版社,2002,101-109.
    154.刘长霞,张建华,张希华.热压法制备Al2O3/TiB2/AlN/TiN复合陶瓷[J],硅酸盐学报,2006,34(7):782-787.
    155.王苹,梅炳初,洪小林.TiC掺杂对热压合成Ti2AlC材料的影响[J],中国有色金属学报,2005,15 (10):1550-1554.
    156.董绍明,丁玉生,江东亮.制备工艺对热压烧结SiC复合材料结构与性能的影响[J],无机材料学报,2005,20(4):883-888.
    157.Youngdahl C J,Weertman J R, Hugo RC, etal. Deformation behavior in nanocrystlline copper[J], Scripta Mater,2001,44(8):1475-1478.
    158.Kalidindi, S R. Relation of strength, composition and grain size of sintered WC-Co Alloy [J], Journal of theMechanics and Physics of Solid,1998,46:267-290.
    159.刘荣,茹红强,赵媛.ZrB2颗粒增韧B4C陶瓷的原位合成[J],材料研究学报,2006,20(6):611-615.
    160.朱德贵,尹显东,肖传春.原位合成TB2-TiC-SiC复合陶瓷复合材料[J],西安交通大学学报,1999,34(1):71-74.
    161.张国军,何余金,宗哲.原位合成TB2颗粒增韧SiC复相陶瓷研究[J],硅酸盐学报,1995,23(2):134-136.
    162. Kecskes L J,Kottke T,Niile A. Microstructure properties of combustion-synthesized and dynamically consolidated titanuium boride and titanium carbide[J], Journal of the American Ceramic Society, 1990,73(5):1274-1277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700