用户名: 密码: 验证码:
山东胶东地区招平断裂带北段金矿成矿规律与成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国山东省胶东地区是我国最重要的金矿富集区之一,拥有大小金矿山百余座。位于胶西北地区的招平断裂带是该区最重要的控矿构造带,而其北段是整个断裂带金矿床产出最集中的地区,尽管目前对招平断裂带北段的尚无比较统一的界定,但该区域金矿床富集并主要受断裂带活动控制的地质事实已经被大家公认。
     本文将招平断裂带北段的两个NE—NNE向分支断裂:九曲蒋家断裂带和破头青断裂带统一归为招平断裂带北段地区,以他们的交汇部位直至两条断裂带结束部位所控制的5个金矿床为主要研究内容。旨在总结该区金矿床的成因及成矿规律,并利用数字地质模拟软件进行成矿预测。九曲蒋家断裂带由北向南依次分布有大磨曲家金矿床、阜山金矿床、九曲金矿床;破头青断裂带由北向南依次分布有赵家小型金矿、水旺庄大型金矿、东风大型金矿。
     通过研究发现,该区金矿主要以构造蚀变岩型金矿为主,作为著名的玲珑金矿的分矿之一的九曲金矿属蚀变岩型和石英脉型过渡型金矿。研究区的金矿床虽然各自的矿体产出规模,空间分布形态等不同,总体上属于同一大地构造环境下,同一地质过程对不同地质部位影响的结果。因此各金矿床具有相似的地质特征,出露地层以胶东群老基底变质岩为主,岩浆岩主要为与成矿关系密切的郭家岭花岗闪长岩和玲珑花岗岩。区内金矿床乃至胶西蚀变岩型金矿床普遍分为四个成矿阶段,即黄铁矿—石英阶段;石英—黄铁矿阶段;石英—多金属硫化物阶段和碳酸盐阶段。
     系统的流体包裹体研究表明,随着成矿作用的进行各成矿阶段流体性质发生明显变化,早期—主成矿期流体主要为中温、低盐度的NaCl-H2O-CO2体系流体,并发生过强烈的相分离作用,成矿流体经历了初始不混溶→强烈不混溶→不混溶减弱的演化过程。流体相分离作用过程中CO2、H2S等挥发组分的大量逸出,导致热液体系物化条件的明显变化,进而破坏含金络合物的稳定性,使金元素及其化合物沉淀、析出。金矿化的强弱与流体相分离的程度直接相关,石英-黄铁矿阶段是本区成矿流体不混溶作用最强烈阶段,同时也是本区金元素沉淀成矿的主要阶段。成矿晚期随着大气降水的不断加入,成矿流体演变为简单的低盐度NaCl-H2O体系,此时由于流体不混溶导致热液中金的大量沉淀而使晚阶段流体中金剩余量较少,金的沉淀、析出也已基本完成,因此该阶段成矿作用亦较弱。
     流体包裹体H-O、C-O同位素研究结果暗示流体来源于岩浆,通过对比胶东群地层、玲珑花岗岩及郭家岭花岗闪长岩的含金性、S同位素、铅同位素等地球化学参数认为成矿物质主要来源于郭家岭花岗闪长岩。测得金矿区内辉钼矿模式年龄为128.5±1.9Ma~131.1±1.8Ma,郭家岭花岗闪长岩年龄为126~135Ma,略晚于玲珑花岗岩的150~160Ma。结合前人对成矿后脉岩119±7Ma的年龄,认为本区成矿年龄应在119~128Ma。综合分析认为本区成岩成矿作用主要受环太平洋构造域的影响。在受太平洋板块俯冲影响的岩石圈减薄环境下,胶东地区在燕山期发生了多期岩浆活动,与本区金成矿作用直接相关的为郭家岭花岗闪长岩体的侵入活动。早白垩世郭家岭花岗闪长岩就位以后,受构造运动、变形的影响,富含成矿物质的岩浆分异流体及富含地幔物质的成矿流体在构造薄弱部位沉淀、析出金元素,形成金矿床。矿床形成时代为白垩纪。
     金矿床的产出部位、规模大小和矿石类型严格受断裂蚀变带的形态、规模、空间展布所控制。矿体的空间展布与断裂带基本一致。两条分支断裂沿NE—NNE方向延伸,沿其走向方向,矿体呈减弱→减小→尖灭的整体趋势。构造对金矿的控制作用突出表现在不同规模断裂的多级控矿特征,主干断裂控制着主要矿脉的产出及分布,次级断裂控制着次要矿脉的产出及分布,断裂规模与矿脉(体)规模呈正相关关系。而这种构造控矿规律直接导致矿化空间出现明显的分段富集现象,表现在矿体在矿脉中沿走向和倾向的分布并不是连续的、均匀的,而是存在无矿间隔,呈现尖灭再现的特点。
     研究区范围在区域1:200000水系沉积物金异常J13、J14高值区,区域重力场、磁场及激电异常中均显示该区具备较好的成矿条件。结合实际地质特征,利用OPIS成矿预测模拟系统对九曲蒋家断裂带和破头青断裂带断面形态、金品位、米克吨值、矿体厚度和蚀变带厚度进行成矿指标趋势模拟可以发现,九曲蒋家断裂带NE端虽处于构造尖灭端,但构造带连续完整,未经后期破坏,其深部各成矿指标趋势模拟高值区套合关系较好,显示较好的成矿潜力,区内104号勘探线至112号勘探线之间,深度范围-800~-1200m,为本文预测靶区。破头青断裂带NE端同样处于构造尖灭端,但被滦家河断裂切割破坏,个别成矿指标趋势模拟虽在断裂带NE端有高值区出现,但彼此套合关系并不理想,该区域近年来的探矿工作也未发现有价值的找矿线索,综合分析认为,破头青断裂带NE端深部成矿潜力很小,不建议投入过多探矿工作。
     通过现有工程控制数据,结合实际地质特征,利用OPIS系统对阜山金矿207号脉、大磨曲家金矿302号脉和东风金矿171号脉分别进行深部矿体形态模拟,在各成矿指标高值重合部分定位预测靶区。
As one of the most import regions with rich gold pool in China, Jiaodong area ofShandong province possesses hundreds different sizes gold mines. The mostsignificant ore-controlling tectonic belt locates in Zhaoping fault at northwest of Jiaodong.However, north side is the major gold deposits producing area in the whole fault belt.Although researchers still have different definitions about north area of Zhaoping fault atpresent, they all admit the geological fact that this area is enriched with gold depositswhich are mainly controlled by fault activities.
     In this work, two branch faults with NE and NNE directions are unified as north sideof Zhaoping fault, which are Jiuqujiangjia fault and Potouqing fault respectively. Researchwas focused on five gold deposits controlled by the areas from their intersection part totheir ends. Aims of this research are to summarize the causes and metallogenic regularityof gold deposits, and further predict the gold deposits using digital geological simulationsoftware. North to south distributions of Jiuqujiangjia fault are Damoqujia gold deposit,Fushan gold deposit, and Jiuqu gold deposit separately. And for Potouqing fault, they areZhaojia gold deposit, Shuiwangzhuang gold deposit, and Dongfeng gold deposit fromnorth to south.
     Research turns out that alter rock type gold deposit/mineralization is the main type.And Jiuqu gold deposit, as part of the famous Linglong gold mineralization, belongs to alter rock type and quartz vein type transitional mineralization. In spite of the differencesin respective orebody output scales and spatial distribution, all the gold deposits werecaused by the impacts from different geological parts during the same geological processunder the same tectonic environment. Therefore, all the gold deposits share similargeological characteristics. The outside strata are mainly metamorphic rocks of originalJiaodong group. Magmatic rocks mainly consists of Goujialing granodiorite and Linglonggranite rocks which are closely associated with mineralization. Generally, the golddeposits in researching area or even Jiaoxi alter rock type gold deposits are divided intofour metallogenic stages which are pyrite-quartz, quartz-pyrite, quartz-polymetallic sulfide,and quartz-carbonate respectively.
     Systematic fluid inclusion studies indicate that characteristics of mineralizing fluidschange obviously during different mineralizing stages. The fluids for pre-andsyn-mineralization are typically characterized by low salinities, mesothermal condition,NaCl-H2O-CO2components and phase separation. The evolution of mineralizing fluidsstarts from initial immiscibility to intense immiscibility, following by decreasingimmiscibility. With the escape of volatile components (CO2, H2S) during the phaseseparation process, the physical and chemical conditions of fluids have changed. Theprecipitation of gold and gold compound is controlled by the stability of gold-bearingcomplex, which is affected by the changing fluid conditions.The extent of goldmineralization is directly controlled by phase separation process. Quartz-pyrite stage inour study area represents the strongest immiscibility, which is corresponded to the maingold mineralization stage. The fluids for post-mineralization, with the mix of meteoricwater, are characterized by low salinities and simple NaCl-H2O components. Because ofthe low concentration of gold in the post-mineralizing fluids, the precipitation of gold islimited.
     Fluid inclusion, H-O and C-O isotope studies indicate the mineralizing fluids arederived from magma. Comparing the geochemical data (gold components, S, Pb isotopevalues, etc) to Jiaodong stratum, Linglong granite and Guojialing granodiorite, the oreminerals mainly derive from Guojialing granodiorite.The molybdenite model suggests theages ranging from128.5±1.9Ma to131.1±1.8Ma for gold mine. The ages for Linglong granite are150-160Ma, following by the ages of126-135Ma for Guojialing granodiorite.With the constraint of the ages (119±7Ma) from post-mineralization veins, the ages forAu-mineralization are considered to be119~128Ma in our study area. The diagenesis andore-forming processes in our study area are controlled by the Pacific Ocean tectonic field.The lithospheric thinning situation, resulted from the subduction of the Pacific Ocean plate,is favourable for multiple magma activities in Jiaodong area at Yanshanian. The intrusionof the Guojialing granodiorite is responsible for the Au-mineralization in our studyarea.The cretaceous Au deposits formed after the intrusion of the early cretaceousGuojialing granodiorite. The deformation process and structural movement contribute tothe gold precipitation from magma differentiation in fracture zone.
     The locations, dimensions and ore minerals of gold deposits are directly controlled bythe texture, size and distribution of fractural alteration zone. The distributions of oredeposits and fractural zones are basically consistent.The ore deposits with the trend fromweak to decreasing distribution and to wedge out is following the NE-NNE strikes of twosecondary fractures.The structural control on gold deposits is characterized by multilevelore-controlling. The main fractures controlled the occurrences and distribution of maindeposits, and the secondary fractures controlled the occurrences and distribution ofsecondary deposits. The size of fracture is positively correlative to the dimension of oredeposit.This ore-controlling process contributes to the discontinued concentration of oredeposits. The existence of barren zone along the strikes of veins, showing end to endalignment structures, is correspond to the discontinuity.
     Our study area lies in the stream sediment with gold abnormity J13、J14area. Theregional gravity field, magnetic field and electricity abnormity all refer to the favorableore-forming conditions in this area. Based on geological setting of our study area, theOPIS ore-forming prediction model is used on Jiuqu Jiangjia and Potouqing fracture zonesin terms of the shape of fracture, grade of gold, thickness of the ore body and the alterationzone. The results indicate potential ore deposits in the deeper area of Jiuqu Jiangjiafracture zone. Even though the northeast Jiuqu Jiangjia fracture zone lies in the tip ofstructure, the fracture zone shows continuity with little destruction in late period. Thepotential ore deposits in our study lie within the No.104prospecting line and No.112 prospecting line, with the depth ranging from800to1200meters.The northeast Potouqingfracture zone lies in the tip of structure as well, and the fracture zone is crosscut byLuanjia River. The interactive relationship is not ideal for ore-forming even withindividual high values. Considering little ore-forming evidences were reported in recentlywork, further mining exploration is not recommended in the deeper part of northeastPotouqing fracture zone.
     Base on the geologic characteristic and engineering data, using OPIS System modelthe shapes of the ore-bearing vein NO.207in Fushan gold deposit and the ore-bearing veinNO.302in Damoqujia gold deposit and the ore-bearing vein NO.207in Fushan golddeposit respectively. Restrict the forecast scope from the superposition of everyOre-forming parameter.
引文
[1] Ames L,Tilton G R, Zhou G Z.Timing og collision of the Sino-Korean and Yangtze cratons:U-Pbzircon dating of coesite-bearing eclogites[J].Geology,1993,21:339-342.
    [2] Anderson J.L. Cataclastic rocks of the San Gabrief fault—an expression of deformation at deepercrustal levels in the San Andreas fault zone[J]. Tectonophysics,1983,98:209-251.
    [3] Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Rare Earth ElementGeochemistry. New York: Elsevier Science Publishers,1984:63-114.
    [4] Bozzo A T et al.The properties of hydrates of chlorine and carbon dioxide In:Fouth InternationalSymposium on Fresh Water from the sea(eds. A. Delyannis and Delyannis).1973,3:437-451.
    [5] Brown PE and Hagemann SG Geobarometry and depth relations in Archean lode-gold deposits[J].XIII ECROFI Symposium, Barcelona, Boletin de la Sociedad Espaola de Mineralogia,1995,18-1,30-31.
    [6] Brown PE and Hagemann SG MacFlinCor and its application to fluids in Archean lode-golddeposits[J].Geochimica Cosmochimica Acta,1995,59:3943-3952
    [7] Brown, P.E. and Hagemann, S.G. MacFlinCor: A computer program for fluid inclusion datareduction and manipulation. In De Vivo and Frezzotti (eds) Fluid Inclusions in Minerals: Methodsand Applications,1994,VPI Press,231-250.
    [8] Chappell B.W.&Stephens W.E.Origin of infracrustal(Ⅰ-type)Granite magmas[J]. Trans.Roy.SOC.Edinburgh,Ear.Sci.79:71-86.
    [9] Chappell B.W.&White A.J.R.Two contrasting granite types[J].Pac.geo,1974,8:173-174.
    [10] Chen Y J. Fluidization model for continental collision in special reference to study ore-formingfluid of gold deposits in the eastern Qinling Mountains,China[J].Progress in Natural Science,1998,8(4):385-393.
    [11] Davis G H, Lister G S, Reynold S J. Structural evolution of the Whipple and South Mountainsshear zones, Southwestern United States [J]. Geology,1986,(14):7-10.
    [12] Deng Jun, Fang Yun, Yang Liqiang et al. Numerical modeling of ore-forming dynamics of fractaldispersive fluid systrms[J]. Acta Geologica Sinica.2001,75(2):220-232.
    [13] Deng Jun, Yang Liqiang, Chen Xueming et al. Fluid system and ore-forming dynamics of Yuebeibasin, China. In:Mao J W and Bierlein F P, Editors. Mineral Deposit Research: Meeting the GlobalChallenge, Vol.1. Berlin: Springer,2005,107-110.
    [14] Deng Jun, Yang Liqiang, Ge Liangsheng et al. ResearchAdvances in the Mesozoic TectonicRegimesduring the Formation of Jiaodong Ore Cluster Area[J]. Progress in Nature Sciences,2006,16(8):777-784.
    [15] Deng Jun,Yang Liqiang,Sun Zhongshi et al.Ametallogenic model of gold deposits of the Jiaodonggranite-greenstone belt[J]. Acta Geologica Sinica.2003,77(4):537-546.
    [16] Dong Faxian, Li Zhongjian, Chen Bailin, et al. A study of high-pressure experiment ofcorrelativity berween deformation system of Au-bearing rocks and element adjustment[J].ActaGeologica Sinica (English Edition),1999,73(1):40-46.
    [17] Eion M. Cameron Derivation of gold by oxidative metamorphism of a deep ductile shear zones(part2): evidence from the Bamble Belt, South Norway[J]. Journal of Geochemical Exploration,1989,31:149-169.
    [18] Fan H R, Zhai M G, Xie Y H, et al. Ore-forming fluids associated with granite-hosted goldmineralization at the Sanshandao deposit, Jiaodong gold province, China[J]. Miner. Dep,2003,38:739-750.
    [19] Fitton J G, James D,Leeman W P.Basic magmatism associated with the late Cenozoic extension inthe western United States,compositional variations in space and time[J].Lithos,1991,120(3):221-241.
    [20] Goldfarb R J, Groves D I, Gardoll S.Orogenic gold and geological time; A synthesis [J].OreGeology Reviews,2001,8:1275.
    [21] Griffin W L, Belousova E A, Shee S R. Crustal evolution in the northern Yilarn craton: U-Pb andHf-isotope evidence from detrital zircons[J]. Precambrian Research,2004,131(3/4):231-282.
    [22] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: in-situanalysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos,2002,61(3/4):237-269.
    [23] Groves D I. The crustal continuum model for late-Archaean lode gold deposits of the YilgarnBlock,Western Australia[J].Mineralium Deposit,1993,28:366-374.
    [24] Hagemann, S.G., Brown, P.E., Groves, D.I., Ridley, J.R.'The Wiluna lode-gold deposits, WesternAustralia: surface water influx in a shallow level Archean lode-gold system'[A].12th AustralianGeological Convention, Perth, September1994-Geoscience Australia:1994and Beyond, Perth,37:60-161.
    [25] Hagemann, S.G., Brown, P.E., Ridley, J., Stern, P., Fournelle, J. Ore Petrology, Chemistry, andTiming of Electrum in the Archean Hypozonal Transvaal Lode Gold Deposit[J].WesternAustralia.Economic Geology and the Bulletin of the Society of Economic Geologists,1998,93:271-291.
    [26] Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic setting ofsupergiant gold metallogenic provinces[J]. Science in China (series D),2000,43(supplement):1-68.
    [27] Li Q L,Chen F K,Yang J H,et al.Single grain pyrite Rb-Sr dating of the Linglong golddeposit,eastern China[J].Ore Geology Reviews,2008,34(3):263-270.
    [28] Long Yongzhen,Dai Tagen,Chi Guoxiang,Yang Liu. Assessment of heavy metals in sediment coresfrom Xiangjiang River,Chang-Zhu-Tan region,Hunan Province,China[J]. Journal of Central SouthUniversity,2012,09:2634-2642.
    [29] Lu H-Z,Fang G. The geological characteristics of Linglong deposit, China[J]. In Abstracts seriesNo.2, Geological Society of Australia, Melboume,1988,5:16-20.
    [30] McDonough W F, Sun S S.The composition of the Earth[J].Chemical Geology,1995,120:223-253.
    [31] Miao L.C.,Luo Z.K., Huang J.Z., et al. Zircon sensitive high resolution ion Microprobe(SHRIMP)study of granitoid intrusions in Zhaoye gold belt of Shandong Province and its implication[J].Sciencein China (Series D),1997,40:361-369.
    [32] Newman J,Mitra G.Lateral variations on mylonite zone thickness asimfluenced by fluidrockinterctions,Linville Falls fault,North Caroli-na[J]. J Struct Geol,1993,15:849-863.
    [33] Nowell G M, Kempton P D, Noble S R. High precision Hf isotope measurements of MORB andOIB by thermal ionisation mass spectrometry. Insights into the depleted mantle[J]. ChemicalGeology,1998,149(3):211-233.
    [34] Picher W.S. Granite types and tectonic environment.In Hsu K (ed.),Mountain Building Processes[J]. Academics press:19-40.
    [35] Robert F,Brown A. Archean gold-bearing quartz vein at the Sigma mine, Abitibi greenstone belt,Quebec, Canda[J].Econ Geol,1986,81:578-616.
    [36] Roberts R G. Ore deposit model#11:Archean lode gold deposit[J]. Geoscience Canda,1987,1:9-22
    [37] Rubatto D. Zricon trace element geochemistry: partitioning with garnet and the link between U-Pbages and metamorphism[J]. Chemical Geology,2002,184:123-138.
    [38]Scherer E, Münker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science,2001,293(5530):683-687.
    [39] Thiery R., Kerkhof A.M. Van Den and Dubessey J.(1994) vX properties of CH4-CO2andCO2-N2-Modeling for fluid inclusions (T<31°ree;C, P<400bar)[J]. European J. Mineral. v.6,753-771.
    [40] Vervoort J D, Patchett P J, Albarede F, et al. Hf-Nd isotopic evolution of the lower crust[J]. Earthand Planetary Science Letters,2000,181(1):115-129.
    [41] Vervoort J D, Patchett P J, Blichert-Toft J, et al.Relationships between Lu-Hf and Sm-Nd isotopicsystems in the global sedimentary system[J].Earth and Planetary Science Letters,1999,168(1):79-99.
    [42] Vlassopoulos D, Wood S A,Mucci A. Gold speciation in natural waters: Ⅱ.The importance oforganic complexing-Experiments with some simple model ligands[J].Geochim CosmochimActa,1990,54:1575-1586.
    [43] Wan Tianfeng. Evolution of Tan cheng-Lujiang Wrench fault zone and paleostress fields. In:. WanTianfeng, Zhu Hong, Zhao Lei et al.(eds.). Formation and Evolution of Tan cheng-LujiangWrench Fault Zone. Wuhan: China University of Geosciences Press,1996.43-56.
    [44] Wang X H, Wen Z X, Huang Z.A. ACapital Asset Pricing Model under Stable ParetianDistributionina Pure Exchang Economy[J]. Acta Mathematiae Applicatae Sinica,English Series,2004,20(4):675-684.
    [45] Wang Z H, Lu H F. Ductile deformation and40Ar/39Ar dating of the Changle-Nanaoductile shearzone, southeastern China[J]. Journal of Structural. Geology,2000,22,561-570.
    [46] Walz, C., Chi, G., Pedersen, P.K. Petrographic, stable isotope and fluid inclusion characteristics ofthe Viking sandstones: implications for sequence stratigraphy, Bayhurst and surrounding areas,SW Saskatchewan, Canada. In Linking Diagenesis to Sequence Stratigraphy of SedimentaryRocks[J], International Association of Sedimentologists Special Publication2012.45:337-352.
    [47] Weaver B L. The origin of ocean island basalt end-member compositions: trace element andisotopic constraints[J]. Earth and Planetary Science Letters,1991,104(2):381-397.
    [48] Xu P F,Liu F T,Ye K,et al.Flake tectonics in the Sulu orogen in eastern China as revealed byseismic tomography[J].Geophysical Research Letters,2002,29(10):1-4.
    [49] Yang Liqiang, Deng Jun, Zhang Jing,Guo Chunying.Decrepitation Thermometry andCompositions of Fluid Inclusions of the Damoqujia Gold Deposit, Jiaodong Gold Province, China:Implications for Metallogeny and Exploration[J]. Journal of China University of Geosciences,19(4):378–390,
    [50] Yan Y T,Li S R,Jia B J,et al.A new method to quantify morphology of pyrite,and application tomagmatic-hydrotheniial gold deposits in Jiaodong peninsula,China[J].Advanced MaterialsResearch,2012,446-449:2015-2027.
    [51] Yang J H, Wu F Y, Wilde SA.Areview of the geodynamic setting of large-scale Late Mesozoicgold mineralization in the North China Craton: an association with lithospheric thinning[J]. OreGeol. Rev.,2003,23:123-152.
    [52] Yang J H,Chung S L,Zhai M G, et al. Geochemical and Sr-Nd-Pb isotopic compositions of maficdikes from the Jiaodong Peninsula,China:evidence for vein-plus-peridotite melting in thelithospheric mantle[J]. Lithos,2004,73(3-4):145-160.
    [53] Yang Liqiang, Deng Jun, Zhang Zhongjie, et al. Crust-mantle structure and coupling effects onmineralization: an example from Jiaodong Gold Ore Deposits Concentrating Area[J]. China.Journal of China University of Geosciences,2003,14(1):42-51.
    [54] Yingqing Chen, Pengda Zhao, Jianguo Chen, et al.Application of The Geo-anomaly UnitConceptin Quantitative Delineation and Assessment of Gold Ore Targets In Western ShandongUplift Terrain, Eastern China[J]. Natural Resources Research,2001,10(1):35-49.
    [55] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and traceelements compositions of zircon by excimer laser-ablation quadrupole and multiple-collectorICP-MS[J]. Chemical Geology,2008,247(1/2):100-118.
    [56] Zartman R E and Haines S M. The plumbotectonic model for Pb isotopic systematics among majorterrestrial reseravoirs-A case for bi-directional transport[J].Geochimica et CosmochimicaActa,1988,52:1327-1339.
    [57] Zhai M.Q, Yang J.H., Liu WJ. Large clusters of gold deposits and large-scale metallogenesis in theJiaodong Peninsula, eastern China[J]. Science in China (Series D),2001,44:758-768.
    [58] Zhang L C,Shen Y C,Liu T B,et al. The Ar_Ar and Rb_Sr isochron ages and metallogenetic eras ofthe gold deposits in the north edge of Jiaolai basin, Shandong province[J]. Science in China (seriesD),2002,32(9):9727-734.
    [59] Zhao, X., Xue, C., Chi, G., Wang, H., Qi, T. Epithermal Au and polymetallic mineralization in theTulasu Basin, western Tianshan, NW China: potential for the discovery of porphyry Cu-Audeposits. Ore Geology Reviews. In press.
    [60]白万成,李宇昕,邢俊兵,卿敏.脉状矿床深部定位预测系统简介.矿床地质,2010,29(增刊):731-732.
    [61]白万成,任林子,卿敏.2001.控矿断裂数字模拟方法及其应用步骤[J].地质与勘探,(6):34-38.
    [62]曹国权等,山东沂沭断裂带以东前寒武纪地层研究动态[J].山东地质,1991,7(2).
    [63]常亮,王可勇,韦烈民,秦丹鹤,张雪冰,于琪,万多.山东龙口大磨曲家金矿床地质特征及地球化学勘查模型[J].世界地质,2013,04:753-762.
    [64]常裕林,郑小礼,王晖.胶东西北部玲珑、郭家岭超单元花岗岩成因探讨[J].地质找矿论丛,2006,21(增刊):90-94.
    [65]陈广俊,孙丰月,李玉春,刘凯.胶东郭家岭花岗闪长岩U--Pb年代学、地球化学特征及地质意义[J].世界地质,2014,01:39-47.
    [66]陈静,孙丰月,李绪俊.山东招远界河金矿矿体定位机制研究及成矿预测[J].黄金,2009,07:14-18.
    [67]陈静.黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用[D].吉林大学,2011.
    [68]陈衍景,Franco PIRAJNO,赖勇等.胶东矿集区人规模成矿时间和构造环境[J].岩石学报,2004,20(4):907-922.
    [69]陈毓川,李兆鼐,等.中国金矿床及其成矿规律[M].北京:地质出版社,2001:102-182.
    [70]陈毓川.阿尔泰成矿省的成矿系列及成矿规律研究[A]..中国地质科学院“九五”科技成果汇编[C],2001:1.
    [71]池国祥,Jayanta Guha.加拿大Abitibi绿岩带Donalda金矿近水平含金石英脉的显微构造分析及其对成矿流体动力学的指示[J].地学前缘,2011,05:43-54.
    [72]池国祥,赖健清.流体包裹体在矿床研究中的作用[J].矿床地质,2009,06:850-855.
    [73]池国祥,卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法[J].岩石学报,2008,09:1945-1953.
    [74]池国祥,卢焕章.流体相分离的深度(压力)-温度场特征及其对热液矿床定位的意义[J].矿物学报,1991,04:355-362.
    [75]池国祥,薛春纪.成矿流体动力学的原理、研究方法及应用[J].地学前缘,2011,05:1-18.
    [76]池国祥,周义明,卢焕章.当前流体包裹体研究和应用概况(英文)[J].岩石学报,2003,02:201-212.
    [77]池国祥. T.皮尔斯变异图原理及在地质上的应用[J].地质地球化学,1991,02:31-35.
    [78]丛源.胶东西北部北截-大河一带造山型金矿的地质特征及矿化富集规律[D].吉林大学,2005.
    [79]代军治,王可勇,程新民.吉林夹皮沟金矿带成矿流体地球化学特征[J].岩石学报,2007,09:2198-2206.
    [80]邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈一软流圈系统大灾变与成矿环境[J].矿床地质,1999,18(4):309-315.
    [81]邓军,杨立强,方云等.胶东地区壳-幔作用与金成矿效应[J].地质科学,2000,35(1):60-70.
    [82]邓军,杨立强,刘伟,孙忠实,李新俊,王庆飞.胶东招掖矿集区金质来源和流体成矿效应[J].地质科学,2001,36(3):257-268.
    [83]邓军.山东招掖金矿带断裂构造分带与蚀变分带研究[J].矿床地质,1994,13:17-19.
    [84]丁清峰,孙丰月.地幔流体研究进展[J].地质科技情报,2001,03:21-26+30.
    [85]丁式江,翟裕生,邓军.胶东焦家金矿蚀变岩中元素的质量迁移[J].地质与勘探,2000,36(4):28-31.
    [86]丁正江,孙丰月,刘殿浩,张丕建,杨国福,孔彦.烟台福山北部地区金及多金属矿成矿系列[J].山东国土资源,2011,01:1-6.
    [87]丁正江,孙丰月,刘殿浩,张丕建,杨国福.胶东福山北部地区金及多金属成矿系列及找矿方向
    [A].上海市地质学会.“华东六省一市地学科技论坛”论文专辑[C].上海市地质学会:,2010:4.
    [88]丁正江,孙丰月,刘福来,刘建辉,刘殿浩,张丕建,杜圣贤,李兵.胶东伟德山地区铜钼多金属矿锆石U-Pb法测年及其地质意义[J].岩石学报,2013,02:607-618.
    [89]丁正江,孙丰月,张渊,李碧乐,于晓飞.胶东地区地幔捕虏体中黄铁矿含金性及其意义[J].黄金,2005,11:11-15.
    [90]丁正江,孙丰月,赵财胜,刘殿浩,张丕建,王学乾.山东胶莱盆地东北缘地区金矿成矿系列[J].矿床地质,2010,S1:919-920.
    [91]杜长学,韩云松,范东宣,李广福.招平断裂地质特征及形成机制探讨[J].山东地质,1991,02:51-59.
    [92]范永香,周群辉.山东焦家金矿床成矿地球化学特征及成矿机理[J].地球科学,1987,12(4):414-424.
    [93]冯本智,王可勇,孙丰月.脉金矿床深部成矿远景预测评价的石英热爆裂特征填图法[J].岩石学报,2000,04:623-626.
    [94]冯涛,孙宗锋,李文,刘日富,蔡小宁.山东玲珑金矿田东风矿区171号金矿脉地质特征及深部资源预测[J].黄金科学技术,2009,06:12-16.
    [95]高秋斌,范永香,李志德,曹新志,徐伯骏.山东蓬莱后大雪金矿金矿物标型特征及其地质意义[J].地球科学,2001,02:139-141.
    [96]关键.吉林东南部贵金属及有色金属成矿规律研究[D].吉林大学,2004.
    [97]关康,罗镇宽,苗来成,等.胶东招掖郭家岭花岗岩锆石SHRIMP年代学研究[J].地质科学.1998,33(3):318-328.
    [98]郭春影,杨立强,张静,高帮飞,王庆飞,于海军.胶东大磨曲家金矿床成矿流体成分及稳定同位素研究[J].矿物岩石,2008,03:51-56.
    [99]郭维杰,王中亮,刘跃,等,玲珑金矿田九曲金矿床矿体空间定位特征分析[J].资源与环境,2012,3:36-43.
    [100]胡芳芳,范宏瑞,于虎,刘振豪,宋林夫,金成伟.胶东三甲金矿床流体包裹体特征[J].岩石学报,2008,09:2037-2044.
    [101]胡芳芳范宏瑞,杨进辉,等.胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定[J].科学通报,2004,49(12):1191—1198.
    [102]胡世玲,王松山,桑海清,裘冀,张任祜.山东玲珑和郭家岭岩体的同位素年龄及其地质意义[J].岩石学报,1987,03:83-89.
    [103]黄德业.胶东金矿成矿系列硫同位素研究[J].矿床地质,1994,01:75-87.
    [104]纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清.胶东地区裸露含金构造的地球化学评价[J].吉林大学学报(地球科学版),2005,03:308-312.
    [105]姜琪,王荣超.招平断裂剪切带金成矿作用特征及找矿方向[J].中国矿山程,2010,03:36-39.
    [106]李碧乐,孙丰月,王昭坤.山东招远金岭金矿埠南矿区1~#脉流体特征及成矿物理化学条件研究[J].大地构造与成矿学,2004,03:314-319.
    [107]李德江,宋泉吾,张勇,等.玲珑金矿田175支脉地质综合研究与成矿预测[J].黄金,2003,24(7):15-18.
    [108]李洪奎,于学峰,沈昆,程伟,于雷亨.胶东玲珑矿田石英脉型金矿床中流体包裹体特征研究[J].山东国土资源,2012,11:1-8
    [109]李洪奎,禚传源,耿科,梁太涛.胶东金矿成矿构造背景探讨[J].山东国土资源,2012,01:5-13.
    [110]李金祥,郭涛.试论胶东西北部金矿化类型及其与构造的关系[J].贵金属地质,1999,8(2):87-91.
    [111]李士先,刘长春,安郁宏,等,胶东金矿地质[M].北京.地质出版社,2007
    [112]李世先,王建收.胶东”玲珑-焦家式”金矿资源潜力与找矿[J].山东国土资源,2006,22(12):36-41.
    [113]李向文,王可勇,钱烨,王献忠,常亮,韦烈民,孙丰月.吉林大黑山钼矿床成矿流体地球化学特征及其地质意义[J].岩石学报,2013,09:3173-3182.
    [114]李延兴,张静华,李智,等.太平洋板块俯冲对中国大陆的影响[J].测绘学报,2006,35(2):99-105.
    [115]李兆龙,杨敏之.胶东金矿床地质地球化学[M].天津:天津科学技术山版社,1993.
    [116]李兆龙,张连营,樊秉鸿,唐耀林,马丽华.山西支家地银矿地质特征及矿床成因[J].矿床地质,1992,04:315-324.
    [117]李兆龙,张连营,骆华宝.晋北火山岩型金银矿床同位素地球化学特征[J].地球学报,1994,21:145-151.
    [118]林博磊,李碧乐.胶东玲珑花岗岩的地球化学、U-Pb年代学、Lu-Hf同位素及地质意义[J].成都理工大学学报,2013,2(40):147-160.
    [119]林润生,于志臣.山东胶北隆起区荆山群[J].山东地质,1988,4(1):2-20.
    [120]刘建明,叶杰,徐九华,姜能,应汉龙.初论华北东部中生代金成矿的地球动力学背景—以胶东金矿为例[J].地球物理学进展,2001,16(1):39-46.
    [121]刘连登.论中国主要脉状金矿床的成因[J].长春地质学院学报.1987,17(4):373-382.
    [122]刘晓煌,耿书杰,马树江,等.山东龙口市大磨曲家金矿地质特征及找矿方向探讨[J].山东地质,2001,17(3):69-75.
    [123]刘晓煌,孙兴丽,徐志清,等.山东龙口市大磨曲家金矿地质、地球化学模型浅析[J].地质与勘探,2003,39(2):30-33.
    [124]刘正宏,徐仲元,王可勇.大青山高级变质岩中复晶石英条带成因的显微构造和流体包裹体证据[J].中国科学(D辑:地球科学),2007,04:488-494.
    [125]龙口市地质矿产概论(地质篇)[R].龙口市地质矿产局,1997.
    [126]卢焕章,GuyArcambault,李院生,魏家秀,陈娜娜,张国平,袁万春,陈晓柄,龙洪波.山东玲珑一焦家地区形变类型与金矿的关系[J].地质学报,1999,73(2):175-188.
    [127]卢焕章,J. Guha,方根保.山东玲珑金矿的成矿流体特征[J].地球化学,1999,28(5):421-437.
    [128]卢焕章,池国祥.剪切带中流体地球化学特征及其找矿意义[J].桂林工学院学报,1995,01:9-22.
    [129]卢焕章,袁万春张国平.玲珑一焦家地区主要金矿床稳定同位素及同位素年代学[J].桂林工学院学报,1999,19(1):1-8.
    [130]卢焕章.包裹体地球化学[M].地质出版社,1990.
    [131]卢作祥,范永香,孙丰月.山东招掖金矿带的构造-岩浆控制[J].地球科学,1987,06:589-597.
    [132]路彦明,肖力等.中深成系脉型金矿矿体分段富集律及成生机制-以玲珑金矿田九曲矿段为例[J].长春科技大学学报,1999,29(3):122-126.
    [133]吕古贤,孔庆存,等.胶东玲珑-焦家式金矿地质[M].北京:科学出版社,1993.
    [134]吕古贤.不同构造变形带中“静水压力”的差别[J].中国地质科学院院报,1993,01:39-47.
    [135]吕古贤.胶东半岛构造-岩相形式及玲珑-焦家式金矿的构造动力成岩成矿地质特征研究[J].中国地质科学院院报,1991,02:23-42.
    [136]罗镇宽,苗来成,等.胶东招莱地区花岗岩和金矿床[M].北京:冶金工业出版社,2002.
    [137]骆万成,伍勤生.应用蚀变矿物测定胶东金矿的成矿年龄[J].矿产与地质,1987,01:78-82.
    [138]毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区[J].矿床地质,1999,18(4):316-322.
    [139]毛景文,张作衡,张招崇,杨建民,王志良,杜安道.北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义[J].地质论评,1999,04:412-417.
    [140]彭晓蕾,李碧乐,张渊,孙丰月.山东招远北截金矿床的矿化特征及成矿意义[J].黄金,2000,11:9-11.
    [141]秦丹鹤,王可勇,常亮,韦烈民,邓志平,王永祥.山东玲珑九曲金矿床地质特征及流体包裹体研究[J].世界地质,2013,03:505-514.
    [142]秦丹鹤,王可勇,杨言辰,李海洋.黑龙江二十三公里金矿床地质特征及矿床成因[J].黄金,2012,10:15-18.
    [143]任云生,刘连登,王可勇.铜陵地区铋-金型金矿的成矿特征[A].中国矿物岩石地球化学学会.第二届全国成矿理论与找矿方法学术研讨会论文集[C].中国矿物岩石地球化学学会:,2004:2.
    [144]桑隆康.玲珑花岗岩的成因与演化[J].地球科学:武汉地质学院学报,1984,24(1):101-114.
    [145]山东地质勘查局二队.山东省龙口市诸由赵家金矿区普查地质报告[R].1999.
    [146]山东省第六地质矿产勘查院.山东省龙口市姚家矿区金矿普查地质报告[R].1997
    [147]山东省第一地质矿产勘查院.山东省龙口市丰仪矿区金矿普查报告[R].1999.
    [148]申玉科,徐增田,左文喆.山东玲珑矿田九曲矿段地质特征及找矿预测[J].黄金地质,2003,01:16-19.
    [149]申玉科.胶西北金矿集中区构造-蚀变网络研究[D].北京:中国地质大学,2006.
    [150]石玉臣.山东省焦家成矿带深部金矿成矿预测研究及其应用[D].吉林大学,2005.
    [151]孙丰月,丁正江,刘殿浩,张丕建,于晓飞.初论胶东福山北部地区斑岩成矿系统[J].黄金,2011,01:14-19.
    [152]孙丰月,金巍,李碧乐,等.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,30(金矿专辑):2000,27-30.
    [153]孙丰月,卢作祥.山东招远县金矿化时空分布特征破头青断裂带矿化富集规律及成矿预测[J].地球科学,1988,02:120.
    [154]孙丰月,石淮立,冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿[M].吉林人民出版社,1995.
    [155]孙丰月,石准立.煌斑岩与某些热液矿床关系新探──兼论幔源C-H-O流体的分异演化[J].地质找矿论丛,1995,02:72-81.
    [156]孙丰月,王力,霍亮,王可勇.黑龙江乌拉嘎大型金矿床流体包裹体特征及矿床成因研究[J].中国地质,2008,06:1267-1273.
    [157]孙丰月,于晓飞,冯占山,李延军.山东招远灵山沟金矿床金矿化空间定位机制[J].吉林大学学报(地球科学版),2008,06:920-925.
    [158]孙国胜,刘颖,李绪俊,等.玲珑金矿田不同级别构造控矿特征[J].地质地球化学,2003,31(2):18-24.
    [159]孙景贵,胡受奚,赵戴英,等.初论胶东地区金矿成矿模式[J].矿床地质,2000,19(1):26-36.
    [160]万多,王可勇,李文昌,尹光侯,余海军,薛顺荣,韦烈民.滇西北热林Cu-Mo矿床流体包裹体特征[J].吉林大学学报(地球科学版),2012,S3:54-63.
    [161]王安建,金巍,孙丰月,银剑钊.流体研究与找矿预测[J].矿床地质,1997,03:87-97.
    [162]王德洪,林润生.山东省平度地区下元古界荆山群变质作用特征[J].山东地质,1991,7(2):1-16.
    [163]王海芹,霍光辉.胶东地区与金矿成矿有关的花岗岩体中的流体包裹体研究[J].地质力学学报,2008,03:263-273.
    [164]王可勇,卿敏,边红业,万多,孙丰月,刘正宏,纪兆家.辽宁五龙金矿床地质特征及成矿流体地球化学性质[J].吉林大学学报(地球科学版),2010,03:557-564.
    [165]王可勇,卿敏,孙丰月,万多,王力,李向文.吉林小西南岔金-铜矿床成矿流体地球化学特征及矿床成因研究[J].岩石学报,2010,12:3727-3734.
    [166]王可勇,卿敏,张欣娜,万多,肖力.黑龙江金厂金矿床流体包裹体特征及成矿作用研究[J].岩石学报,2011,05:1275-1286.
    [167]王可勇,任云生,程新民,代军治.黑龙江团结沟金矿床流体包裹体研究及矿床成因[J].大地构造与成矿学,2004,02:171-178.
    [168]王可勇,万多,刘正宏,孙丰月,边红业,张晓东,黄俊鹏.辽宁丹东四道沟金矿床构造控矿规律及其机制分析[J].吉林大学学报(地球科学版),2011,04:1048-1054.
    [169]王可勇,王力,刘正宏,汪建宇.辽宁高家堡子大型银矿床流体包裹体特征及矿床成因[J].岩石学报,2008,09:2085-2093.
    [170]王可勇,张春燕,樊岳铭,张晓东.山东玲珑金矿床成矿流体地球化学特征[J].吉林大学学报(地球科学版),2008,02:194-201.
    [171]王孔海等.山东招远-掖县地区金矿控矿条件[J].中科地质科学院沈阳地质矿产所所刊,1984(9).
    [172]王力,孙丰月,李碧乐,于文斌.山东招远金岭金矿埠上矿区矿体空间定位机制研究[J].黄金,2007,01:13-19.
    [173]王力,孙丰月,王佳良.山东金岭金矿床成矿流体地球化学特征[J].岩石学报,2010,12:3735-3744.
    [174]王义文.华北地台北缘东段金矿带硫同位素特征及其找矿意义[J].长春地质学院学报,1989,03:325-334.
    [175]韦烈民,秦丹鹤,常亮,张雪冰,王可勇.山东龙口大磨曲家金矿床302脉深部成矿预测[J].世界地质,2013,04:725-732.
    [176]韦延光.山东招远市谢家沟-石城夼构造岩浆带金成矿系统研究[D].中国地质大学(北京),2005.
    [177]武警黄金地质研究所.矿床位置预测系统使用手册[R].廊坊:武警黄金地质研究所,2005.
    [178]徐斌,万多,卿敏,朴星海,王艳忠,边红业,王可勇.黑龙江东宁金厂金矿区多元信息量统计成矿预测[J].黄金,2010,04:8-11.
    [179]徐刚,郑达兴,温长顺.胶东焦家断裂带与金矿的成生关系[J].地质力学学报,1998,4(2):53-58
    [180]徐金方,郑文深,乔广生.山东荣成榴辉岩类的Sm—Nd同位素地质年龄[J].山东地质,1988,01:73-77.
    [181]徐述平,杨立强.山东招平断裂系统构造-蚀变-矿化水平-分带特征[J].矿床地质,2010,S1:1009-1010.
    [182]徐述平,朱洪岭,张华全.胶东大磨曲家金矿控矿断裂及成矿规律[J].黄金科学技术,2006,02:11-22.
    [183]徐述平.招平断裂带金矿勘查模型与成矿预测[D].中国地质大学(北京),2009.
    [184]鄢全树,马衍峰,徐进.山东龙口大顶金矿地质特征及找矿方向[J].矿产与地质,2004,18(1):22-25.
    [185]严育通.胶东石英脉型和蚀变岩型金矿关系的成因矿物学研究[D].北京:中国地质大学(北京),2012.
    [186]杨承海,石玉臣,刘长春,等.山东省焦家金成矿带大比例尺成矿预测中地质模型的研究与应用[J].山东国土资源,2006,22(5):34-37.
    [187]杨金中,沈远超,刘铁兵.大型超大型金矿密集区的形成条件[J].地质与勘探,37(1):30-32.
    [188]杨立强,邓军,翟裕生,等.胶东夏甸金矿地球化学场结构[J].现代地质,2001,15(4):409-413.
    [189]杨立强,邓军,张静,王庆飞,高帮飞,周应华,郭春影,江少卿.山东招平断裂带大磨曲家金矿床流体包裹体初步研究[J].岩石学报,2007,01:153-160.
    [190]杨敏之,黄国君.胶东乳山唐家沟金矿地球化学研究[J].地质找矿论丛,1991,7(2).
    [191]杨敏之.金矿床地质、地球化学和金矿成矿预测研究的几个问题[J].地质与勘探,1996,02:30-31.
    [192]杨帅师,王可勇,郝通顺,孙丰月,刘正宏,万多,张晓东,黄俊鹏,边红业.辽宁丹东四道沟金矿床流体包裹体特征及矿床成因[J].吉林大学学报(地球科学版),2010,04:773-780.
    [193]杨忠芳,徐景奎,赵伦山,等.胶东区域地壳演化与金成矿作用地球化学[M].北京:地质出版社,1998.
    [194]杨忠芳.胶东区域地壳演化与金成矿作用地球化学[M].北京:地质出版社,1998.
    [195]姚风良,刘连登,孔庆存,等.胶东西北部脉状金矿[M].长春:吉林科学技术出版社,1990.
    [196]伊丕厚,宋明养.加强深部找矿开辟胶东金矿第二找矿空间[J].山东国土资源,2008,24(1):36-39.
    [197]于晓飞,孙丰月,李碧乐,孙振佐,武际春.山东招远灵山—北截断裂的重新厘定及其意义[J].地质找矿论丛,2004,04:223-227+284.
    [198]于晓飞,孙丰月,王力,崔威,郑和.山东招远灵山沟金矿床成矿流体特征研究[J].黄金,2007,06:13-17.
    [199]余汉茂,胶东群蓬莱组锆石年龄极其地质意义[J].中科地质科学院沈阳地质矿产所所刊,1984,(4).
    [200]於崇文.成矿动力系统在混沌边缘分形生长:一种新的成矿理论与方法论[J].地学前缘,2001,(06):28-34.
    [201]曾键年,范永香,马宪.江西金山金矿床成矿流体地球化学[J].黄金地质,2001,01:26-32.
    [202]翟建平,徐光平,胡凯.栖霞金矿矿物、流体和同位素特征及意义[J].矿床地质,1998,17(4):307-313.
    [203]翟明国,孟庆任,刘建明,等.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J].地学前缘,2004,11(1):85-98.
    [204]翟裕生,邓军,李晓波.区域成矿学[M].北京:地质出版社,1999.
    [205]翟裕生,邓军,杨立强,等.山东夏甸金矿及其外围隐伏矿体定位预测[J].地学前缘,1999,6(2):230.
    [206]翟裕生.21世纪矿床学研究展望[M].中国地质,2000,(3):14-17.
    [207]张华锋,李胜荣,翟明国,等.胶东半岛早白垩世地壳隆升剥蚀及其动力学意义[J].岩石学报,2006,22(2):285-295.
    [208]张娟.苏鲁造山带中生代岩浆岩地球化学研究[D].合肥:中国科学技术大学档案馆,2011:23-59.
    [209]张理刚.两阶段水-岩同位素交换理论及其勘查应用[M].北京:地质出版社,1995.
    [210]张旗,钱青等.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学,2001,36(2):248-255.
    [211]张文起.胶东地区粉子山群及蓬莱群地层铅同位素组成探讨[J].山东地质,1995,11(1):18-24.
    [212]张文钊.山东龙口大磨曲家金矿深部盲矿预测的构造叠加晕模型[J].地质找矿论丛,2005,S1:177-181.
    [213]张渊,孙丰月,彭晓蕾,于晓飞,张殿龙,王风海.胶东西北部山上原家金矿金银矿物组合研究[J].黄金,2000,09:4-7.
    [214]张渊,孙景贵,王可勇,邱殿明.胶东西北部黄埠岭金矿床流体包裹体特征及其在成矿预测中的意义[J].世界地质,2008,03:245-251.
    [215]张振海,张景鑫,叶素芝.胶东招-掖金矿带金矿化蚀变带Rb-Sr等时线的研究及测定[J].贵金属地质,1993,01:26-34.
    [216]赵财胜,匡俊,李碧乐,孙丰月.山东招远大河金矿断裂构造控矿规律及成矿预测[J].黄金,2003,05:17-20.
    [217]赵洁心,鲍明学.焦家金矿床黄铁矿标型特征及含金性分析[J].黄金,2007,28(9):19-22.
    [218]赵一鸣.中国铁矿资源现状、保证程度和对策[J].地质论评,2004,04:396-417.
    [219]中国地质科学院地质研究所.山东省龙口市黄山馆探矿区成矿规律及深部找矿预测[R].2005:5-32.
    [220]周起风.胶东乳山英格庄金矿成因矿物学与深部远景研究[D].硕士学位论文:中国地质大学(北京).2010.
    [221]周伟新,万天丰.玲珑花岗岩体的变形磁组构特征及其与金矿的关系[J].地质科学,2000,35(4):385-395.
    [222]周新华,杨进辉,张连吕.胶东超大型金矿的形成勾中生代华北大陆岩石圈深部过程[J].中国科学(D辑),2002,32(增刊):11-20.
    [223]朱裕生,傅德明,梅燕雄,赵支刚,阎升好,刘亚玲,张文宽.峨嵋山地幔柱及其成矿系列(摘要)[A].中国地质学会矿床专业委员会、中国科学院矿床地球化学重点实验室、中国地质科学院矿产资源研究所.峨眉地幔柱与资源环境效应学术研讨会论文及摘要[C].中国地质学会矿床专业委员会、中国科学院矿床地球化学重点实验室、中国地质科学院矿产资源研究所:,2003:2.
    [224]朱裕生,王福同,龙宝林,薛迎喜,肖克炎,冯京,庄道泽,姜立丰.土屋-延东斑岩型铜(钼)矿床多源信息找矿模型[J].矿床地质,2003,03:287-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700