用户名: 密码: 验证码:
新型高性能Cu-Ni-Co-Si合金制备及组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu-Ni-Si系是一种沉淀强化型合金,由于其具有高强度、高弹性、较好的导电性能及良好的抗应力松弛性能,可广泛地用于制造仪器、仪表和电器中的各种弹性元器件,是人们期待的能替代高弹性铍青铜的新型铜基弹性材料。而Cu-Ni-Co-Si合金是美国Olin公司在Cu-Ni-Si系合金的基础上研究开发的,合金具有更高的强度、导电率以及抗应力松弛性能。
     本文在国家“863”高技术发展计划项目—高速轨道交通用铜合金导线的关键技术研究和北京市科技项目—新一代高性能铜合金材料及制备与加工技术研究的资助下,成功设计和制备了新型高性能Cu-Ni-Co-Si合金,并采用热力学计算、硬度和导电率测试方法、室温拉伸试验、X射线衍射分析技术(XRD)、显微金相(OM)扫描电子显微镜(SEM)、透射电子显微镜(TEM、HREM)、应力松弛性能测试等材料研究方法系统研究了合金的组织和性能及其与Ni/Co的关系,确定了合金强化机理以及添加Co元素对合金性能的影响规律及机理,得到以下结论:
     (1)在Cu-Ni-Co-Si合金中,利用CALPHAD方法,通过Pandat热力学软件中的铜合金数据进行计算,随着Co含量的增加,其Ni2Si相质量分数相应减少,Co2Si相质量分数相应增加,至Co含量1.2Wt.%时,两相有交点。
     (2) Cu-Ni-Si系合金在500℃时效处理时,其组织演变为溶质富集区引起的调幅分解一形成有序相一析出Ni2Si相,而用Co替代部分Ni之后,由于Co抑制了调幅分解形成所需的空位移动和促进(Ni, Co)2Si相的析出,其时效组织直接是析出(Ni, Co)2Si相。
     (3)用Co替代部分Ni的Cu-Ni-Co-Si合金时效析出组织与Cu-Ni-Si系合金中时效析出Ni2Si相有相同的结构及形貌,与Cu基体的位向关系也相同,即:[001]cu//[110]P,(010)cu//(001)P;[U2]cu//[324]P,(110)cu//(21l)p。
     (4)研究了S2合金中(Ni, Co)2Si相共格、半共格关系并理论计算了共格失配的临界半径,其值为10.3nm。实际在450~550℃时效时观察到的(Ni, Co)2Si相共格与半共格相的共存半径为12~25nm,超过25nm的析出相基本为半共格相。
     (5)通过透射电子显微镜、图像分析和统计分析等手段,分析了S2合金时效析出相的粗化行为以及分布规律。结果表明:在500℃时效时,S2合金中圆片状析出相粗化行为及其尺寸分布与LSW理论模型较好地符合,析出相的平均半径与t1/3成线性关系,说明其析出相的粗化长大过程受扩散控制。
     (6)采用导电率法对Cu-Ni-Co-Si合金的时效析出动力学进行分析,并得出相应的时效动力学方程,其反映的时效动力学理论曲线与实验曲线基本吻合,较好地冷释了合金的时效动力学过程。
     (7)固溶合金时效前加以冷变形可加速时效初期第二相析出,导电率得以快速上升。经过冷轧-时效后,沿位错分布着许多细小的析出相,使位错在时效过程中运动困难,使硬度在时效过程中快速提高。并且,位错被析出相所钉扎,减缓了回复再结晶过程。
     (8) Cu-Ni-Co-Si合金松弛分为两个阶段,第一阶段应力松弛速率较大,处于松弛加速阶段,由于在应力松弛的初期阶段,可动位错数量很多,位错移动的阻力比较小,位错移动的驱动力比较大,所以在应力松弛的第一阶段应力松弛率较大;第二阶段,应力松弛速率较小,处于缓慢松弛阶段,这一阶段位错与杂质原子以及位错与第二相粒子发生交互作用,使位错增殖,并出现交滑移。在微塑变区,位错会产生重排和塞积,导致应力集中,应力分布不均匀,在高应力作用下位错的滑移运动引起松弛。
     (9) Cu-Ni-Co-Si合金的松弛量比Cu-Ni-Si合金小,一方面因为Co在Cu中的固溶度较小而易于与空位结合,从而抑制了调幅分解形成所需的空位移动,致使含Co元素的Cu-Ni-Co-Si铜合金空位大量减少,抑制了可动位错的滑移;另一方面,促进了基体中析出相的析出,析出相弥散均匀的分布在合金基体中,在发生应力松弛过程中移动的可动位错在遇到弥散分布的第二相之后,会被第二相所钉扎。这时可动位错会在第二相周围形成稳定的ConttroH气团,位错团会阻碍可动位错的运动,从而提高松弛稳定性,减小应力松弛量。
     (10)设计和优化半连续铸造工艺及在线固溶技术和固溶装置,使得半连续铸造生产高强高弹等优良综合性能的沉淀强化型Cu-Ni-Si合金板带材成为可能。
Cu-Ni-Si alloy is a kind of precipitation strengthening type alloy. It has high strength, excellent elasticity, good conductive properties and good anti-stress relaxation properties. Meanwhile, it can be widely used in the manufacture of various elastic components in the electrical appliance and instrument. In a word, it is a new copper matrix elastic material which is expected to replace beryllium bronze. And Cu-Ni-Co-Si alloy is Olin company on the basis of the research and development Cu-Ni-Si alloy, which has a higher strength, conductivity and anti-stress relaxation.
     Based on the National High-rech R&D Project—key technology study of the high-speed rail transportation of copper alloy wire and Beijing science and technology project—a new generation of high-performance copper alloy materials and the preparation and processing technology research funding, a series of new alloys of Cu-Ni-Co-Si with high strength, conductivity, and elasticity were designed and prepared in this study. By means of materials research measurements, such as thermodynamic calculation, hardness and electrical conductivity measurements, room temperature tensile tests, X-ray diffraction (XRD), optical microscopy (OM), scanning and transmission electron microscopy analysis (SEM, TEM, HREM), and stress relaxation testing, the relation of the structure and properties of the alloys with the ratio Ni/Co was studies, mechanical properties, microstructure and it's evolution of the alloys were investigated. Meanwhile, the influence of Co content on the microstructure and properties in the studies alloys was also investigated. And then strengthening mechanism and the form and effect of the Co element in the alloys were presented. Several important conclusions can be summarized as follows:
     (1) The type and fraction of the precipitates was analyzed through the CALPHAD and Pandat thermodynamic calculation software. The theoretically analysed results showed that with increasing the content of Co, its Ni2Si phase reduced, and Co2Si phase increased. When the Co content achieved1.2Wt.%, the two phase have intersection points.
     (2) On aging at the temperature at500℃in Cu-Ni-Si alloy, there were three different tans formation products:a modulated structure resulting form spinodal decomposition, DO22ordering structure nucleation form the modulated structure, and Ni2Si phase with disc-like structure appearing in (Ni. Si)-rich regions. Replace part of Ni with Co, Co suppressed spinodal decomposition to form the desired vacancies move and promotion of (Ni. Co.):Si phase precipitation, the aging products directly precipitates (Ni. Co):Si phase.
     (3) Replace part of Ni with Co. Cu-Ni-Co-Si alloy precipitation aging organization and Cu-Ni-Si alloy during aging precipitation-Ni2Si phase with the same structure and morphology. And the relationship between the matrix and precipitates is that:[001]cu//[1101p,(010)(U//(001)p;[112]Cu//[324]P,(110)Cu//(211)P.
     (4) By means of transmission electron microscope (TKM). high-resolution transmission electron microscope (HRHM) the aing precipitates in the Cu-1.6Co-1.2Ni-0.6Si alloy aged at45O-55O℃was studied. It wans first to apply DigitalMicrograph software to analysis the coherent, semi-coherent and the coherency loss between precipitates and Cu matrix. The coexistin raduium of (Ni, Co)2Si coherent/semi-coherent precipitates was about12-25nm, the calculated value of critical transition radius for the coherency loss was given as10.3nm.
     (5) By transmission electron microscopy, image analysis and statistical analysis, the growth and coarsening and the regulatities of distribution of aging precipitates in Cu-1.6Co-1.2Ni-0.6Si was investigated. The results showed that the growth behavior of disc-like (Ni, Co)2Si was in good agreement with LSW theoretical model when Cu-1.6Co-1.2Ni-0.6Si aged at500℃. The mean radius of (Ni. Co2Si precipitates with t1/3is linear relation, which suggested that the growth and coarsening of (Ni. Co)2Si precipitates were dominated by diffusion. The size distribution of (Ni, Co)2Si precipitates was proximity normal distribution curve, which was also in good agreement with LSW theoretical.
     (6) Upon aging after solid solution for the Cu-Ni-Co-Si alloy, there could be linearity between electrical conductivity and volume fraction of precipitates. Based on the linear relationship, Avrami phase transformation kinetics equation and electrical conductivity equation at different aging temperatures are described for the Cu-Ni-Co-Si alloy.
     (7) Before aging of the solid solution alloy cold deformation can accelerate aging early second-phase precipitates, the conductivity was the quick reply. After cold rolling- aging along the dislocation distribution with many small precipitates, dislocation movement difficult in the aging process, so that the rapid increase in hardness in the aging process. The precipitation of the precipites severely blocks the recrystallization of the deformed structure in the alloys.
     (8) The Cu-Ni-Co-Si alloys relaxation could be divided into two stages, stress relaxed fast in the first stage while slowly in the second stage and tended to a certain limit value after a long time. During the first stage, there are many the movable dislocations, dislocation resistance to movement comparisonsmall, the driving force of the dislocation movement is relatively large, so the larger the stress relaxation rate in the first stage of the stress relaxation. In the second stage, due to dislocations with the impurity atom and the second phase particle interactions, could lead to dislocation multiplication, and the emergence of cross-slip. In the area of micro-plastic deformation caused dislocation pile-up and tangling, resulting in stress concentration, the stress distribution is very uneven, slip caused by the movement of dislocations under high stress relaxation.
     (9) The stress relaxation values of the Cu-Ni-Co-Si alloy are smaller than the Cu-Ni-Si alloy, these could be explained by two aspect. The first is replace part of Ni with Co, Co suppressed spinodal decomposition to form the desired vacancies move and promotion of (Ni, Co.)2Si phase precipitation, resulting suppressed the dislocation slip move. On the other hand, the precipitates were promoted in the Cu-Ni-Co-Si alloy. The precipitate phase uniformly distributed in the grain boundaries and the matrix, during the relaxed condition, the dislocations moving was blocked by the precipitates. And then formation of stable Conttroll air mass, the movable dislocations gathered into a post-deposition dislocation group, which caused the dislocation moving difficult.
     (10) The device of semi-continuous casting technique and on-line technique was designed and optimized, thus it is possible to manufacture the solution high strength and excellent elasticity Cu-Ni-Si alloy strip.
引文
[1]孙建春,刘筱薇,周安若.弹性合金的研究现状及趋势[J].热加工工艺,2006,35(18):52-56.
    [2]Hiroshi M., Tomohiko U., Hisanori T.. Anomalous elastic properties of amorphous alloys suggesting a collective motion of many atoms[J]. Journal of Non-Crystalline Solids,2002,312-314:542-546.
    [3]齐新占.高弹性极限新型弹性合金的研制[J].金属材料研究,1990,16(2):13-17.
    [4]郑史烈,吴年强,曾跃武,等.高弹性导电合金Cu-Ni-Sn的研究现状[J].材料科学与工程,1997,15(13):61-66.
    [5]Cemoch T., Landab M., Novaka V., et al. Acoustic charactefizatin of the elastic properties of austenite phase and martensitic transformations in CuA1Ni shape memory alloy[J]. Journal of Alloys and Compounds,2004,378:140-144.
    [6]李震夏.世界有色金属材料成分与性能手册[M].北京:冶金工业出版社,1992:132-139.
    [7]王忠民,刘群山,张忠诚.铍青铜代替材料铝镍黄铜合金的研究[J].热加工艺,2003,(1):49-50.
    [8]潘奇汉.新型铸造铜合金[J].铸造,1991,11(1):1-4.
    [9]曹昱,刘锦文Cu-Ni-Zn-Mn弹性合金的疲劳与断口分析[J].湖南有色金属,1999,15(5):29-32.
    [10]姜海昌,覃作祥,陆兴,等Fe-Mn-Ge合金弹性模量反常与相变的研究[J].大连铁道学院学报,2003,24(3):84-88.
    [11]熊惟皓,刘锦文.合金化与形变热处理对铜合金弹性模量的影响[J].华中理工大学学报,1998,26(1):18-21.
    [12]柳瑞清,赵健,黄国杰,等Cu-9.5Ni-2.3Sn合金的加工与组织性能[J].稀有金属,2008,32(5):574-578.
    [13]王艳辉,汪明朴,洪斌Cu-15Ni-8Sn导电弹性材料的研究现状与进展[J].材料导报,2003,17(3):24-26.
    [14]李本贵,于艳,曹志强,等.铜基合金的强化机理和研制现状[J].铸造,2005,54(10):948-953.
    [15]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2005:13-16.
    [16]刘平,曲保红,赵冬梅.铜合金功能材料[M].北京:科学出版社,2004:34-37.
    [17]夺国俊.高弹性合金的现状与发展趋势[J].材料导报,1993,4:15-17.
    [18]黄寿鹏.铜基弹性合金的开发及应用[J].有色金属加工,2005,34(2):33-35.
    [19]蔡薇,修志磊,黄国杰.等.微量钴对铝黄铜组织性能的影响[J].稀有金属,2009.32(6):718-722.
    [20]Baburaj E.G., Kulkarni U.D., Menon E.S.K.. et al. Initial stages of decomposition in Cu-9Ni-6Sn[J]. Journal of Applied Crystallography,1979.12:476-480.
    [21]KratocHVil P.. Mend J., Pesicka J., et al. The structure and low temperature strength of the age hardened Cu-Ni-Sn alloy[J]. Acta Metal,1984,32(9):1493-1497.
    [22]王艳辉,汪明朴,洪斌Cu-9Ni-6Sn合余慨述[J].材料导报,2004.18(5):33-34.
    [23]Nagarjuna S., Srinivas M., Balasubramanian K., et al. On the variation of mechanical properties with solute content in Cu-i alloys[J]. Materials Science and Engineering A, 1999.259(1):34-42.
    [24]Satoshi S., Tomoya N., Hiroshi N.. Microstructure and mechanical properties of Cu-3at.%Ti alloy aged in a hydrogen atmosphere[J]. Materials Science and Engineering A,2009.517(2):105-113.
    [25]GROZA J. R., GIBELING J. C Principles of particles selection for dispersion-strengthened copper[J]. Materials and Science. Engineering A,1993. A171: 115-125.
    [26]North R.F.. Pryor M.J.. The nature of protective films formed on a Cu-Fe alloy [J].Corrosion Science,1969,9(7):513-517.
    [27]Torikai.Y. Yahiro.II, Mizuno N.. Enhancement of catalytic activity of alumina by copper addition for selective reduction of nitrogen monoxide by ethene in oxidizing atmosphere[J]. Catalysis Letters,1991.9(2):91-95.
    [28]王深强,陈志强,彭德林,等.高强高导铜合金的研究概述[J].材料工程,1995,7:3-7.
    [29]Ivanov E. Y., Suryanarana C, Bryskin B. D.. Synthesis of a nanocry stalline W-25%Re alloy by mechanical alloying[J]. Materials Sciencs and Engineering,1998, A251:255-261.
    [30]Suryanarana C., Jurth G. E., Fores F. H.. Compaction and characterization of mechanically alloyed nanocrys-talline titanium aluminides[J]. Metals and Materials Transaction,1997, A28:293-302.
    [31]Ye L. L., Liu Z. G., Raviprasad K., et al. Consolidation of MA amorphous NiTi, powders by spark plasma sintering[J]. Materials Science and Engineering,1998, A241:290-293.
    [32]吴进明,吴年强,曾跃武,等.机械合金化Al-8Ti合金粉的烧结成形研究[J].金属热处理,1997,12(4):3-7.
    [33]王军,殷俊林,严彪Cu-Ni-Sn合金的发展和应用[J].上海有色金属,2004,25(4):184-186.
    [34]Stanley, Lasday B.. PM Cu-Ni-Sn strip alloys particular response to aging develop favorable properties for electronic components[J]. Industry Heating,1991, (11):26-30.
    [35]王艳辉,汪明朴,洪斌Cu-15Ni-8Sn导电弹性材料的研究现状及进展[J].材料导报,2003,17(3):24-27.
    [36]侯利锋Fe-Ni基体弹性合金时效相变过程及性能的研究[D].太原:太原理工大学,2002.
    [37]Hermann P. H., Morris D.. Relationship between microstructure and mechanical properties of a spinodally decomposing Cu-15Ni-8Sn alloy prepared by spray deposition[J]. Metallurgical and Materials Transactions,1993, A25(7):1403-1412.
    [38]Deyong L., Tremblay R., Angers R., et al. Spinodal Cu-Ni-Sn Alloys for Electronic Application[J]. Materials Science and Engineering,1990,24(1):223-229.
    [39]张利衡Cu-9Ni-6Sn合金的组织与性能研究[J].上海金属(有色分册),1993,14(2):20-23.
    [40]CORSON M. G. Electrical conductor alloy[J]. Electrical World,1927,89:137-139.
    [41]Grylls R. J., Tuck C. D. S., Loreto M. H.. Identification of orthorhombic high-strength cupronickel[J]. Scripta Materialia,1996,34(1):121-126.
    [42]Motohisa M., Isao H., Yosuke M. A.. Mechanical properties of Copper alloy'CAS 85'for high-performance connectors[J]. Research and Development,1994,44(1):79-82.
    [43]Blaz L., Korbel A.. Kusinski J.. Retardation of fracture by static precipitation In a hot deformed Cu-Ni-Cr-Si-Mg alloy[J]. Scripta Metallurgica Materialia,1995,33(4): 657-660.
    [44]Niewczas M.. Hvangelista H.. Blaz L.. Strain localization during a hot compression test of Cu-Ni-Cr-Si-Mg alloy[J]. Scripta Metallurgiea Materialia,1992,27(2): 1735-1740.
    [45]Fujiwara H.. Efect of alloy composition on precipitation behavior in Cu-Ni-Si alloys[J]. Japan Institute of Metals,1998,62(4):301-309.
    [46]Huang F.X., Ma J.S.. Ning H.I.., et al. Precipitation in Cu-Ni-Si-Zn alloy for lead frame[J]. Materials Letters.2003.57:2135-2319.
    [47]程建奕,汪明朴,李周,等Cu-1.5Ni-0.27Si合金形变热处理[J].中国有色金属学报,2003,13(5):1061-1066.
    [48]Lockyer S. A.. Noble F. W.. Precipitate structure in a Cu-Ni-Si alloy[J]. Journal of Materials Science.1994.29:218-226.
    [49]Lockyer S. A., Noble F. W.. Fatigue of precipitate strengthened Cu-Ni-Si alloy[J]. Materials Science and Technology.1999,15(10):1147-1153.
    [50]曹育文,马莒生,唐祥云,等.引线框架Cu-Ni-Si合金成分设计[J].中国有色金属学报,1999,9(4):723
    [51]北风敬三,Cu-Ni-Si-P合金的诸特性及P对显微组织的影响效果[J].铜加工1991,2(1):104-108.
    [52]Kim Y. Q, Seong T. Y., Han J. H.. Effect of heat treatment on precipitation behavior in a Cu-Ni-Si-Palloy[J]. Materials Science,1986,21(4):1357-1362.
    [53]江黎,孙扬善,付小琴.等Cu-Ni-Si基引线框架合金的组织和性能[J].东南大学学报(自然科学),2005,35(5):729-732.
    [54]Rdzawski Z., Stobrawa J.. Mechanical processing of Cu-Ni-Si-Cr-Mg alloy[J]. Materials Science and Technology,1993,2:142-149.
    [55]林高用,张胜华Cu-Ni-Si-Cr-Fe合金时效强化特性的研究[J].金属热处理,2001,(4):28-30.
    [56]Lei J.G.. The effect s of aging precipitation on the recrystallization of CuNiSiCr alloy[J]. Wuhan University of Technology-Mater Science Ed,2005,20(1):21-25.
    [57]潘志勇,汪明朴,李周,等.微量元素对Cu-Ni-Si合金性能的影响[J].材料导报,2007,21(5):86-89.
    [58]Fleicher R. L.. Solution hardening[J]. Acta Metallurgica,1961,9(11):996-1000.
    [59]Orpwan E., Symposium on Internal, Stress in Metalls and Alloys[R]. Institute of Metals,1948.
    [60]毛新平,张新明,等.铍铜合金抗应力松驰稳定性能及组织的研究[J].湖南有色金属,2001,17(1):30-34.
    [61]刘维镐,陈存中,邓至谦Cu-Ni-A1-Ti弹性合金应力松弛特性的测定[J].功能材料,1990,21(3):136-139.
    [62]平修二.金属材料的高温温度、理论和设计[M].科学出版社,1983:57-60.
    [63]李久林.金属应力松弛试验方法国外标准述评[J].物理测试,1987,6:59-64.
    [64]Hunter A.R. Crack healing and stress relaxation in A12O3 SiC "Nanocomposites"[J]. British Journal of Anesthesia,1972,15(4):153-160.
    [65]Manjoine M.J.. Stress relaxation characteristics and data utilization[J]. Proceedings of the Twenty-eighth Sagamore Army Materials Research Conference,1982:519-530.
    [66]Parikin. Stress Relaxation Testing[M]. ASTM,1979:48-53.
    [67]李忆莲,韩雅静,余淑骋,等.铍青铜的应力松弛性能及组织[J].中国有色金属学报,1993,3(1):62-65.
    [68]Tomioka Y. M.. A copper alloy development for leadframe[M]. Japan:Electronic Manufacturing Technology Symposium,1995:36-40.
    [69]张生龙,尹志民.高强高导铜合金设计思路及其应用[J].材料导报,2003,17(11):26-29.
    [70]Laughlin D. E., Cahn J. W.. Spinodal decomposition in age hardening copper titanium[J]. Acta Metal,1975,23(3):329-339.
    [71]Jin Y., Adachi K... Aging characteristics of Cu-Cr in-situ composite[J]. Journal of Material and Science,1998,33(6):1333-1341.
    [72]Nippon Mining & metals Co.,Ltd. Cu-Ni-Si-Co-base copper alloy for electronic material and process for producing the copper alloy[P]. European. Ep 2194151A1. 2008.
    [73]GBC金属有限责任公司.含钴、镍和硅的铜合金[P].中国专利.CN101792872A.2009.
    [74]Olesinski R.W., Abbaschian G. J., Desk Handbook-Phase Diagrams for Binary Alloys[M]. ASM International, 2000: 767-768.
    [75]Chakrabarti D. J., Laughlin D. E., Chen S. W., Chang Y. A.. Desk Handbook-Phase Diagrams for Binary Alloys [M]. ASM International, 2000: 751-752.
    [76]Suramanian P. R., Laughlin D. E., Desk Handbook-Phase Diagrams for Binary Alloys[M]. ASM International, 2000: 1233-1234.
    [77]Kaufman L.. Coupled phase diagrams and thermochemieal data for transition metal binary systems-Ⅵ[J]. Calphad, 1979, 3(1): 45-76.
    [78]Lukas H.L.. Straegies for the calculation of phase diagrams[J]. Calphad, 1977, 6(3): 229-251.
    [79]yrki M.. Thermodynamic description of the Cu-Ni-Si system in the copper-rich corner above 700℃[J]. Computer coupling of phase diagrams and thermochemistry, 2005, 15:212-221.
    [80]Witusiewicz V. T., Arpshofen. I., Seifert H. J., et al. Enthalpy of mixing of liquid and undercooled liquid ternary and quaternary Cu—Ni-Si—Zr alloys[J]. Journal of Alloys and Compounds, 2002, 337(2): 155-167.
    [81]Sokolovskaya E. M., Cherchernikova O. L., Gladyshevskiy E. I., The Ni-Cu-Si system[J]. Russian Metallury, Translated form Izvestiya Akadcmii Nauk SSSR. Metallv, 1973(6): 114-118.
    [82]Lu D. P., Wang J., Trens A., Calculation of Cu-rich part of Cu-Ni-Si phase diagram[J]. Transaction of Nonferrous Metals Society of China, 2007, 17: 12-15.
    [83]邓永瑞,许洋,赵青.固态相变[M].北京:冶金工业出版社,1996:153-157.
    |84] Spooner S., Lefevre B. G.. The effect of prior deformation on spinodal age hardening in Cu-15Ni-8Snalloy[J]. Metallurgical Transactions A, 1980, 11A: 1085-1093.
    [85]张美华,魏庆,江伯鸿,等Cu-Ni-Sn系合金Spinodal分解热力学[J].上海有色金属(有色分册),1990,11(6):8-14.
    [86]Das S. K., Okamoto P. R., Fisher P. M. J., et al. Short range order in Ni-Mo, Au-Cr, Au-V and Au-Mn alloys, Acta Metall, 1973, 21 (7): 913-928.
    [87]Bendersky L. A., Biancaniello F. S., Williams M. E.. Evolution of the two-phase microstructure L12+DO22 in near-Eutectoid Ni.i(Al,V) alloy[J]. Journal of Materials Research, 1994, 9(12): 3068-3082.
    [88]三木雅道.合金元素对Cu-Be合金晶粒内析出(G.P.区形成)的影响[J].铜加工,2000,77(1):55-60.
    [89]卫英慧,黄源,王笑天,等Ni-Ti合金时效早期相变规律的研究[J].金属热处理学报,1997,18(4):10-14.
    [90]Ohmori Y. S., Ito S.. Aging behavior of an Al-Li-Cu-Mg-Zr alloy[J]. Metallurgical and materials transactions,1990,30A(3):741-749.
    [91]Zhao J. C, Micheael R. N.. Ordering transformation and spinodal decomposition in Au-Ni alloys[J]. Metallurgical and materials transactions,1990,30A(3):707-716.
    [92]Datta W., Soffa A.. The structure and properties of age hardened Cu-Ti alloys[J]. Acta metal,1976,24:987-990.
    [93]Thompson A. W., Williams J. C. Age hardening in Cu-2.5wt% Ti[J]. Metal.1984, 15A(5):931-936.
    [94]Zhao D. M., Dong Q. M., Liu P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Materials science and engineering A, A361:94-100.
    [95]胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通火学出版社,2006:125-127.
    [96]Jones M. J., Humphreys F. J.. Interaction of recrystallication and precipitation:The effect of A13SC on the recrystallization behaviour of deformed aluminium[J]. Acta Mater,2003,51(8):2149-2159.
    [97]Iwamura S., Miura Y.. Loss in cohereny and coarsening behavior of A13SC precipitates [J]. Acta Mater,2004,52(3):591-600.
    [98]Marquis E. A., Seidman D. N.. Nanoscale structural evolution of A13SC precipitates inAl(Sc)alloys[J]. Acta Mater,2001,49:1909-1920.
    [99]Emmanuelle A., Marquis, David N. S., et al. Effect of Mg addtion on the creep and yield behavior of an Al-Sc alloy[J]. Acta Mater,2003,51(16):4752-4766.
    [100]Gabriel M. N., Alan J. A.. Precipitation of A13SC in binary Al-Sc alloys [J]. Material Science and Engineering A,2001,318(1-2):144-150.
    [101]徐祖耀.相变原理[M].北京:科学出版社,1988:135-140.
    [102]雷静果.新型高强高导Cu-Ag-Cr合金的组织性能及时效动力学研究[D].西安:西安理工大学,2007.
    [103]孟亮,张宝昌.微量Ce对2090合金—纯Al扩散系统中Cu扩散系数的影响[J].金属学报,1993,29(10):439-444.
    [104]赵志龙,王永欣,刘兵.微量Ce对2090铝锂合金中δ相析出长大行为的影响[J].稀土,2000,21(1):32-34.
    [105]Baumann S. F., Williams D. B.. Experimental observations on the nucleation and growth of 8'(A13Li) in dilute A1-Li alloys[J]. Metallurgical Transactions A,1985,16(7): 1203-1211.
    [106]Fickett F. R.. A review of resistive mechanisms in aluminum[J]. Cryogenics,1971, 11(5):349-367.
    [107]Raeisinia B., Poole W. J.. Electrical resistivity measurements:A sensitive tool for studying aluminum alloys[J]. Materials Science Forum,2006,519-521:1391-1396.
    [108]Guo F. A., Xiang C. J., Yang C. X., et al. Study of rare eatth elements on the physical and mechanical properties of a Cu-Fe-P-Cr alloy[J], Materials Science and Engineering B,2008,147(1):1-6.
    [109]田莳.李秀臣.金属物理性能[M].北京:航空工业出版社,1994:65-68.
    [110]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:34-38.
    [111][美]A.G.盖伊,J.J.赫仑.物理冶金学原理[M].北京:机械工业出版社,1981:78-82.
    [112]Nagarjuna S., Balasubra K.. Hffect of prior cold work on mechanical properties, electrical conductivity and microstureture of aged Cu-Ti alloys[J]. Journal of Materials Science.1999,34(12):2929-2942.
    [113]Fernee H., Nairn J.. Precipitation hardening of Cu-Fe-Cr alloys[J]. Journal of Materials Science,2001,36(5):2711-2719.
    [114]Rdzawski Z., Stobrawa J.. Thermomechanical processing of Cu-Ni-Si-Cr-Mg alloy[J]. Meterials of Science and Technology,1993,92(2):142-149.
    [115]Ryu H. J., Baik H. K.. Effect of thermomechanical treatment on microstructure and properties of Cu-base leadframe alloy[J]. Journal of Materials Science,2000,35(14): 3641-3646.
    [116]Dutkiewicz J., Litynska L.. The effect of platisc deformation on structure and properties of chosen 6000 series aluminium alloys[J]. Materials and Science Engineering A,2002,324(1-2):239-243.
    [117]Jin Y., ADACHI K.. Correlation between the cold-working and aging treatments in a Cu-15 Wt Pet Cr in situ composite[J]. Metallurgical and Materials Transactions A, 1998,29(8):2195-2203.
    [118]Hamana D., Boumerzoug Z., Chekroud S.. Discontinuous and continuous precipitation in Cu-13Wt.% Sn and A1-20Wt.% Ag alloys[J]. Materials of Chemistry and Physics,1998,53(3):208-216.
    [119]Srivastva V. C., Schneider A., Uhlenwinkel V., et al. Effect of thermomechanical treatment on spray formed Cu-Ni-Si alloy[J]. Materials Science and Technology,2004, 20(7):839-848.
    [120]Freye H., Hombogen E.. Recrystallizaion of supersaturated copper-cobalt solid solution[J]. Journal of Materials Science,1970,5(2):89-95.
    [121]Hao S. M, Hao X. J., Zhao G. Recrystallization in spinodal Cu-Ni-Fe alloy[J]. Acta Metallurgica Sinica,1999,12(4):322-326.
    [122]肖纪美.合金相与相变[M].北京:冶金工业出版社,1987:94-97.
    [123]肖纪美.合金相与相变(第2版)[M].北京:冶金工业出版社,2004:95-98.
    [124]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003:204-209.
    [125]Gao N., Saarivirtta E. H.. Influence of deformation on the age hardening of a phosphorus containing Cu-0.61 Wt.%Cr alloy [J]. Material Science and Engineering A, 2003,342:270-278.
    [126]李国俊,姚家鑫,曹阳.QBe2铜合金再结晶与时效析出交互作用机制的研究[J].金属热处理学报,1996,17(4):31-35.
    [127]周小中Cu-Ni-Zn-Al系新型高强导电弹性铜合金组织、性能及相关基础研究[D].长沙:中南大学,2010.
    [128]陈昌麒.固体力学[M].北京:北京航空航天大学出版社,1994:13-19.
    [129]张新明.铍铜带材弯曲应力松弛的力学行为[J].中国有色金属学报,2011,11(6):988-1003.
    [130]Juming T.. Characterization of gellan gels using stress relaxiation[J]. Journal of Food Engineering,1998(38):279-287.
    [131]苏德达.金属制品的应力松弛及稳定化处理[J].金属制品,2000,26(5):1-7.
    [132]苏德达,朱知寿,王欣华.奥氏体不锈压缩弹簧抗应力松弛性能研究[J].1997,23(2):12-17.
    [133]王伯键.螺旋压缩弹簧的应力松弛性能试验研究[J].西安冶金建筑学报,1994.26(1):23-26.
    [134]Ignat M. Essais de relaxation a chaud sur le compostie lamellaire A12Cu[J]. Acta Metall.1981,29:1607-1611.
    [135]刘仲娥.T9A钢液压弹簧的应力松弛[J].金属热处理,1998,1:18-22.
    [136]兮忆莲.螺旋弹簧的应力松弛—动力学议程及稳定化技术[J].机械工程学报,1992,28(3):17-23.
    [137]Xiao L., Bai J. L.. Stress relaxation properties and microscopic deformation structure of H68 and QSn6.5-0.1 copper alloys at 353 K[J]. Materials Science and Engineering A.1998, A244:250-256.
    [138]Li J. C. M., Chan. J. Dislocation dynamics in deformation and recovery[J]. Canadian Journal of Physics.1967.45:493-509.
    [139]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社,2003:27-30.
    [140]Virtanen P.. Stress relaxation behavior in bending of high strength copper alloys in the Cu-Ni-Sn system[J]. Materials Sciencs and Engineering,1997, A238:407-420.
    [141]Povolo P., Tinivella R.. Stress relaxation in bending of type AISI 304 and A-286 steels at 773K[J]. Journal of Materials Science.1984.19:1851-1862.
    1142] Lee D. H., Nam S. W.. Choe S. J.. Effect of microstructure and relaxation behavior on the high temperature low cycle fatigue of near-a-Ti-1100[J]. Materials Science and Engineering.2000, A291:60-67.
    [143]Povarov I. A.. Stress relaxation in structural titanium alloys[J]. Metal Science and Heat Treatment,1982,22(5):433-452.
    [144]Mori T.. Diffusional relaxation around a second phase particle[J]. Acta Metall,1980, 28:319-321.
    [145]Onaka S.. Kinetics of Stress relaxation caused by the combination of interfacial sliding and diffusiong:Two-dimensional analysis[J]. Acta Mater.1998.46(11): 3821-3830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700