用户名: 密码: 验证码:
量子密钥分发实时处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子密钥分发系统是量子物理原理在密码学领域获得实用化应用最早的-个研究领域。它分发的密钥具有“绝对安全”的特性,这个特性来源于量子力学中的不可克隆原理和测量塌缩理论,具有很高的军事和民用价值。1991年诞生了世界上第一个QKD系统原型,它只是一个简单的演示系统,由Bennette等人完成。随后出现更为复杂和完善的QKD系统,QKD的通讯距离和密钥生成速率都在不断的提高。QKD系统发展到现在,已经进入到了多用户互联的QKD网络时代,而QKD网络的结构也在不停的优化和升级当中。当今QKD网络的杰出代表有欧洲的SECOQC量子网,日本的东京高速量子网,和中国的全通型量子通话网以及“合肥—六安—舒城”的城域量子通信网络。
     QKD系统的发展已经进入了高速(高密钥生成速率)的阶段,应用最新的半导体工艺技术,采用1GHz以上发射频率的激光器,使用探测效率极高的超导探测器,获得成码率更高的QKD系统。QKD系统实时处理的压力在于QKD后处理过程,因为它是QKD系统电子学处理延迟最大的模块。QKD后处理过程是为了消除Alice和Bob密钥的不同和提高安全性采取一系列操作,它包括四个步骤:基矢比对,身份认证,纠错和隐私放大。本文以满足高速QKD系统为目标,重点研究了QKD后处理过程中的实时技术。从实现实时技术的平台方面考虑,随着对QKD系统设备的小型化和便携性需求方面的提高,同时结合近些年发展迅速的Field Programmable Gate Array (FPGA)技术,本文重点研究了基于FPGA的QKD实时处理技术。QKD系统实时处理技术在硬件内的实现具有特定的优势,可以省去QKD设备和电脑通讯的数据带宽压力,充分利用后处理过程中的并行潜力提高处理速度。以QKD系统实时处理技术为主线,本文的研究内容包括:高效快速的纠错算法,高数据吞吐量的身份认证和高速数据交换的经典通道。
     对于纠错模块,我们设计和实现了两种不同的方案:基于Winnow的快速纠错算法和基于LDPC纠错码的快速纠错算法。其中基于Winnow的纠错算法在纠错效率和速度方面都有不错的表现,是我们目前中低速的QKD系统中成功应用的算法。而基于LDPC纠错码的纠错算法,纠错时候只需要交互一次信息,在传输延迟大的系统实现优势最大,另外它在纠错效率和速度方面都有可以大幅提升的潜力,是后续高速QKD系统中有望广泛采用的算法。基于Winnow的快速纠错算法的采用的基本纠错码是Hamming码,从Winnow的基本思想出发,我们在段长选取,循环次数设置等方面进行优化,并且提出了使用双线性移位寄存器(LFSR)的随机置换方案,可以获得和使用真随机数一样的“打乱”效果。基于LDPC纠错码的快速纠错算法采用QC-LDPC作为校验矩阵,应用半串行解码算法,该算法的算法结构简单,没有复杂的双曲函数运算和乘除运算,适合硬件结构实现,另外该算法相对于传统的BP解码算法可以节省大部分的存储资源。在算法结构方面,我们提出了一个新颖的信息钳位功能函数,实现简单,可以极大的提升纠错性能。
     对于身份认证模块,我们实现了基于LFSR的Toeplitz矩阵的身份认证方案。QKD系统的最核心特征是它的“绝对安全”性质,基于LFSR的Toeplitz矩阵的身份认证具备“绝对安全”的特性。在模块设计和实现方面,对算法结构做了优化,提高并行度以实现速度的提升。该身份认证算法的实质是高维度的矩阵乘法,分别从优化矩阵乘法行方向和列方向的运算提出了一次并行化结构和二次并行化结构,实现了高度并行化的身份认证计算模块。
     对于高速数据交互的经典通道,选择USB3.0作为实现高速数据通道的接口总线。该数据通道中需要传输的QKD系统的经典信息包括:基矢比对信息,纠错信息,身份认证码。我们使用Cypress公司生产的FX3芯片作为USB3.0的协议芯片,应用该芯片提供的从FIFO工作模式。设计了相应的固件,在FPGA中设计了硬件接口模块,在PC上设计了客户端程序,实际测试速率达1.79Gbit/s。
     文针对处于国际前沿的量子保密通讯中的量子密钥分发系统后处理技术进行探索性研究,研究内容包括高效快速的纠错算法,高数据吞吐量的身份认证和高速数据交换的经典通道,其研究成果将直接提升QKD的后处理性能,并成功用于城域量子通信试验示范网,并将在应用在后续的城际高速量子通讯网中。选题不仅具有理论研究价值,而且具有实际应用价值。
     本论文的主要创新点如下:
     1.针对不同密钥生成速率,完成了2种不同的实时纠错方案。对于低速和中速密钥生成速率,基于Winnow纠错算法修改完成了一个适合于FPGA的快速并行设计,并成功应用于城域量子通信试验示范网;对于高速及超高速密钥生成速率,进行了基于LDPC纠错码的快速纠错算法的研究,完成了基于QC-LDPC使用串行解码算法的硬件解码器,能适应于GHz发射频率的QKD系统中。
     2.针对QKD的安全性要求,开展了实时身份认证技术的研究,实现了适合于FPGA实现的基于LFSR的Toeplitz矩阵的身份认证方案,该方案具有“绝对安全”和高度并行化的特性,并成功应用于量子保密通讯试验网。
     3.针对高速量子密钥分发系统中,大量经典数据实时交互的需求,展开对高速数据通道的研究,完成了基于USB3.0和千兆网构成了高速数据通道,将用于后续的高速量子密钥分发系统中。
Quantum key distribution (QKD) system is the first practical engineering application in cryptography field. The key generated by QKD system is "absolutely secure" which is guaranteed by the non-cloning theorem and measuring collapse theorem in quantum physics. QKD is of great value for both military and civilian use. The first demonstration system of QKD came out in1991which was designed by Bennette etc. During about twenty years' development, the structure of QKD became more and more complicate and the functionality became more and more mature. The record of distribution distance and generated key rate were kept refreshing at the same time. By now, QKD network has appeared up and became one of the research focuses. Some famous representations of QKD network are "SECOQC" in Europe,"Tokyo QKD network" in Japan,"all-pass quantum phone network" and ""Hefei-Luan-Shucheng inter-city network" in China.
     The developing direction of the QKD in the future is high-speed(high final key rate). The QKD of the next generation may adopt laser with photon-emitting frequency greater than1GHz and superconductor detector to acquire much higher key rate. Post-processing of QKD is the most dragging unit for the entire QKD because it has the biggest latency. Its goal is to eliminate the discrepency and improve the security level of the distributed key. It mainly contains four steps:basis comparison, identity authentication, error correction and privacy amplification. This thesis focuses on the real-time technology aimed to speed up the post process to satisfy the needs of high-speed QKD. Considering the demand of the small-size and convinience of the QKD device and the superiority of Field Programmable Gate Array (FPGA), we especially concentrate on FPGA-based real-time post process. This thesis researches on three kinds of real-time technology:error correction of high speed and high efficiency, identity authentication of high message throughput, high speed data link.
     As for error correction, two different methods are devoloped:expeditious error reconciliation based on Winnow protocol and fast error reconcilition based on LDPC code. The Winnow-based method performs well in both efficiency and speed, and it is the most mature error correction module used in middle or low speed QKD. The LDPC code-based method needs only one time of information exchange, so it has the greatest superiority in QKD with high communication latency. In addition, the method has huge potencial to be improved in both efficiency and speed compared to the Winnow-based method, so it has been considered as an altenetive algorithm in the future QKD. The Winnow-based method uses Hamming code as basic error correction tool which is the central point of the Winnow algorithm. We optimize the method by selecting suitable original segment length, choosing the proper iteration times, and proposing an efficient permutation using pseudo-random sequence. The LDPC code-based method utilizes QC-LDPC as the check matrix and semi-serial decoding algorithm as the decoder. The decoder avoides complex hyperbolic function computation, multiplication and division, and saves most ram resource cost compared to the standard BP algorithm. So it is especially suitable to be implemented in FPGA. We also propose a novel message clipping function for the decoder which could improve the efficiency of the error correction tremendously.
     As for identity authentication, we implemente the functionality using LFSR-based Toeplitz matrix. The security of the authentication is absolutely safe which is a basic requirement of QKD. The essence of the authentication is a high-dimension multiplicaiton of a vector by a matrix. In order to speed up the authentication, we propose first-step parallelization from the point of boosting the multiplicaiton of involving more lines and second-step parallelization from the point of boosting the multiplicaiton of involving more columns in one clock cycle.
     As for high speed data link, it was built by means of USB3.0bus. The data link is in charge of transferring information during post-processing, mainly containing: key sifting, error correction and identity authentication. The function of the USB3.0protocol is realized by FX3chip produced by Cypress Corporation. The chip provides an interface named "slave FIFO" mode of GPIF II, reducing the difficulty of implementation. We design the firmware, an interface module in FPGA to fit the GPIF II and a software in PC.
     This thesis makes exploratory research on post-processing technology in QKD. It mainly contains:error correction of high speed and high efficiency, identity authentication of high message throughput, high speed data link. The research achievements directly help to improve the performance of QKD. The developed modules have been successfully used in inner-city exemplary quantum network and can be futher used in inter-city quantum network. The topic of the thesis is valuable both theoretically and practically.
     The innovation of the thesis lies on:
     1. To fit with different final key rates, two different methods of error correction are developed. The Winnow-based error correction is suitable for QKD with middle or low final key rate. The method is built on FPGA and of high parallelization. It has been integrated in inner-city exemplary quantum network successfully. LDPC-code based error correction is based on QC-LDPC matrix and uses serial decoder. It is suitable for QKD with high or ultral-high final key rate. It can be integrated in QKD using lasers of emission frequency greater than1GHz.
     2. To satisfy the requierment of the security of QKD, intense research is made on indentity authentication. The identity authentication using LFSR-based Toeplitz matrix built on FPGA is specifically designed and realized. It's "absolutely secure" and of high parallelization. It has been integrated in inner-city exemplary quantum network successfully.
     3. To meet the requirement of huge amout of classic data communication in QKD post-processing, intense research is made on high-speed data link. It is built by means of USB3.0bus and MAC and can be used in future high speed QKD.
引文
[1]杨宇光.2013.量子密码协议的设计和分析[M].北京:科学出版社,1-3.
    [2]Shannon, C. E.,1949, Communication theory of secrecy systems, Bell Syst. Tech. J.28:656-715.
    [3]斯托林斯.2006.密码编码学与网络安全-原理与实践(第四版).孟庆树,傅建明等,译.第4版.北京:电子工业出版社,183-200
    [4]Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM,1978,21(2):120-126.
    [5]尼耳森.2004.量子计算和量子信息(一)-量子计算部分.赵千川,译.北京:清华大学出版社,4-13.
    [6]Shor.1994.Algorithms for quantum computation:discrete logarithms and factoring[C]. Foundations of Computer Science,1994 Proceedings.,35th Annual Symposium on.
    [7]Gisin, N., G. G. Ribordy, et al.2002. Quantum cryptography[J]. Reviews of Modern Physics, 74(1):145-195.
    [8]Townsend, P. D., J. G. Rarity, et al.1993. Single photon interference in 10 km long optical fiber interferometer[J]. Electronics Letters 29(7):634-635.
    [9]Marand, C. and P. D. Townsend.1995. Quantum Key Distribution over Distances as Long as 30 Km[J]. Optics letters 20(16):1695-1697.
    [10]Muller, A., H. Zbinden, et al.1995. Underwater Quantum Coding[J]. Nature,378(6556): 449-449.
    [11]Muller, A., H. Zbinden, et al.1996. Quantum cryptography over 23 km in installed under-lake telecom fibre[J]. Europhysics Letters 33(5):335-339.
    [12]Zhiliang, Y., C. Gobby, et al.2003. Quantum key distribution over distances as long as 101 km[J]. Quantum Electronics and Laser Science.
    [13]Takesue, H., S. W. Nam, et al.2007. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors[J]. Nature Photonics 1(6):343-348.
    [14]Tomita, A., K.-i. Yoshino, et al.2010. High speed quantum key distribution system. Optical Fiber Technology[J].16(1):55-62.
    [15]Yuan, Z. L., A. R. Dixon, et al.2009. Practical gigahertz quantum key distribution based on avalanche photodiodes[J]. New Journal of Physics 11(4):045019.
    [16]Dixon, A. R., Z. L. Yuan, et al.2010. Continuous operation of high bit rate quantum key distribution[J]. Applied Physics Letters,96(16):161102.
    [17]C. H. Bennett, G.Brassard.1986. How to reduce your enemy's information[J]. in Advances in Cryptology-Proceedings of Crypto'85,218:468-476.
    [18]C. H. Bennett, G.Brassard.1988, Privacy amplififcaton by public discussion[J]. SIAM J.Comput.17(2)210-229
    [19]C.H.Bennett, G.Brassard,1995, Generalized privacy amplification[J], IEEE Trans. Inf. Theory,41(6):1915-1923.
    [20]C. Cachin and U. Maurer.1997. Linking information reconciliation and privacy amplification, Journal of Cryptology,10(2):97-110
    [21]张永德.2013.量子信息物理原理[M].北京:科学出版社,2-3.
    [22]Wiesner S.,1983. Conjugate coding[J], SIGACT News 15:78-88
    [23]Bennett C. H. and G. Brassard.1984. Quantum cryptography:Public key distribution and coin tossing[C]. In Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing Bangalore, India.
    [24]Bennett, C. H.1992. Quantum Cryptography Using Any 2 Nonorthogonal States[J]. Physical Review Letters,68(21):3121-3124.
    [25]Bruss,D.,1998. Optimal eavesdropping in quantum cryptography with six states[J]. Physical Review Letters,81:3018-3021.
    [26]Ekert, A. K.1991. Quantum Cryptography Based on Bell Theorem[J]. Physical Review Letters,67(6):661-663.
    [27]Brassard, G., N. Lutkenhaus, et al.2000. Security aspects of practical quantum cryptography[J]. Advances in Cryptology-Eurocrypt 2000 1807:289-299.
    [28]Hwang, W.-Y.2003. Quantum Key Distribution with High Loss:Toward Global Secure Communication[J]. Physical Review Letters,91(5):057901.
    [29]Wang, X.-B.2005. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography[J]. Physical Review Letters,94(23):230503.
    [30]Lo, H. K., X. F. Ma, et al.2005. Decoy state quantum key distribution[J]. Physical Review Letters,94(23):230504.
    [31]Chen, T. Y., J. A. Wang, et al.2010. Metropolitan all-pass and inter-city quantum communication network[J]. Optics Express,18(26):27217-27225.
    [32]Bennett, C. H., F. Bessette, et al.1991. Experimental Quantum Cryptography[J]. Lecture Notes in Computer Science,473:253-265.
    [33]Peng, C.-Z., J. Zhang, et al.2007. Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding[J]. Physical Review Letters,98(1):010505.
    [34]Peev, M., C. Pacher, et al.2009. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics,11:075001.
    [35]Sasaki, M., M. Fujiwara, et al.2011. Field test of quantum key distribution in the Tokyo QKD Network[J]. Optics Express,19(11):10387-10409.
    [36]Langer, T. and G. Lenhart.2009. Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD[J]. New Journal of Physics,11:055051.
    [37]G. Brassard and L. Salvail.1994. Secret-key reconciliation by public discussion[C]. Advances in Cryptography-Eurocrypt'93,410-423.
    [38]科弗和托马斯.2007.信息论基础[M].阮吉寿和张华,译.第2版.北京:机械工业出版社,7-20.
    [39]D.Slepian and J,K,Wolf.1973[J]. Noiseless coding of correlated information sources. IEEE Trans. Inf. Throry,19:471-480
    [40]W. T. Buttler, S. K. Lamoreaux, et al.2003. Fast, efficient error reconciliation for quantum cryptography[J], Phys. Rev. A,67(5):052303.
    [41]D. Elkouss, A. Leverrier.2009. Efficient reconciliation protocol for discrete-variable quantum key distribution[C]. in Information Theory,2009. ISIT 2009. IEEE International Symposium on,1879-1883.
    [42]K. Yamazaki and T. Sugimoto.2000, On secret reconciliation protocol-odification of "Cascade" protocol[C], International Symposium on Information Theory and Its applications, Honolulu, Hawaii,223-226.
    [43]S. Liu, H. C. A. Van Tilborg, and M. Van Dijk.2003. A Practical Protocol for Advantage Distillation and Information Reconciliation[J]. Designs, Codes and Cryptography,30(1): 39-62.
    [44]T. Sugimoto and K. Yamazaki.2000. A study on secret key reconciliation protocol "Cascade"[J], Trans, of the IEICE, E83-A (10):1987-1991.
    [45]A. Yamamura and H. Ishizuka.2001. Error Detection and Authentication in Quantum Key Distribution[J], in Information Security and Privacy,260-273.
    [46]G. Van Assche, J. Cardinal, and N. J. Cerf.2004. Reconciliation of a quantum-distributed gaussian key[J]. IEEE Transactions on Information Theory,50:394-2004
    [47]D. Elkouss, J. Martinez,et al.2010. Rate compatible protocol for information reconciliation: An application to QKD[C]. in Information Theory Workshop (ITW),2010 IEEE,1-5.
    [48]J. Chen and M. P. C. Fossorier.2002. Density evolution for BP-based de-coding algorithms of LDPC codes and their quantized versions[C]. in Proc.IEEE Globecom, Taipei, Taiwan, R.O.C.,1026-1030.
    [49]T. J. Richardson and R. L. Urbanke.2001. The capacity of low-density parity-check codes under message-passing decoding[J]. IEEE Trans. Inf. Theory,47(2):599-618.
    [50]X. Wei and A. N. Akansu.2001. Density evolution for low-density parity-check codes under Max-Log-MAP decoding[J]. IEE Electron. Lett.,37:1125-1126.
    [51]A. Anastasopoulos.2001. A comparison between the sum-product and the min-sum iterative detection algorithms based on density evolution[C]. in Proc. IEEE Globecom, San Antonio, TX,1021-1025.
    [52]Chung S Y, Forney Jr G D, Richardson T J, et al.2001. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit[J]. Communications Letters,5(2): 58-60.
    [53]刘洋.2003.远距离量子密钥分发系统的相关研究[D]:[博士].合肥:中国科学技术大学.51-55.
    [54]H. Krawczyk.1994.LFSR-based Hashing and Authentication[J]. Advances in Cryptology-EUROCRYPT'94,839:129-139.
    [55]Wegman,M.N, and Carter, J.L.1981.New Hash Functions and Their Use in Authentication and Set Equality[J], JCSS,22:265-279.
    [56]R. G. Gallager.1963. Low Density Parity Check Codes[M]. Cambridge, MA:MIT Press.
    [57]D. J. C. MacKay.1999. Good error-correcting codes based on very sparse matrices[J]. IEEE Trans. Inf. Theory,45(3):399-431.
    [58]X.-Y. Hu, E. Eleftheriou, and D. Arnold.2005. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory,51(1):386-398.
    [59]J. Chen, A. Dholakia, E. Eleftheriou,et al.2005.Reduced-complexity decoding of LDPC codes, IEEE Trans. On Comm.53(7):1288-1299.
    [60]S. Sharon, J. Litsyn, and J. Goldberger.2007. Efficient serial message-passing schedulers for LDPC decoding[J]. IEEE Trans, on Inf. Theory,53(11), pp.4076-4091.
    [61]K. K. Gunnam, G. S. Choi, W. Wang,et al. Decoding of quasi-cyclic LDPC codes using an on-the-fly computation[C].in Proc. Fortieth Asilomar Conference on Signals, Systems and Computers,1192-1199.
    [62]K. K. Gunnam, G. S. Choi, W. Wang, and M. B. Yeary.2007.Multi-rate layered decoder architecture for block ldpc codes of the ieee 802.1 ln wireless standard[C].in Proc. IEEE International Symposium on Circuits and Systems,1645-1648.
    [63]J. Ha, J. Kim, and S. McLaughlin.2004. Rate-compatible puncturing of low-density parity-check codes[J]. IEEE Trans, on Inf. Theory,50(11):2824-2836.
    [64]G. Richter, S. Stiglmayr, and M. Bossert.2006. Optimized asymptotic puncturing distributions for different ldpc code constructions[C]. in Information Theory, IEEE International Symposium on,831-835.
    [65]D. Klinc, J. Ha, and S. McLaughlin.2008. Optimized puncturing and shortening distributions for nonbinary Idpc codes over the binary erasure channel, in Communication, Control, and Computing,2008 46th Annual Allerton Conference on,1053-1058
    [66]Studer C, Preyss N, Roth C, et al.2008. Configurable high-throughput decoder architecture for quasi-cyclic LDPC codes[C].Signals, Systems and Computers,2008 42nd Asilomar Conference on. IEEE,1137-1142.
    [67]崔珂,张鸿飞,等.2012.基于USB的量子密钥分发系统中高速数据通道的设计,光电子.激光,23(4):751-756。
    [68]Ke Cui, Jian Wang,et al.2013.A real-time design based on FPGA for Expeditious Error Reconciliation in QKD system. IEEE transactions on Information Forensics and Security,8(1): 184-190
    [69]Zhang Hong-fei, Wang Jian, Cui Ke,et al.2012. A real-time QKD system based on FPGA, IEEE/OSA Journal of Lightwave Technology,30(20):3226-3234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700