用户名: 密码: 验证码:
危险废物焚烧残渣稳定化/固化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文调查了浙江省四个典型危险废物焚烧处置中心焚烧残渣中重金属含量及浸出毒性,探讨了磁选预处理对残渣中重金属减量化和资源化效果,研究了富里酸、胡敏酸对残渣中重金属的稳定化影响,在此基础上,针对三种可适合填埋的固化块进行模拟酸雨淋溶试验,考察了该固化块在外界环境长期作用下的稳定性。研究发现:
     危险废物残渣巾Cu的含量高达7227.7mg/kg、浸出浓度高达131.00±1.57mg/L,远超过了填埋场入场控制标准(75mg/L),Pb和Cd的TCLP浸出浓度也接近于填埋场入场控制标准,具有一定的潜在环境风险。磁选预处理可以提高残渣中Cu等有价金属的品位,但并未达到冶炼要求,且同时提高了重金属有效态与残渣态之间的比值,增加了环境危害的风险,因此不适合残渣中重金属的资源化。稳定化研究巾发现,7%的FA添加即可使残渣中Cu的TCLP浸出浓度降低至72.42±0.77 mg/L,可满足危险废物填埋场入场控制标准,Ca2+的添加则有助于残渣中Cu的进一步稳定化,面HA却不然。正交试验进一步确定了稳定化效果最佳时的FA、HA及CaCl2添加量分别为10%、0.7%和0.35%。稳定化处理后残渣的固化试验结果表明不同水泥配比及养护时间下,固化样品的无侧压抗压强度均可达到美国EPA标准(0.35 MPa),Cu、Pb和Cd的浸出毒性随着水泥添加量的增加以及养护时间的延长逐渐下降,其中水泥添加量为10%、养护7d或添加量为5%、养护14d等处理分别能满足填埋场进场标准。对固化样品的模拟酸雨淋溶试验发现,即便经腐植酸稳定化后残渣的重金属浸出浓度已达填埋场进场标准,但后续的水泥固化操作必不可少,否则容易导致变形、坍塌。一年的淋溶量表明,固化块的酸缓冲能力稳定,重金属随着酸雨的淋溶缓慢释放,但未破碎固化块中重金属较破碎固化块巾稳定,为了衡量重金属的长期释放行为,后续尚需考察其更长年份的淋溶效果。
This paper investigated the characteristics of hazardous waste incineration residues (HWIR) from four typical disposal centers in Zhejiang Province, explored the effects of magnetic pretreatment, studied the stabilization effects of fulvic acid (FA) and humic acid (HA), and tested the long-term stability of solidified sample. It was found that the Cu content and Cu2+ leaching concentration of the HWIR can amount to 7227.7 mg/kg and 131.00±1.57 mg/L, respectively, which is significantly higher than the landfill permission control standard (75 mg/L), while those of Pb and Cd were close to the standard that indicating potential environmental risks. Magnetic pretreatment can enrich Cu but still lower than the demand of smelting. At the same time, magnetic pretreatment also can change the ratio of available and residual form of the heavy metals, thereby increasing the environmental risk. It meant that the residues weren't suitable for the reutilization.7% of FA added to the residues could decrease the TCLP concentration of Cu1+ to 72.42±0.77 mg/L, which is below the landfill admission control standard. Ca2+ can strengthen the stabilization of Cu, while the HA was opposite. The best addition of FA, HA and CaCl2 was 10%,0.7% and 0.35%, respectively. The compressive strength of all of the solidified samples can meet the USA EPA standard (0.35MPa). The leaching of Cu2+, Pb2+ and Cd2+ decreased gradually with the increasing of cement and curing time, and 10% cement, 7 days' conserving or 5% cement 14 days'conserving can meet the standards. The simulated acid rain leaching test found even if the leaching concentrations of heavy metals by HA stabilization meet the standard, the follow-up solidified was necessary, otherwise the solidified samples collapse easilily. Rainfall test showed that the acid buffering capacity of solidified samples were steady, heavy metals slowly released. To evalute the long-term releasing behavior of heavy metals, a longer test needed.
引文
[I]K P Maravelaki, G Moraitou. Sorel's cement mortars:decay susceptibility and effect on Pentelic marble [J]. Cement and Concrete Research,1999,29(12): 1929-1935.
    [2]Zongjin L, Chau C K. Influence of molar ratios on properties of magnesium oxychloride cement [J]. Cement and Concrete Research,2007,37(6):866-870.
    [3]Guozhong L, Yanzhen Y, Jianquan L, et al. Experimental study on urban refuse/ magnesium oxychloride cement compound floor tile [J]. Cement and Concrete Research,2003,33(10):1663-1668.
    [4]Dehua D, Chuanmei Z. The formation mechanism of the hydrate phases in magnesium oxychloride cement [J]. Cement and Concrete Research,1999,29(9): 1365-1371.
    [5]Jianli Ma, Youcai Zhao, Jinmei Wang, Li Wang, et al. Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge [J]. Construction and Building Materials,2010,24(1):79-83.
    [6]L Zhang, F P Glasser. Hydration of calcium sulfoaluminate cement at less than 24 h [J]. Advanced Cement Research,2002,14(4):141-155.
    [7]V Kasselouri, P Tsakiridis, C Malami, B Georgali, C Alexandridou. A study on the hydration products of a non-expansive sulfoaluminate cement [J]. Cement and Concrete Research,1995,25(8):1726-1736.
    [8]F Winnefeld, S Barlag. Calorimetric and thermogravimetric study on the influ-ence of calcium sulfate on the hydration of ye'elimite [J]. Journal of Thermal Analysis and Calorimctry.2010.101(3):949-957.
    [9]F P Glasser,(?) 长量.硫铝酸盐水泥化学需水量的计算[J].硅酸盐学报,2000,28(4):340-347.
    [10]F P Glasser, L Zhang, Q Zhou. Reactions of aluminate cements with calcium sulfate [J]. Calcium Aluminate Cements,2001,16(7):551-564.
    [11]F Winnefeld. B Lothenbach. Hydration of calcium sulfoaluminate cements-experimental findings and thermodynamic modeling [J]. Cement and Concrete Research,2010,40(8):1239-1247.
    [12]S Berger, C Cau Dit Coumes, P Le Bescop, D Damidot. Hydration of calcium sulfoaluminate cement by a ZnCl2 solution:investigation at early age [J]. Cement and Concrete Research,2009,39(12):1180-1187.
    [13]V Albino, R Cioffi, M Marroccoli, L Santoro. Potential application of ettringite generating systems for hazardous waste stabilization [J]. Journal of Hazardous Materials,1996,51(1-3):241-252.
    [14]R Berardi, R Cioffi, L Santoro. Matrix stability and leaching behaviour in ettringite-based stabilization systems doped with heavy metals [J]. Waste Management,1997,17(8):535-540.
    [15]J Pera, J Ambroise, M Chabannet. Valorization of automotive shredder residue in building materials [J]. Cement and Concrete Research,2004,34(4):557-562.
    [16]S Peysson, J Pera, M Chabannet. Immobilization of heavy metals by calcium sulfoaluminate cement [J]. Cement and Concrete Research,2005,35(12):2261-2270.
    [17]M L D Gougar, B E Scheetz, D M Roy. Ettringite and C-S-H Portland cement phases for waste ion immobilization:a review [J]. Waste Management,1996,16(4): 295-303.
    [18]S Auer, H J Kuzel, H Pollmann, F Sorrentino. Investigation on MSW fly ash treatment by reactive calcium aluminates and phases formed [J]. Cement and Concrete Research,1995,25(6):1347-1359.
    [19]Stephane Berger, Celine Cau Dit Coumes, Patrick Le Bescop, Denis Damidot. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: Cement hydration, strength development and volume stability [J]. Cement and Concrete Research.1999.29(9):1365-1371.
    [20]G Arliguie. J Grandet. Etude par calorimetrie de l'hydratation du ciment Port-land en presence de zinc [J]. Cement and Concrete Research.1985.15(5):825-832.
    [21]J Dale Ortego. S Jackson. G S Yu. H McWhinney. D L Cocke. Solidification of hazardous substances-a TGA and FTIR study of Portland cement containing metal nitrates [J]. Journal of Hazardous Materials,1989,22(2):251-252.
    [22]I Fernandez Olmo, E Chacon. A Irabien. Influence of lead. zinc. iron(Ⅲ) and chromium(III) oxides on the setting time and strength development of Portland cement [J]. Cement and Concrete Research,2001,31(8):1213-1219.
    [23]I W Hamilton, N M Sammes. Encapsulation of steel foundry bag house dusts in cement mortar [J]. Cement and Concrete Research,1999,29(1):55-61.
    [24]F Ziegler, R Giere, C A Johnson. Sorption mechanisms of zinc to calcium sil-icate hydrate:sorption and microscopic investigations [J]. Environmental Science and Technology,2001,35(22):4556-4561.
    [25]I Moulin, W E E Stone, J Sanz, J Y Bottero, F Mosnier, C Haehnel. Lead and zinc retention during hydration of tri-calciumsilicate:a study by sorption isotherms and 29Si NMR spectroscopy [J]. Langmuir,1999,15(8):2829-2835.
    [26]S Komarneni, E Breval, D M Roy, R Roy. Reactions of some calcium silicates with metal cations [J]. Cement and Concrete Research,1988,18(2):204-220.
    [27]F Ziegler, A M Sheidegger, C A Johnson, R Dahn, E Wieland. Sorption mecha-nisms of zinc to calciumsilicate hydrate:X-ray absorption fine structure (XAFS) investigation [J]. Environmental Science and Technology,2001,35(7):1550-1555.
    [28]A Stumm, K Garbev, G Beuchle, L Black, P Stemmermann, R Nuesch. Incor-poration of zinc into calcium silicate hydrates, part I:formation of C-SH (Ⅰ) with C/S=2/3 and its isochemical counterpart gyrolite [J]. Cement and Concrete Research, 2005,35(9):1665-1675.
    [29]G Arliguie, J P Ollivier, J Grandet. Etude de l'effet retardateur du zinc sur l'hydratation de la pate de ciment Portland [J]. Cement and Concrete Research.1982. 12(1):79-86.
    [30]G Arliguie, J Grandet. Influence de la composition d'un ciment Portland sur son hydratation en presence de zinc [J]. Cement and Concrete Research.1990.20(4): 517-524.
    [31]J Dale Ortego, Y Barroeta, F K. Cartledge, H Akhter. Leaching effects on silicate polymerization. An FTIR and silicon-29 NMR study of lead and zinc in Portland cement [J]. Environmental Science and Technology.1991,25(6):1171-1174.
    [32]M Yousuf, A Mollah, K Vempati. T C Lin, D L Cocke. The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems [J]. Waste Management,1995,15(2):137-148.
    [33]S Asavapisit, G Fowler, C R Cheeseman. Solution chemistry during cement hydration in the presence of metal hydroxide wastes [J]. Cement and Concrete Research,1997,27(8):1249-1260.
    [34]Grega E Voglar, Domen Lestan. Efficiency modeling of solidification/ stabilization of multi-metal contaminated industrial soil using cement and additives [J]. Journal of Hazardous Materials,2011,192(2):753-762.
    [35]Sunday A Leonard, Julia A Stegemann. Stabilization/solidification of petroleum drill cuttings:Leaching studies [J]. Journal of Hazardous Materials,2010,174(1-3): 484-491.
    [36]杨志泉,周少奇.垃圾焚烧飞灰中重金属污染控制的研究进展[J].环境卫生工程,2005,13(4):36-42.
    [37]张妍,蒋建国,邓舟,等.焚烧飞灰磷灰石药剂稳定化技术研究[J].环境科学,2006,27(1):189-192.
    [38]王军,蒋建国,隋继超,等.垃圾焚烧飞灰H3PO4稳定化技术及机理研究[J].环境科学,2006,27(8):1692-1696.
    [39]陈德珍,龚佰勋,姜宗顺,等.绿矾处理垃圾焚烧灰渣过程巾重金属的同时稳定化研究[J].环境科学学报,2005,25(1):128-134.
    [40]Y C Zhao, L J Song, G J Li. Chemical stabilization of MSW incinerator fly ashes [J]. Journal of Hazardous Materials,2002,95(1-2):47-63.
    [41]蒋建国,张妍,许鑫,王军,邓舟,赵振振.可溶性磷峻盐处理焚烧飞灰的稳定化技术[J].环境科学,2005,27(4):191-194.
    [42]工旌,付融冰,罗启仕,张长波,许延营.亚铁盐对城市污泥中重金属的稳定化作用研究[J].环境科学,2010,31(4):1036-1040.
    [43]Bradley S Crannell. T Taylor Eighmya. James E Krzanowski, J Dykstra Eusden Jr, Elisabeth L Shawd, Carl A. Francise. Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate [J]. Waste Management,2000, 20(2-3):135-148.
    [44]D Geysena. K Imbrechtsa. C Vandecasteelea. M Jaspersb. G Wautersb. Immobilization of lead and zinc in scrubber residues from MSW combustion using soluble phosphates [J]. Waste Management,2004,24(5):471-481.
    [45]徐科,吴立,陈德珍.采用螯合剂稳定垃圾焚烧飞灰中的重金属[J].能源研究与信息,2005,21(2):82-89.
    [46]蒋建国,王伟,李国鼎,那崇铮,甑晓月,赵翔龙.重金属螯合剂处理焚烧飞灰的稳定化技术研究[J].环境科学,1999,20(3):13-17.
    [47]G R Qian, H H Zhang, X L Zhang, et al. Modification of MSW fly ash by anionic chelating surfactant [J]. Journal of Hazardous Materials,2005,121(1-3):251-258.
    [48]方盛荣,徐颖,路景玲,魏晓云,谢志钢,薛璐.螯合剂处理重金属污染底泥的实验研究[J].化工学报,2011,62(1):231-236.
    [49]张海军,于颖,倪余文,李永仙,王淑秋,陈吉平.采用巯基捕收剂稳定化处理垃圾焚烧飞灰中的重金属[J].环境科学,2007,28(8):1899-1904.
    [50]张新艳,王起超,张少庆,孙晓静,张仲胜.巯基功能化沸石吸附Hg2+特征及固化/稳定化含汞废物研究[J].环境科学学报,2009,29(10):2134-2140.
    [51]蒋建国,王伟,李国鼎,那崇铮,甑晓月,赵翔龙.重金属螯合剂处理焚烧飞灰的稳定化技术研究[J].环境科学,1999,20(5):13-17.
    [52]朱丽珺,张金池,宰德欣,等.腐殖质对重金属Cu2+pb2+的吸附特性[J].南京林业大学学报(自然科学版),2007,31(4):73-76.
    [53]H Kodama, M Schnitzer. Kinetics and mechanism of the thermal decomposition of fulvic acid[J]. Soil Science,1970,109(5):265-271.
    [54]李光林,魏世强,等.土壤胡敏酸对Pb的吸附特征与影响因素[J].农业环境科学学报,2004,23(2):308-312.
    [55]余贵芬,蒋新,等.镉铅在粘土上的吸附及受腐植酸的影响[J].环境科学,2002,23(5):109-112.
    [56]杨亚提,张一平,白锦鳞,等.土壤胡敏酸与铜离子络合反应及吸附过程热力学特征研究[J].土壤学报,1997.34(4):375-380.
    [57]吕福荣,刘艳.腐殖酸对钴镉作用的研究[J].大连大学学报,2002,23(4):63-67.
    [58]王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金,2003.1(1):47-49.
    [59]李光林,等.镉在胡敏酸上的吸附动力学和热力学研究[J].土壤学报,2004,41(1):74-79.
    [60]K A Matis, A Zoulis. Sorption of as by goethite particles and study of their flocculation [J]. Water Air and Soil Pollution,1998,104(8):33-45.
    [61]吴景贵,席时权,姜岩.土壤腐殖质的分析化学进展[J].分析化学,1997(10):1221-1227.
    [62]L Celi, M Schnirzer, M Negre. Analysis of carboxyl groups in soil humic acids by a wet chemical method, fourier transform infrared spectropho tometry, and solution state carbon 13 nuclear magnetic cresonance [J]. Soil Science,1997, (162): 189-197.
    [63]Y Chen, M Schitzer. Information provided on humid substances by E4/E6 ration [J]. Soil Science Society of America Jourmal,1997(41):352-358.
    [64]A S Miguel, anchez-Monedero, Juan Cegarra, Diego Garca, et al. Chemical and structural evolution of humic acids during organic waste composting [J]. Biodegradation,2002(13):361-371.
    [65]朱丽珺,张金池,俞元春,宰德欣,池杏微,孙慧宇,胡书燕.胡敏酸吸附重金属Cu2+pb2+Cd2+的特征及影响因素[J].农业环境科学学报,2008,27(6):2240-2245.
    [66]李光林,魏世强,青长乐.镉在胡敏酸上的吸附动力学和热力学研究[J].土壤学报,2004,41(1):74-79.
    [67]刘保峰,魏世强.胡敏酸-镍络合稳定性及热力学特征研究[J].农业环境科学学报,2007,26(6):2071-2074.
    [68]李光林,魏世强,牟树森.土壤胡敏酸对Pb的吸附特征与影响因素[J].农业环境科学学报,2004,23(2):308-312.
    [69]Maria S Jimenez. Maria T Gomez, L Rodriguez, R Velarte. Juan R Castillo. Characterization of metal-humic acid complexes by polyacrylamide gel electrophoresis-laser ablation-inductively coupled plasma mass spectrometry [J]. Analytica Chimica Acta,2010.676(1-2):9-14.
    [70]Suiling Wang, Catherine N Mulligan. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid [J]. Chemosphere.2009,74(2): 274-279.
    [71]J M De la Rosa, M Santos, M F Araujo. Metal binding by humic acids in recent sediments from the SW Iberian coastal area [J]. Estuarine, Coastal and Shelf Science, 2011,93(4):478-485.
    [72]翟莹雪,魏世强.土壤富里酸对镉的吸附特征与影响因素的研究[J].农业环境科学学报,2006,25(5):1208-1211.
    [73]翟莹雪,魏世强.土壤富里酸对铅的吸附作用与影响因素的研究[J].农业环境科学学报,2010,29:127-131.
    [74]汪斌,庄严,谭建新,代静玉.低浓度富里酸对底泥中重金属铅的生物有效性影响[J].农业环境科学学报,2006,25(5):1182-1187.
    [75]Mark S H Mak, Irene M C Lo Mulligan. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr (VI) and As (V) removal by zero-valent iron [J]. Chemosphere,2011,84(2):234-240.
    [76]ASTM D 6357200a, Standard Test Methods for Determination of Trace Elements in Coal, Coke, and Combustion Residues from Coal Utilization Processes by Inductively Coupled Plasma Atomic Emission Spectrometry, Inductively Coupled Plasma Mass Spectrom.
    [77]工军,蒋建国,隋继超,等.垃圾焚烧飞灰基本性质的研究[J].环境科学,2006,27(11):2283-2287.
    [78]A Tessier, P G C Campbell, M Bisson. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry,1979,51(7):844-851.
    [79]N Ratasuk, M A Nanny. Characterization and quantification of reversible redox sites in humic substances [J], Environmental Science and Technology,2007.41(22): 7844-7850.
    [80]E Tipping. Cation binding by humic substances [M]. Cambridge University Press. Cambridge. U.K.2002.
    [81]B Gu. J Schmitt, Z Chen, L Liang. J F McCarthy. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models [J]. Environmental Science and Technology,1994,28(1):38-46.
    [821 K M Spark. J D Wells. B B Johnson. The interaction of a humic acid with heavy metals [J]. Australian Journal of Soil Research,1997,35(1):89-101.
    [83]M J Eick, J D Peak, W D Brady. The effect of oxyanions on the oxa-late-promoted dissolution of goethite [J]. Soil Science Society of America Journal, 1999,63(5):1133-1141.
    [84]I Christl, R Kretzschmar. Interaction of copper and fulvic acid at the hematite-water interface [J]. Geochimica et Cosmochimica Acta,2001,65(20): 3435-3442.
    [85]C A Coles, R N Yong. Humic acid preparation, properties and interactions with metals lead and cadmium [J]. Engineering Geology,2006,85(1-2):26-32.
    [86]S Wang, C N Mulligan. Effect of natural organic matter on arsenic release from soils and sediments into groundwater [J]. Environmental Geochemistry and Health, 2006,28(3):197-214.
    [87]金艳,宋繁永,朱南文,郭婷婷.不同固化剂对城市污水处理厂污泥固化效果的研究[J].环境污染与防治,2011,33(2):74-78.
    [88]文启孝.土壤有机质研究法[M].北京:农业出版社,1982.234-247.
    [89]蒋建国,张妍,许鑫,王军,邓舟,赵振振.可溶性磷酸盐处理焚烧飞灰的稳定化技术[J].环境科学,2005,26(4):191-194.
    [90]F J Stevenson. Nature of divalent transition metal complexes of humic acids as revealed by a modified potentiometric titration method [J]. Soil Science,1977, 123(1).
    [91]J R Sanders, S P McGrath. Experimental measurements and computer predictions of copper complex formation by soluble soil organic matter [J]. Environmental Pollution,1988,49(1):63-76.
    [92]K Bunzl. Kinetics of ion exchange in soil organic matter [J]. Journal of Soil Science,1974,25(4):517-532.
    [93]F J Stevenson. Lead-organic matter interactions in a mollisol [J]. Soil Biology and Biochemistry,1979,11(5):493-499.
    [94]L E DeMumbrum, M L Jackson. Copper and zinc exchange from dilute neutral solutions by soil colloidal electrolytes [J]. Soil Science.1956.81(5):353-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700