用户名: 密码: 验证码:
阿托伐他汀修饰的树突状细胞对实验性自身免疫性神经炎的治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:人类格林-巴利综合征(GBS)是引起神经肌肉麻痹的普遍原因,而急性炎症性脱髓鞘性多发性神经病(AIDP),其最常见的类型,为一种自身免疫性疾病,临床上主要累及外周神经系统(PNS),而发病机制主要由CD4+T细胞参与介导。实验性自身免疫性神经炎(EAN)是公认的研究人类AIDP的动物模型,在易感动物中,通过外周神经系统中同种抗原的免疫(如BPM、PO等)可以诱导EAN的发生。
     树突状细胞(DCs)是经典的抗原递呈细胞,能够启动和调控免疫反应,与活化的DCs相比,未成熟的DCs,特征是其表面共刺激分子如CD80、CD86和MHC-Ⅱ分子下调,在免疫调节中通过多种效应机制起作用,而且,它能够诱导T细胞的低反应性,这种现象已经被人们用于控制某些自身免疫性疾病的研究,比如说1型糖尿病(type-I diabetes)及类风湿关节炎(RA)。近二十年间,研究者们尝试用不同的方式创造能够诱导免疫耐受的DCs,统称为“耐受性DCs",这些研究大都应用于动物模型,包括实验性自身免疫性脑脊髓膜炎(EAE),实验性自身免疫性重症肌无力(EAMG)及实验性自身免疫性葡萄膜炎(EAU)等。
     在体外修饰产生耐受性DCs的方式很多,最常见有效的是应用免疫抑制剂,例如应用IL-10, TGF-β等,而利用免疫抑制药物对DC功能进行药理调节进而诱导耐受性DCs产生的方式也做过广泛研究。包括阿托伐他汀在内的他汀类药物,在胆固醇生物合成的甲羟戊酸途径中可以竞争性抑制HMG-CoA还原酶(胆固醇合成过程中的一种关键酶),临床上广泛用于治疗动脉粥样硬化性疾病和高脂血症。研究表明他汀类药物具有免疫调节和抗炎作用,尤其可以抑制DCs的分化和成熟,我们的前期试验发现:阿托伐他汀可以抑制脾源性DCs的成熟,其表面协同刺激分子CD80和CD86表达明显下降,而且经他汀修饰的DCs可以减轻EAMG的症状和体内炎症,表现为调节性T细胞(Treg cells)的上调,Th1/Th17型细胞因子向Th2型细胞因子的转变。
     他汀修饰的DCs对EAN或GBS有无免疫调节作用,到目前为止还没有相关报道。在本研究中,我们在体外通过阿托伐他汀修饰DCs使之具有诱导免疫耐受的功能,在发病的起始阶段,利用上述DCs对EAN大鼠给予干预,结果发现阿托伐他汀修饰的DCs对EAN大鼠有保护作用,其机制主要与外周淋巴结中Treg细胞数量和胸腺中Foxp3阳性细胞数量的上调、外周淋巴结中NK细胞及NKT细胞数目的上调、Thl/Th17型细胞因子的降低、外周神经系统炎性细胞浸润减少及淋巴细胞增殖的抑制等有关。
     研究目的:探讨阿托伐他汀修饰的DCs对实验性自身免疫性神经炎的治疗作用及免疫调节机制。
     研究方法:
     1.建立EAN模型并临床评估提取BPM,并完全溶于弗氏不完全佐剂(IFA)和H37Ra株结核分枝杆菌中以配制抗原,在大鼠双后足垫皮下注射上述充分混匀的抗原,每只大鼠用量为200μl,以免疫动物造模。免疫当天定为第0天,每天对大鼠的症状进行观察并临床评估(双盲法观察)直至免疫后第14天。
     2.耐受性DCs的制备及鉴定取健康Lewis大鼠的脾脏(注意无菌操作),通过研磨以制备单个核细胞悬液。破红细胞膜后,在37℃、5%CO2条件下,将置于培养瓶中的细胞液培养2h。弃悬浮细胞,留取贴壁细胞,加入完全培养基于上述条件下继续培养。18h后向培养瓶中加入溶于二甲基亚砜(DMSO)的阿托伐他汀(终浓度10μM),对照培养瓶中加入等体积的DMSO。培养48h后收集悬浮的细胞分别标记为他汀修饰的DCs (statin-DCs)和未经他汀修饰的DCs(untreated-DCs)。通过流式检测不同组DCs表面CD80、 CD86、 MHC-II分子。
     3.动物分组及干预将EAN大鼠随机分为三组,每组五只,在免疫第五天,治疗组分别给予他汀修饰的DCs、未经他汀修饰的DCs腹腔注射,每只大鼠注射的细胞数为1×106个,对照组(control group)给予等体积的1640培养基腹腔注射。
     4.制备淋巴结单个核细胞(MNC)在EAN发病高峰期处死大鼠,在无菌条件下取其腹股沟淋巴结,研磨淋巴结,制备MNC并计数,将细胞浓度调整为2×106个细胞/ml。
     5.流式细胞仪检测淋巴结单个核细胞表面的CD80、 CD86及MHC-Ⅱ取淋巴结MNC,洗涤后分别加入FITC标记的小鼠抗大鼠CD86和MHC-II抗体,以及PE标记的小鼠抗大鼠CD80抗体,经孵育、重悬、过滤等步骤,流式细胞仪检测。
     6.流式检测NK和NKT细胞取淋巴结MNC,洗涤后分别加入FITC标记的小鼠抗大鼠CD3抗体和PE标记的小鼠抗大鼠CD161a抗体,经孵育、重悬、过滤等步骤,流式细胞仪检测。
     7.流式检测Th1/Th2/Th17型细胞因子取淋巴结MNC,经洗涤、固定、破膜等步骤,分别加入PE标记的小鼠抗大鼠IL-10抗体、FITC标记的抗大鼠IFN-γ抗体、PE标记的抗大鼠TNF-α抗体和FITC标记的抗大鼠IL-17A抗体,经孵育、重悬、过滤等步骤,流式细胞仪检测。
     8.流式检测Treg细胞取淋巴结MNC,洗涤后分别加入PE标记的抗CD25抗体(小鼠抗大鼠)和FITC标记的抗CD4抗体(小鼠抗大鼠),4℃条件下孵育30min,避光,洗涤后加入固定/破膜工作液并混匀,4℃孵育过夜,避光。洗涤细胞后加入PE-Cy5标记的Foxp3抗体4℃孵育30min,重悬、过滤后,流式细胞仪检测。
     9.淋巴细胞增殖实验将同组细胞悬液以同样比例混合,加入0.5μl CFSE,37℃避光孵育30min,加入预冷的1640,置于冰上孵育5min;离心弃上清后加入完全培养基,以相同细胞数种于24孔板,分别加入刺激物BPM或ConA,置于37℃、5%CO2条件下培养72h;将24孔板中的细胞分别收集到流式管中,离心5min (1200rpm/min),弃上清后混匀;洗涤后加入PE标记的抗大鼠CD4抗体,经孵育、重悬、过滤等步骤,流式细胞仪检测。
     10.组织病理学检测在发病高峰期即免疫后第14天,处死大鼠后取坐骨神经,10%多聚甲醛固定,石蜡包埋,常规切片,依次经脱蜡、水化、苏木素染色、0.5%伊红液染色、脱水、透明、封片等步骤,显微镜下观察坐骨神经中炎性细胞的浸润情况并计数。
     11.胸腺免疫组化检测大鼠胸腺石蜡包埋后切片,常规脱蜡、水化,柠檬酸盐抗原修复,H202消除内源性过氧化物酶,滴加稀释好的一抗,大鼠抗小鼠/大鼠Foxp3,4℃过夜。复温后洗涤,滴加HRP标记的羊抗大鼠二抗,37℃孵育1h,洗涤后DAB显色,苏木素复染,脱水、透明、封片。显微镜下观察大鼠胸腺中Foxp3+细胞的情况并计数。
     研究结果:
     1.阿托伐他汀对DC表型的影响他汀修饰的DCs较未经他汀修饰的DCs表面共刺激分子CD80和CD86的表达明显降低,而MHC-II分子没有显著性差异。
     2.三组大鼠的发病情况与临床评分与对照组相比,他汀修饰的DCs在免疫的第11到第14天,明显缓解了EAN大鼠的临床症状;而与未经修饰的DCs相比,他汀修饰的DCs在免疫的第12到第14天,明显减轻了EAN大鼠的临床症状;对照组与未经他汀修饰的DCs治疗组的临床评分之间无明显差异。
     3.阿托伐他汀修饰的DCs治疗减少EAN大鼠坐骨神经中的炎性细胞他汀修饰的DCs治疗组中EAN大鼠坐骨神经中炎性细胞较未处理DCs治疗组及对照组明显减少。
     4.阿托伐他汀修饰的DCs治疗下调EAN大鼠淋巴结单个核细胞上CD80、 CD86和MHC-Ⅱ的表达。与对照组相比,他汀修饰DCs治疗组中EAN大鼠淋巴结单个核细胞上CD80、 CD86及MHC-II均显著降低;与未处理DCs治疗组相比,上述指标亦有降低,但是没有显著性差异。而且,淋巴结单个核细胞上CD80和CD86在对照组中和未处理DCs治疗组中没有显著性差异,但是MHC-II在未处理DCs治疗组中明显降低,与对照组相比。
     5.他汀修饰的DCs治疗降低了EAN大鼠淋巴结单个核细胞中Thl和Thl7型细胞因子的表达与对照组相比,他汀修饰DCs治疗组中EAN大鼠淋巴结单个核细胞中的IFN-γ, TNF-α和IL-17A均显著降低;与未处理DCs治疗组相比,IL-17A和TNF-α降低,但无显著性差异;同时与对照组相比,未处理DCs治疗组中IFN-γ和TNF-α显著下降,而IL-17A在这两组中无显著性差异;三组之中,IL-10没有显著性差异。
     6.他汀修饰的DCs上调了淋巴结单个核细胞中NK和NKT细胞的数量与对照组和未处理DCs治疗组相比,CD3-CD161a+NK细胞在他汀修饰DCs治疗组明显升高;与另外两组相比,CD3+CD161a+NKT细胞在他汀修饰的DCs治疗组也有升高,而且与对照组之间有显著性差异,而与未处理DCs治疗组无显著性差异。
     7.他汀修饰的DCs上调了淋巴结单个核细胞CD4+Foxp3+Treg细胞的数量与对照组及未处理DCs治疗组相比,他汀修饰的DCs上调了淋巴结单个核细胞中CD4+Foxp3+Treg细胞的数量;而在其他两组之间未发现CD4+Foxp3+Treg细胞数量有显著性差异。
     8.他汀修饰DCs上调了胸腺中Foxp3+细胞的数量与对照组及未处理DCs治疗组相比,他汀修饰DCs治疗组中胸腺Foxp3+细胞的数量明显增加;另外两组中Foxp3+细胞数量无显著性差异。
     9.他汀修饰的DCs治疗抑制了淋巴细胞增殖反应与对照组及未处理DCs组相比,他汀修饰DCs显著抑制了淋巴细胞增殖反应,无论是在BPM抗原刺激的情况下,还是ConA抗原刺激的情况下;我们没有发现在对照组和未处理DCs治疗组之间,淋巴细胞增殖有显著性差异。
     结论:
     1.阿托伐他汀可诱导DCs成为耐受性DCs。
     2.阿托伐他汀修饰的DCs干预,可以减轻实验性自身免疫性神经炎的症状。
     3.阿托伐他汀修饰的DCs在实验性自身免疫性神经炎中可诱导中枢(胸腺)和外周(淋巴结)免疫耐受。
     意义:
     本研究通过阿托伐他汀诱导DCs成为耐受性DCs,给予EAN大鼠腹腔注射,显示他汀诱导的耐受性DCs能够减轻EAN的症状并诱导免疫耐受,这种作用主要是通过抑制淋巴结单个核细胞表面共刺激分子(CD80和CD86)及MHC-Ⅱ的表达、降低Thl/Th17型细胞因子、上调淋巴结中Treg细胞及胸腺中Foxp3细胞的表达及上调淋巴结单个核细胞中NK及NKT细胞数量实现的。本研究为人类GBS的治疗提供了新的思路。
Background:Acute inflammatory demyelinating polyneuropathy (AIDP), the most common form of Guillain-Barre syndrome (GBS), is a CD4+T cell-mediated disease of the peripheral nervous system (PNS), with an annual incidence of0.62-2.66cases per100,000population. Experimental autoimmune neuritis (EAN) serves as an animal model for AIDP in humans, which can be induced in susceptible animal species and strains by immunization with an autoantigen emulsified in complete Freund's adjuvant.
     Dendritic cells (DCs), being professional antigen-presenting cells, initiate and orchestrate immune responses. In contrast to activated DCs, immature DCs with low levels of major histocompatibility complex (MHC) and co-stimulatory molecules have been implicated in the regulation of immune responses through diverse effector mechanisms. Particularly, immature DCs are able to induce a state of hyporesponsiveness in T cells, and the phenomenon has been used for the control or suppression of the immune response. Therefore, some attempts have been made to modify DCs to retain their immature phenotype for the induction of antigen-specific tolerance and protect from some autoimmune diseases. Statins, including atorvastatin, are competitive inhibitors of HMG-CoA reductase that regulates cholesterol synthesis in the mevalonatepathway. They are widely used in the treatment of atherosclerosis and hypercholesterolemia. Clinical and experimental evidences have demonstrated that statins have pleiotropic effects that include anti-inflammatory and immunomodulatory effects, especially inhibiting DCs differentiation and maturation. Previously, our group found that atorvastatin suppressed the maturation of spleen derived DCs, on which with the lower expression of CD80and CD86, and the statin-modified DCs could ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17to Th2cytokines. So we presume that statin-modified DCs could also attenuate EAN by immune regulation. In the present study, we transferred statin-modified DCs to EAN rats in the initial phase of the disease to evaluate its possible role and immunomodulatory effects during the process.
     Objective:The aim of the present study was to analyze the effects of DCs modified with atorvastatin (statin-DCs) on the immune tolerance induction in Lewis rats with EAN.
     Methods:
     1. Induction of EAN and assessment of clinical symptoms200μl of the inoculum contained5mg BPM and2mg Mycobacterium tuberculosis emulsified in incomplete Freund's adjuvant was subcutaneous injected into both hind footpads of the rats to induce EAN. Clinical scores were assessed immediately before immunization (day0) and thereafter every day until day14post immunization (p.i.).The severity of clinical symptoms was scored as follows:0=no illness;1=flaccid tail;2=dragging both hind limbs;3=paralysis of both hind limbs; and4=paralysis of four limbs or death, intermediate scores of0.5increment were given to rats with intermediate signs. The rats were monitored for clinical symptoms of disease by two independent investigators.
     2. DCs preparation, modification and injection DCs were prepared by the method of Duan et al. with some modifications. The spleens were removed from normal Lewis rats of6-8weeks old under aseptic conditions. Grinding the spleen from individual rats through cell strainers in medium to obtain the mononuclear cells (MNC) suspensions, then erythrocytes were lysed osmotically. DCs were further enriched by differential adherence by incubating cells. After removing the non-adherent cells, new RPMI1640medium containing gentamicin, penicillin and10%fetal bovine serum were added to the flasks. After18h of incubation, atorvastatin dissolved in DMSO was added to the flasks. The same volume of DMSO was added to the other flasks. After incubation, floating cells were collected as a DC-enriched fraction. Then statin-DCs and untreated-DCs were intraperitoneally transferred into EAN rats respectively on day5p.i. And the same volume of medium was transferred into the control rats. For phenotypic analysis, statin-DCs and untreated-DCs were washed with0.5%bovine serum albumin (BSA) in phosphate-buffered saline (PBS) and stained with fluorescein isothiocyanate (FITC)-conjugated anti-rat MHC class Ⅱ, phycoerythrin (PE)-conjugated anti-rat CD80and FITC-conjugated anti-rat CD86antibodies, after resuspending, the cells were analyzed by FACS.
     3. Preparation of lymph node MNC Inguinal lymph nodes were removed under aseptic conditions when rats were sacrificed on day14p.i. MNC suspensions were obtained by grinding the organs through cell strainers in serum-free medium. Then cells were rediluted to a cell concentration of2*106cells/ml for all experiments.
     4. Flow cytometric analysis of surface molecules, NK and NKT cells, intracellular cytokines and Treg cells in MNC from lymph nodes MNC suspensions were incubated with PE-labeled anti-rat CD80, FITC-labeled anti-rat CD86, FITC-labeled anti-rat MHC class Ⅱ, FITC-labeled anti-rat CD3, and PE-labeled anti-rat CD161a in the dark, respectively; Lymph node MNC were fixed and permeabilized, then incubated with the PE-labeled IL-10, FITC-labeled IFN-γ, PE-labeled TNF-a and FITC-labeled IL-17A, in the dark respectively; Fixation and permeabilization of lymph node MNC were performed using the eBioscience Foxp3Staining Buffer Set. Then the cells were re-suspended in PBS respectively and analyzed by FACS.
     5. Analysis of cell viability MNC of rats in the same group were mixed at equally number and incubated with CFSE in the dark, then stained by adding ice-cold1640and incubated on ice, after concentration and suspension, the mentioned cells suspended in1000μl aliquots containing1x106cells were cultured in triplicates in flat-bottomed24-well microtiter plates in the presence of BPM (15μg/ml) or Concanavalin A (ConA,5μg/ml). After incubation in a humidified atmosphere of95%air and5%CO2at37℃, the cells were collected respectively in the tube and incubated with PE-labeled anti-rat CD4antibody in the dark. Lastly, the cells were washed and re-suspended in PBS. Then the cells were analyzed by FACS.
     6. Histopathological assessment After the rats killed on day14p.i. Sciatic nerve segments were excised close to the lumbar spinal cord, then fixed in10%paraformaldehyde and embedded in paraffin. Multiple longitudinal sections of sciatic nerves were stained with hematoxylin and eosin for evaluation of the inflammatory cells by light microscopy.
     7. Immunohistochemistry Thymuses obtained from the rats on day14p.i. were excised and fixed in10%paraformaldehyde, then embedded in paraffin. Paraffin tissue sections were deparaffinized and hydrated. And in order to block the endogenous peroxidase activity, the sections were treated with0.3%hydrogen peroxide. After antigen retrieval and incubated with rat anti-mouse/rat foxp3antibody, the sections were stained with HRP-conjugated goat anti-rat secondary antibody, followed by development with diaminobenzidine (DAB) substrate to detect the number of Foxp3+cells. As negative controls for immunostaining, the primary antibodies were omitted.
     8. Statistical analysis The statistics were calculated and evaluated by the SPSS17.0computer program. Differences among different groups were tested by one-factor analysis of variance (ANQVA) followed by Least Significant Difference (LSD) test as a post-hoc test. Results were presented as mean±SD and a level of p<0.05was considered significant.
     Results:
     1. Effects of atorvastatin on the phenotype of DCs The results showed that the expression of CD80and CD86was inhibited on statin-DCs when compared with those on untreated-DCs.
     2. Statin-DCs suppress severity of clinical EAN The rats in the statin-DC group exhibited lower clinical scores when compared with the rats in control group and untreated-DC group. While it has no significant difference of the clinical scores between untreated-DC group and control group. On the day of the experiment termination, the clinical score of the rats in the statin-DC group averaged1.55±0.45, meanwhile, the clinical scores in the control and the untreated-DCs group averaged2.7±0.57and2.4±0.42.
     3. Statin-DCs decrease the number of inflammatory cells in the PNS The rats in statin-DC treated group had fewer inflammatory cells in sciatic nerves than the rats in the untreated-DC and control group.
     4. Statin-DCs inhibit the expression of co-stimulatory molecules and MHC class II in MNC from lymph nodes The expression of CD80, CD86and MHC class II in lymphocytes was inhibited in the statin-DC group when compared with those in the control group and untreated-DC group but without significant difference. Moreover, the expression of CD80and CD86in lymphocytes between the control and the untreated-DC groups did not differ significantly, but the expression of MHC class II was lower in the untreated-DC group when compared with that in the control group.
     5. Statin-DCs decrease the Th1and Th17cytokines in MNC from lymph nodes IFN-y, TNF-a and IL-17A were decreased in the statin-DC group when compared with those in the control group. IL-17A and TNF-a were decreased in the statin-DC group compared with those in the untreated-DC group, however there were no significant differences. At the same time, IFN-y and TNF-a were lower in the untreated-DC group when compared with those in control group, and there was no significant difference of IL-17A between these two groups. There was no statistical difference for IL-10among the three groups.
     6. Statin-DCs increase the numbers of NK and NKT cells in MNC from lymph nodes The percentage of CD3+CD161a+NK cells was increased in the statin-DC group when compared with that in the control and the untreated-DC group, and the percentage of CD3+CD161a+NKT cells was increased in the statin-DC group when compared with that in the control as well as the untreated-DC group but without any statistical difference.
     7. Statin-DCs increase the number of CD4+Foxp3+T cells in MNC of the lymph nodes Statin-DCs increased the percentage of CD4+Foxp3+T cells among lymph node MNC when compared with untreated-DCs and control.
     8. Statin-DCs increase the number of Foxp3+cells in the thymus The number of Foxp3+cells in thymus of statin-DCs treated rats was increased when compared with those in the other two groups. There was no significant difference between the control group and untreated-DCs group.
     9. Statin-DCs suppress lymphocyte proliferation in EAN Lymphocyte proliferation was significantly decreased in the statin-DC group compared with those in the control and untreated-DC group with BPM or without BPM. There was no significant difference between the control and untreated-DC group.
     Conclusions:
     1. DCs treated with atorvastatin (statin-DCs) can be induced into tolerogenic DCs.
     2. Administration of statin-DCs ameliorate the clinical symptoms in EAN.
     3. Statin-DCs induce both central (thymus) and peripheral immune tolerance (lymph node) in EAN.
引文
[1]Sejvar JJ, Baughman AL, Wise M, Morgan OW (2011) Population incidence of Guillain-Barre syndrome:a systematic review and meta-analysis. Neuroepidemiology 36: 123-133.
    [2]Deretzi G, Zou LP, Pelidou SH, Nennesmo I, Levi M, et al. (1999) Nasal administration of recombinant rat IL-4 ameliorates ongoing experimental autoimmune neuritis and inhibits demyelination. J Autoimmun 12:81-89.
    [3]Gold R, Hartung HP, Toyka KV (2000) Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 6:88-91.
    [4]Zou LP, Abbas N, Volkmann I, Nennesmo I, Levi M, et al. (2002) Suppression of experimental autoimmune neuritis by ABR-215062 is associated with altered Thl/Th2 balance and inhibited migration of inflammatory cells into the peripheral nerve tissue. Neuropharmacology 42:731-739.
    [5]Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245-252.
    [6]Kadowaki N (2003) Immunotherapy exploiting the versatility of dendritic cells. Ther Apher Dial 7:312-317.
    [7]Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue Antigens 77: 89-99.
    [8]Amodio G, Gregori S (2012) Dendritic cells a double-edge sword in autoimmune responses. Front Immunol 3:233.
    [9]Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, et al. (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206:549-559.
    [10]Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, et al. (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18:605-617.
    [11]Adorini L (2003) Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann N Y Acad Sci 987:258-261.
    [12]Hilkens CM, Isaacs JD, Thomson AW (2010) Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 29:156-183.
    [13]Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449: 419-426.
    [14]Thomson AW, Robbins PD (2008) Tolerogenic dendritic cells for autoimmune disease and transplantation. Ann Rheum Dis 67 Suppl 3:iii90-96.
    [15]Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7:610-621.
    [16]Huang YM, Yang JS, Xu LY, Link H, Xiao BG (2000) Autoantigen-pulsed dendritic cells induce tolerance to experimental allergic encephalomyelitis (EAE) in Lewis rats. Clin Exp Immunol 122:437-444.
    [17]Yarilin D, Duan R, Huang YM, Xiao BG (2002) Dendritic cells exposed in vitro to TGF-betal ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol 127: 214-219.
    [18]Duan RS, Adikari SB, Huang YM, Link H, Xiao BG (2004) Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells. Neurobiol Dis 16:461-467.
    [19]Usui Y, Takeuchi M, Hattori T, Okunuki Y, Nagasawa K, et al. (2009) Suppression of experimental autoimmune uveoretinitis by regulatory dendritic cells in mice. Arch Ophthalmol 127:514-519.
    [20]Hackstein H, Thomson AW (2004) Dendritic cells:emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 4:24-34.
    [21]Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343: 425-430.
    [22]Duan S, Zhang Y, Wu SJ, Jiang LZ, Zhang J, et al. (2010) Atorvastatin attenuates inflammatory infiltration and vascular remodeling in lung of hypercholesterolemia rabbits. Exp Lung Res 36:573-592.
    [23]Puccetti L, Santilli F, Pasqui AL, Lattanzio S, Liani R, et al. (2011) Effects of atorvastatin and rosuvastatin on thromboxane-dependent platelet activation and oxidative stress in hypercholesterolemia. Atherosclerosis 214:122-128.
    [24]Khattri S, Zandman-Goddard G (2013) Statins and autoimmunity. Immunol Res 56: 348-357.
    [25]Shovman O, Levy Y, Gilburd B, Shoenfeld Y (2002) Antiinflammatory and immunomodulatory properties of statins. Immunol Res 25:271-285.
    [26]Tristano AG, Fuller K (2006) Immunomodulatory effects of statins and autoimmune rheumatic diseases:novel intracellular mechanism involved. Int Immunopharmacol 6: 1833-1846.
    [27]Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease:from protein prenylation to immunomodulation. Nat Rev Immunol 6:358-370.
    [28]Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S (2008) Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+lymphocytes. J Immunol 180:6988-6996.
    [29]Ghittoni R, Napolitani G, Benati D, Ulivieri C, Patrussi L, et al. (2006) Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. Eur J Immunol 36:2885-2893.
    [30]Dunn SE, Youssef S, Goldstein MJ, Prod'homme T, Weber MS, et al. (2006) Isoprenoids determine Thl/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J Exp Med 203:401-412.
    [31]Tsakiri A, Tsiantoulas D, Frederiksen J, Svane IM (2010) Increased immunopotency of monocyte derived dendritic cells from patients with optic neuritis is inhibited in vitro by simvastatin. Exp Neurol 221:320-328.
    [32]Yilmaz A, Reiss C, Weng A, Cicha I, Stumpf C, et al. (2006) Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. J Leukoc Biol 79:529-538.
    [33]Li XL, Liu Y, Cao LL, Li H, Yue LT, et al. (2013) Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines. Mol Cell Neurosci 56C:85-95.
    [34]Norton WT, Poduslo SE (1973) Myelination in rat brain:method of myelin isolation. J Neurochem 21:749-757.
    [35]Duan RS, Link H, Xiao BG (2005) Long-term effects of IFN-gamma, IL-10, and TGF-beta-modulated dendritic cells on immune response in Lewis rats. J Clin Immunol 25: 50-56.
    [36]Gross CC, Wiendl H (2013) Dendritic cell vaccination in autoimmune disease. Curr Opin Rheumatol 25:268-274.
    [37]Lu L, Thomson AW (2002) Manipulation of dendritic cells for tolerance induction in transplantation and autoimmune disease. Transplantation 73:S19-22.
    [38]Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685-711.
    [39]Kubach J, Becker C, Schmitt E, Steinbrink K, Huter E, et al. (2005) Dendritic cells: sentinels of immunity and tolerance. Int J Hematol 81:197-203.
    [40]Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J ExpMed 193:233-238.
    [41]Dhodapkar MV, Steinman RM (2002) Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 100:174-177.
    [42]Miller SD, Vanderlugt CL, Lenschow DJ, Pope JG, Karandikar NJ, et al. (1995) Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3:739-745.
    [43]Bao L, Lindgren JU, van der Meide P, Zhu S, Ljunggren HG, et al. (2002) The, critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis. Brain Pathol 12:420-429.
    [44]Zhu J, Bai XF, Mix E, Link H (1997) Cytokine dichotomy in peripheral nervous system influences the outcome of experimental allergic neuritis:dynamics of mRNA expression for IL-1 beta, IL-6, IL-10, IL-12, TNF-alpha, TNF-beta, and cytolysin. Clin Immunol Immunopathol 84:85-94.
    [45]Zhu J, Mix E, Link H (1998) Cytokine production and the pathogenesis of experimental autoimmune neuritis and Guillain-Barre syndrome. J Neuroimmunol 84:40-52.
    [46]Bai XF, Zhu J, Zhang GX, Kaponides G, Hojeberg B, et al. (1997) IL-10 suppresses experimental autoimmune neuritis and down-regulates TH1-type immune responses. Clin Immunol Immunopathol 83:117-126.
    [47]Zhang H, Wu LM, Wu J (2011) Cross-talk between apolipoprotein E and cytokines. Mediators Inflamm 2011:949072.
    [48]Li S, Yu M, Li H, Zhang H, Jiang Y (2012) IL-17 and IL-22 in cerebrospinal fluid and plasma are elevated in Guillain-Barre syndrome. Mediators Inflamm 2012:260473.
    [49]Liang SL, Wang WZ, Huang S, Wang XK, Zhang S, et al. (2012) Th17 helper cell and T-cell immunoglobulin and mucin domain 3 involvement in Guillain-Barre syndrome. Immunopharmacol Immunotoxicol 34:1039-1046.
    [50]Li XL, Dou YC, Liu Y, Shi CW, Cao LL, et al. (2011) Atorvastatin ameliorates experimental autoimmune neuritis by decreased Thl/Th17 cytokines and up-regulated T regulatory cells. Cell Immunol 271:455-461.
    [51]Klein L, Jovanovic K (2011) Regulatory T cell lineage commitment in the thymus. Semin Immunol 23:401-409.
    [52]Lio CW, Hsieh CS (2011) Becoming self-aware:the thymic education of regulatory T cells. Curr Opin Immunol 23:213-219.
    [53]Chen W, Jin W, Hardegen N, Lei KJ, Li L, et al. (2003) Conversion of peripheral CD4+CD25" naive T cells to CD4+CD25+regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875-1886.
    [54]Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20-21.
    [55]Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68-73.
    [56]Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, et al. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18-20.
    [57]Chi LJ, Wang HB, Zhang Y, Wang WZ (2007) Abnormality of circulating CD4(+)CD25(+) regulatory T cell in patients with Guillain-Barre syndrome. J Neuroimmunol 192:206-214.
    [58]Harness J, McCombe PA (2008) Increased levels of activated T-cells and reduced levels of CD4/CD25+cells in peripheral blood of Guillain-Barre syndrome patients compared to controls. J Clin Neurosci 15:1031-1035.
    [59]Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2009) Distribution of Foxp3 (+) T-regulatory cells in experimental autoimmune neuritis rats. Exp Neurol 216:75-82.
    [60]Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2008) Valproic acid attenuates inflammation in experimental autoimmune neuritis. Cell Mol Life Sci 65:4055-4065.
    [61]Zhang ZY, Zhang Z, Schluesener HJ (2010) MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 169:370-377.
    [62]Fontenot JD, Dooley JL, Farr AG, Rudensky AY (2005) Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 202:901-906.
    [63]Jiang Q, Su H, Knudsen G, Helms W, Su L (2006) Delayed functional maturation of natural regulatory T cells in the medulla of postnatal thymus:role of TSLP. BMC Immunol 7:6.
    [64]Liu YJ (2006) A unified theory of central tolerance in the thymus. Trends Immunol 27: 215-221.
    [65]Coquet JM, Ribot JC, Babala N, Middendorp S, van der Horst G, et al. (2013) Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+regulatory T cell development via the CD27-CD70 pathway. J Exp Med 210:715-728.
    [66]Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJ, et al. (2013)_The. thymic medulla is required for Foxp3+regulatory but not conventional CD4+thymocyte development. J Exp Med 210:675-681.
    [67]Hanabuchi S, Ito T, Park WR, Watanabe N, Shaw JL, et al. (2010) Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol 184:2999-3007.
    [68]Watanabe N, Wang YH, Lee HK, Ito T, Cao W, et al. (2005) Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+regulatory T cells in human thymus. Nature 436: 1181-1185.
    [69]Nomura T, Sakaguchi S (2007) Foxp3 and Aire in thymus-generated Treg cells:a link in self-tolerance. Nat Immunol 8:333-334.
    [70]Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12:157-167.
    [71]Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100-111.
    [72]Kiessling R, Klein E, Pross H, Wigzell H (1975) "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117-121.
    [73]Shi FD, Van Kaer L (2006) Reciprocal regulation between natural killer cells and autoreactive T cells. Nat Rev Immunol 6:751-760.
    [74]Xu W, Fazekas G, Hara H, Tabira T (2005) Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis. J Neuroimmunol 163:24-30.
    [75]Chambers BJ, Salcedo M, Ljunggren HG (1996) Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5:311-317.
    [76]Laouar Y, Sutterwala FS, Gorelik L, Flavell RA (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6:600-607.
    [77]Trivedi PP, Roberts PC, Wolf NA, Swanborg RH (2005) NK cells inhibit T cell proliferation via p21-mediated cell cycle arrest. J Immunol 174:4590-4597.
    [78]Mercer JC, Ragin MJ, August A (2005) Natural killer T cells:rapid responders controlling immunity and disease. Int J Biochem Cell Biol 37:1337-1343.
    [79]Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, et al. (2003) Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 15:279-288.
    [80]Munschauer FE, Hartrich LA, Stewart CC, Jacobs L (1995) Circulating natural killer cells but not cytotoxic T lymphocytes are reduced in patients with active relapsing multiple sclerosis and little clinical disability as compared to controls. J Neuroimmunol 62:177-181.
    [81]Vranes Z, Poljakovic Z, Marusic M (1989) Natural killer cell number and activity in multiple sclerosis. J Neurol Sci 94:115-123.
    [82]Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677-1687.
    [83]Matsumoto Y, Kohyama K, Aikawa Y, Shin T, Kawazoe Y, et al. (1998) Role of natural killer cells and TCR gamma delta T cells in acute autoimmune encephalomyelitis. Eur J Immunol 28:1681-1688.
    [84]Chong WP, Ling MT, Liu Y, Caspi RR, Wong WM, et al. (2013) Essential role of NK cells in IgG therapy for experimental autoimmune encephalomyelitis. PLoS One 8:e60862.
    [85]Sun B, Li HL, Wang JH, Wang GY, Zhao R, et al. (2007) Passive transfer of experimental autoimmune neuritis by IL-12 and IL-18 synergistically potentiated lymphoid cells is regulated by NKR-P1+cells. Scand J Immunol 65:412-420.
    [1]Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7-13.
    [2]Rudensky AY (2011) Regulatory T cells and Foxp3. Immunol Rev 241:260-268.
    [3]Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20-21.
    [4]Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68-73.
    [5]Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, et al. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18-20.
    [6]Fontenot JD, Dooley JL, Farr AG, Rudensky AY (2005) Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 202:901-906.
    [7]Liu YJ (2006) A unified theory of central tolerance in the thymus. Trends Immunol 27: 215-221.
    [8]Jiang Q, Su H, Knudsen G, Helms W, Su L (2006) Delayed functional maturation of natural regulatory T cells in the medulla of postnatal thymus:role of TSLP. BMC Immunol 7:6.
    [9]Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJ, et al. (2013) The thymic medulla is required for Foxp3+regulatory but not conventional CD4+thymocyte development. J Exp Med 210:675-681.
    [10]Coquet JM, Ribot JC, Babala N, Middendorp S, van der Horst G, et al. (2013) Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+regulatory T cell development via the CD27-CD70 pathway. J Exp Med 210:715-728.
    [11]Watanabe N, Wang YH, Lee HK, Ito T, Cao W, et al. (2005) Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+regulatory T cells in human thymus. Nature 436: 1181-1185.
    [12]Hanabuchi S, Ito T, Park WR, Watanabe N, Shaw JL, et al. (2010) Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol 184:2999-3007.
    [13]Nomura T, Sakaguchi S (2007) Foxp3 and Aire in thymus-generated Treg cells:a link in self-tolerance. Nat Immunol 8:333-334.
    [14]Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12:157-167.
    [15]Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100-111.
    [16]Chen W, Jin W, Hardegen N, Lei KJ, Li L, et al. (2003) Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875-1886.
    [17]Ouyang W, Beckett O, Ma Q, Li MO (2010) Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32: 642-653.
    [18]Zhang HL, Wu J, Zhu J (2010) The role of apolipoprotein E in Guillain-Barre syndrome and experimental autoimmune neuritis. J Biomed Biotechnol 2010:357412.
    [19]Sejvar JJ, Baughman AL, Wise M, Morgan OW (2011) Population incidence of Guillain-Barre syndrome:a systematic review and meta-analysis. Neuroepidemiology 36: 123-133.
    [20]McKhann GM, Cornblath DR, Griffin JW, Ho TW, Li CY, et al. (1993) Acute motor axonal neuropathy:a frequent cause of acute flaccid paralysis in China. Ann Neurol 33:333-342.
    [21]Feasby TE, Hahn AF, Brown WF, Bolton CF, Gilbert JJ, et al. (1993) Severe axonal degeneration in acute Guillain-Barre syndrome:evidence of two different mechanisms? J Neurol Sci 116:185-192.
    [22]Drenthen J, Yuki N, Meulstee J, Maathuis EM, van Doom PA, et al. (2011) Guillain-Barre syndrome subtypes related to Campylobacter infection. J Neurol Neurosurg Psychiatry 82: 300-305.
    [23]Deretzi G, Zou LP, Pelidou SH, Nennesmo I, Levi M, et al. (1999) Nasal administration of recombinant rat IL-4 ameliorates ongoing experimental autoimmune neuritis and inhibits demyelination. J Autoimmun 12:81-89.
    [24]Harness J, McCombe PA (2008) Increased levels of activated T-cells and reduced levels of CD4/CD25+cells in peripheral blood of Guillain-Barre syndrome patients compared to controls. J Clin Neurosci 15:1031-1035.
    [25]Chi LJ, Wang HB, Zhang Y, Wang WZ (2007) Abnormality of circulating CD4(+)CD25(+) regulatory T cell in patients with Guillain-Barre syndrome. J Neuroimmunol 192:206-214.
    [26]Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2009) Distribution of Foxp3(+) T-regulatory cells in experimental autoimmune neuritis rats. Exp Neurol 216:75-82.
    [27]Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2008) Valproic acid attenuates inflammation in experimental autoimmune neuritis. Cell Mol Life Sci 65:4055-4065.
    [28]Luo B, Jiang M, Yang X, Zhang Z, Xiong J, et al. (2013) Erythropoietin is a hypoxia inducible factor-induced protective molecule in experimental autoimmune neuritis. Biochim Biophys Acta 1832:1260-1270.
    [29]Zhang ZY, Zhang Z, Schluesener HJ (2010) MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 169: 370-377.
    [30]Xu H, Li XL, Yue LT, Li H, Zhang M, et al. (2014) Therapeutic potential of atorvastatin-modified dendritic cells in experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells and NKR-P1 cells. J Neuroimmunol 269 (1-2):28-37.
    [31]Li XL, Dou YC, Liu Y, Shi CW, Cao LL, et al. (2011) Atorvastatin ameliorates experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells. Cell Immunol 271:455-461.
    [32]Zuckerman NS, Howard WA, Bismuth J, Gibson K, Edelman H, et al. (2010) Ectopic GC in the thymus of myasthenia gravis patients show characteristics of normal GC. Eur J Immunol 40:1150-1161.
    [33]Vincent A (2006) Immunology of disorders of neuromuscular transmission. Acta Neurol Scand Suppl 183:1-7.
    [34]Conti-Fine BM, Milani M, Kaminski HJ (2006) Myasthenia gravis:past, present, and future. J Clin Invest 116:2843-2854.
    [35]Lang B, Vincent A (2003) Autoantibodies to ion channels at the neuromuscular junction. Autoimmun Rev 2:94-100.
    [36]Carr AS, Cardwell CR, McCarron PO, McConville J (2010) A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 10:46.
    [37]Baggi F, Annoni A, Ubiali F, Milani M, Longhi R, et al. (2004) Breakdown of tolerance to a self-peptide of acetylcholine receptor alpha-subunit induces experimental myasthenia gravis in rats. J Immunol 172:2697-2703.
    [38]Zhang Y, Wang HB, Chi LJ, Wang WZ (2009) The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis. Immunol Lett 122:52-57.
    [39]Xu WH, Zhang AM, Ren MS, Zhang XD, Wang F, et al. (2012) Changes of Treg-associated molecules on CD4+CD25+Treg cells in myasthenia gravis and effects of immunosuppressants. J Clin Immunol 32:975-983.
    [40]Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, et al. (2014) Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus:Roles of IL-17 and TNF-alpha. J Autoimmun.
    [41]Strobel P, Rosenwald A, Beyersdorf N, Kerkau T, Elert O, et al. (2004) Selective loss of regulatory T cells in thymomas. Ann Neurol 56:901-904.
    [42]Masuda M, Matsumoto M, Tanaka S, Nakajima K, Yamada N, et al. (2010) Clinical implication of peripheral CD4+CD25+regulatory T cells and Th17 cells in myasthenia gravis patients. J Neuroimmunol 225:123-131.
    [43]Dejaco C, Duftner C, Schirmer M (2006) Are regulatory T-cells linked with aging? Exp Gerontol 41:339-345.
    [44]Zhang J, Chen Y, Jia G, Chen X, Lu J, et al. (2013) FOXP3-3279 and IVS9+459 polymorphisms are associated with genetic susceptibility to myasthenia gravis. Neurosci Lett 534:274-278.
    [45]Matsui N, Nakane S, Saito F, Ohigashi I, Nakagawa Y, et al. (2010) Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology 74:816-820.
    [46]Liu R, Zhou Q, La Cava A, Campagnolo DI, Van Kaer L, et al. (2010) Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur J Immunol 40:1577-1589.
    [47]Meriggioli MN, Sheng JR, Li L, Prabhakar BS (2008) Strategies for treating autoimmunity: novel insights from experimental myasthenia gravis. Ann N Y Acad Sci 1132:276-282.
    [48]Rowin J, Thiruppathi M, Arhebamen E, Sheng J, Prabhakar BS, et al. (2012) Granulocyte macrophage colony-stimulating factor treatment of a patient in myasthenic crisis:effects on regulatory T cells. Muscle Nerve 46:449-453.
    [49]Yang H, Zhang Y, Wu M, Li J, Zhou W, et al. (2010) Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+regulatory T-cell profile. Inflamm Res 59:197-205.
    [50]Zhang Y, Yang H, Xiao B, Wu M, Zhou W, et al. (2009) Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol 46:657-667.
    [51]Kong QF, Sun B, Wang GY, Zhai DX, Mu LL, et al. (2009) BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol 39:800-809.
    [52]Xie X, Mu L, Yao X, Li N, Sun B, et al. (2013) ATRA alters humoral responses associated with amelioration of EAMG symptoms by balancing Tfh/Tfr helper cell profiles. Clin Immunol 148:162-176.
    [53]Thiruppathi M, Sheng JR, Li L, Prabhakar BS, Meriggioli MN (2014) Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis. J Autoimmun.
    [54]Li XL, Liu Y, Cao LL, Li H, Yue LT, et al. (2013) Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines. Mol Cell Neurosci 56C:85-95.
    [55]Jamshidian A, Shaygannejad V, Pourazar A, Zarkesh-Esfahani SH, Gharagozloo M (2013) Biased Treg/Thl7 balance away from regulatory toward inflammatory phenotype in relapsedmultiple sclerosis and its correlation with severity of symptoms. J Neuroimmunol 262: 106-112.
    [56]Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23: 683-747.
    [57]Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579-621.
    [58]Raine CS, Traugott U (1984) Experimental autoimmune demyelination. Chronic relapsing models and their therapeutic implications for multiple sclerosis. Ann N Y Acad Sci 436: 33-51.
    [59]Santos LM, al-Sabbagh A, Loridono A, Weiner HL (1994) Oral tolerance to myelin basic protein induces regulatory TGF-beta-secreting T cells in Peyer's patches of SJL mice. Cell Immunol 157:439-447.
    [60]Hou SW, Liu CY, Li YH, Yu JZ, Feng L, et al. (2012) Fasudil ameliorates disease progression in experimental autoimmune encephalomyelitis, acting possibly through antiinflammatory effect. CNS Neurosci Ther 18:909-917.
    [61]Spach KM, Nashold FE, Dittel BN, Hayes CE (2006) IL-10 signaling is essential for 1, 25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol 177:6030-6037.
    [62]Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235-238.
    [63]Park H, Li Z, Yang XO, Chang SH, Nurieva R, et al. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133-1141.
    [64]Fransson M, Burman J, Lindqvist C, Atterby C, Fagius J, et al. (2010) T regulatory cells lacking CD25 are increased in MS during relapse. Autoimmunity 43:590-597.
    [65]Venken K, Hellings N, Thewissen M, Somers V, Hensen K, et al. (2008) Compromised CD4+CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123:79-89.
    [66]Haas J, Hug A, Viehover A, Fritzsching B, Falk CS, et al. (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35: 3343-3352.
    [67]Buckner JH (2010) Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10:849-859.
    [68]Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+regulatory T cells in patients with multiple sclerosis. J Exp Med 199: 971-979.
    [69]Kuchroo VK, Ohashi PS, Sartor RB, Vinuesa CG (2012) Dysregulation of immune homeostasis in autoimmune diseases. Nat Med 18:42-47.
    [70]Gartner D, Hoff H, Gimsa U, Burmester GR, Brunner-Weinzierl MC (2006) CD25 regulatory T cells determine secondary but not primary remission in EAE:impact on long-term disease progression. J Neuroimmunol 172:73-84.
    [71]Zhang Y, Liu C, Wei B, Pei G (2013) Loss of beta-arrestin 2 exacerbates experimental autoimmune encephalomyelitis with reduced number of Foxp3(+) CD4(+) regulatory T cells. Immunology 140:430-440.
    [72]Farias AS, Spagnol GS, Bordeaux-Rego P, Oliveira CO, Fontana AG, et al. (2013) Vitamin D3 induces IDO+tolerogenic DCs and enhances Treg, reducing the severity of EAE. CNS Neurosci Ther 19:269-277.
    [73]Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, et al. (2008) Expansion of CD4+CD25+regulatory T cells by intravenous immunoglobulin:a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 111:715-722.
    [74]Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge:CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169:4712-4716.
    [75]Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, et al. (2004) IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+regulatory T cells. Int Immunol 16:249-256.
    [76]Fissolo N, Costa C, Nurtdinov RN, Bustamante MF, Llombart V, et al. (2012) Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis. J Neuroinflammation 9:139.
    [77]Rouse M, Nagarkatti M, Nagarkatti PS (2013) The role of IL-2 in the activation and expansion of regulatory T-cells and the development of experimental autoimmune encephalomyelitis. Immunobiology 218:674-682.
    [78]Zhang R, Tian A, Zhang H, Zhou Z, Yu H, et al. (2011) Amelioration of experimental autoimmune encephalomyelitis by beta-elemene treatment is associated with Th17 and Treg cell balance. J Mol Neurosci 44:31-40.
    [79]Offner H, Vandenbark AA (2005) Congruent effects of estrogen and T-cell receptor peptide therapy on regulatory T cells in EAE and MS. Int Rev Immunol 24:447-477.
    [80]Tsakiri N, Papadopoulos D, Denis MC, Mitsikostas DD, Kollias G (2012) TNFR2 on non-haematopoietic cells is required for Foxp3+Treg-cell function and disease suppression in EAE. Eur J Immunol 42:403-412.
    [81]Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, et al. (2006) Foxp3+CD25+CD4+natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212: 8-27.
    [82]Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, et al. (2011) Human FoxP3+ regulatory T cells in systemic autoimmune diseases. AutoimmunRev 10:744-755.
    [83]Sakaguchi S, Sakaguchi N (2005) Regulatory T cells in immunologic self-tolerance and autoimmune disease. Int Rev Immunol 24:211-226.
    [84]Ziegler SF (2006) FOXP3:of mice and men. Annu Rev Immunol 24:209-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700