用户名: 密码: 验证码:
长江中华鲟生殖洄游和栖息地选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华鲟(Acipenser sinensis)作为典型的大型溯河生殖洄游型鱼类,是现存鲟形目中唯一跨过北回归线的种类,曾广泛分布于我国近海(包括黄渤海、东海、台湾海峡甚至朝鲜半岛和日本海域)以及流入其中的大型河流(包括长江、珠江、闽江、钱塘江和黄河)。目前,闽江、珠江、钱塘江和黄河种群已经绝迹,长江种群是唯一还有分布的中华鲟种群。1981年葛洲坝水利枢纽工程截流阻断了长江中华鲟的洄游通道,原来分布在葛洲坝以上江段的产前栖息地和产卵场无法再被利用。所幸的是,截流后的第2年发现中华鲟在葛洲坝下至古老背约30km的江段有产卵活动,后期逐渐在葛洲坝至庙咀约3.85km的江段形成较稳定的产卵场,而产卵场面积仅为葛洲坝截流前的5%。但是,2003年三峡水电站开始正式蓄水发电,导致葛洲坝下江段的自然水文节律被打破;2004-2006年在葛洲坝下中华鲟产卵场实施河势调整工程。这些水利工程影响了中华鲟在产卵场的正常分布和产卵活动。此外,由于受生境退化、环境污染、航运以及误捕等诸多因素的影响,加上中华鲟自身的生物学特性,长江中华鲟的资源量在不断下降。尽管针对中华鲟保护采取了包括列为国家一级重点保护动物、全面禁止商业捕捞、建立保护区和实施人工增殖放流等一系列措施,但是仍没有扭转种群下降的趋势。2010年,中华鲟被IUCN红色目录列为极危等级物种(CR)。
     中华鲟性成熟晚、繁殖周期长,这是恢复种群的不利条件;但是雌性成熟个体的怀卵量大,一定程度上弥补了这种劣势。而这些特点充分说明了保护参加繁殖的中华鲟至关重要。因此,掌握中华鲟进入长江后完整的生殖洄游和栖息地分布状况,确保每一尾中华鲟能够顺利产卵对中华鲟整个种群的保护和恢复意义重大。本文借助超声波遥测和水声学探测并结合微生境测量和地理信息系统等手段,2006-2011年研究了中华鲟进入长江以后完整的生殖洄游过程、中华鲟在葛洲坝下栖息—产卵场的精确分布及其适合度模型(HSI),确定了中华鲟在长江重点江段的产前栖息地分布及非生物环境特征(中生境和微生境尺度),建立了长江重点江段中华鲟的潜在产前栖息地模型,以期为中华鲟产前栖息地保护和人工改良潜在栖息地提供科学依据。具体采用的方法和获得的主要结果如下:
     1.使用超声波标志并结合移动跟踪和固定监测等手段,观察了27尾中华鲟(8雄、19雌,全长为245-368cm)在长江的洄游过程和分布位置。其中,26尾鱼定位时长范围为7-707d,平均定位859次/尾,另有一尾鱼未获得定位。标志鱼在长江中的完整洄游可分为4种阶段类型:(1)产卵洄游(Spawning migration)。两尾超声波标志中华鲟(1尾雌鱼、1尾雄鱼)分别于6月和10月从海中到达长江口并溯河洄游,其中一尾到达葛洲坝下产卵场(rkm1678),溯河洄游速度分别为0.54km/h(0.26-1.77km/h)和2.20km/h(1.82-2.35km/h),雄鱼的速度大于雌鱼。(2)产前栖息(Pre-spawning holding)。2008年秋季标志的4尾Ⅲ期中华鲟在葛洲坝至庙咀约3.85km的江段长期停留直至第2年的产卵期。(3)产卵迁移(Spawning movements)。所有的标志鱼大部分时间都集中在大江电厂尾水区至庙咀江段洄游,其中,大部分鱼都会在产卵日到来前向下游迁移平均距离约18.21km(3.93-24.64km)后再返回葛洲坝下产卵场。产卵发生时,多数鱼都出现在产卵位点。(4)产后降河洄游(Post-spawning migration)。雌鱼和雄鱼表现出了不同的离开产卵场时间的特征。产卵结束后,雌鱼立即离开,雄鱼则在产卵场停留较长时间再行降河洄游。平均降河速度为4.87km/h (0.68~7.60km/h),并且在不同江段以及性别之间没有显著性差异(P=0.56>0.05和P=0.69>0.05)。此实验获得的结果可为中华鲟在大范围的时空保护策略提供依据。
     2.获得了25尾中华鲟产卵季节在葛洲坝栖息—产卵场的分布特征。标志鱼在水平空间上呈现高度的聚集分布(Clumped; CE=0.332<1),主要分布于葛洲坝上产卵区(area Ⅰ)、隔流堤左边(东岸;area Ⅰ-Ⅱ)、下产卵区首部(area Ⅲ)、庙咀(area Ⅵ)和十里红江段(area Ⅶ),分布比例占91%。剩余的分布位点位于磨基山(rkm1671)、胭脂坝中部(rkm1665.5)、虎牙滩(rkm1653)。在横向上主要分布于主河槽的深水区位置。分布位置在产卵前后有显著差异(P<0.001),在不同的年际间和不同性别存在差异。性成熟鱼的平均栖息水深为8.71m(95%CI=8.58-8.85m),并且在白天的栖息水深显著大于夜间;通过比较产卵前后15d的栖息水深后发现,随着产卵日的临近,栖息水深逐渐减小,在产卵日达到最小值(平均水深为5.15m)。未达到性成熟的Ⅲ期鱼的平均栖息水深(14.59m;95%CI=13.75-15.43m)大于性成熟鱼(P<0.001)。
     3.通过超声波遥测数据、野外微生境测量,并基于GIS数据分析平台,绘制出葛洲坝至十里红江段的水深、底部水流、坡度和底部悬移质充塞度的栅格图,并用于分析中华鲟栖息位点的非生物环境。从水深来看,中华鲟栖息位点的平均值为10.10m,大于整个栖息—产卵场的平均水深,栖息水深位置达38.32m。从流速来看,栖息位置的平均流速(1.18m/s;95%CI=1.16-1.19m/s)和底部流速(0.97m/s;95%CI=0.95-0.98m/s)略大于整个栖息地产卵场平均流速(1.14m/s;95%CI=1.12-1.16m/s)和底部流速(0.95m/s;95%CI=0.94-0.96m/s)。栖息位置的推移质充塞度明显大于栖息—产卵场的其他区域。此外,通过比较中华鲟栖息位置与整个栖息—产卵场的值,发现二者水深、平均流速、底部流速和河床坡度上都存在显著性差异(P<0.05)。比较中华鲟栖息位置各因子的相关性发现,中华鲟栖息位置的环境因子之间具有显著的相关性。最后,根据中华鲟栖息位置各变量因子的值,建立了各因子的适合度曲线和综合因子的栖息适合度模型,基于模型算出葛洲坝下适合中华鲟性成熟鱼和未达到性成熟鱼栖息的加权可利用面积(WUA)分别为0.37km2和0.18km2。
     4.2010-2011年冬季,选择长江重点江段对中华鲟产前分布进行了水声学探测,共获得64个中华鲟信号数据。其中,2010年宜昌至武汉江段(620km)调查期间,总走航里程约为2137.5km,获取中华鲟信号46个;2011年,宜昌至新厂江段(220km)总走航里程约为610km,获取中华鲟信号18个。分析发现,中华鲟主要集中分布在4个江段:葛洲坝下产卵场(5尾)、胭脂坝(5尾)、梅子溪(8尾)和调关(23尾),分布位置与历史文献和本研究组以前的捕捞数据较一致。中华鲟平均鱼体分布水深为17.69m(95%CI=15.84~19.53m),中华鲟分布位置的平均水深为21.63m(95%CI=19.00-24.26m),鱼体位置距河流底部的百分比为85.66%(95%CI=82.09-89.24%),说明中华鲟主要分布于水体的底层。对4个主要分布江段成鱼的栖息水深、栖息位点的水深以及距河底深度进行方差分析或者非参数检验(方差不具齐性的数据),结果显示,葛洲坝栖息—产卵场和胭脂坝中华鲟的鱼体分布水深与其他江段均有差异,而梅子溪和调关中华鲟鱼体分布的水深之间没有显著性差异;葛洲坝栖息—产卵场栖息位置的水深与胭脂坝没有显著差异,但与梅子溪和调关有极显著差异;中华鲟栖息水层在江段之间差异不显著。从总体上看,葛洲坝下栖息—产卵场的中华鲟栖息位点的非生物环境特征与梅子溪和调关差异较大,造成这种差异的主要原因是葛洲坝截流形成了一个非自然状态下栖息地环境。
     5.通过测量长江重点江段的非生物环境因子,结合回声探测仪获得的中华鲟分布位点数据,建立了中华鲟产前栖息地的关键环境因子适合度曲线,并构建出胭脂坝和调关两个产前栖息地的适合度模型。其次,综合5个自然江段中华鲟产前栖息地的主要地形和水深特征,获得理想状态下中华鲟产前栖息地的适宜特征为:河道为弯曲型或者分叉型,有沙坝或沙洲,河道长度为21.39km,深水区(水深大于19m)长度为13.88km,河道转角为172°,河道平均宽度和深水区宽度为分布874m和279m,深弘线平均水深和最大水深分别为28.01m和40.55m,河道曲折率为2.56。最后基于这些特征筛选出了9个适宜中华鲟产前栖息的江段,其中,4个适宜性较高,5个江段适宜性一般。
     6.在掌握中华鲟生殖洄游、产前栖息地分布及栖息地适合度的基础上,本文分析和讨论了人类活动尤其是水利工程建设对中华鲟的洄游和栖息地选择产生的影响,并基于这些研究结果,提供了中华鲟就地保护的技术框架,提出了中华鲟的就地保护的努力方向以及一些亟待开展的研究工作,如探索中华鲟洄游机制、完善中华鲟栖息地研究、探寻中华鲟现有栖息地的生境条件、改良中华鲟的潜在产卵场和产前栖息地、评估人类活动对中华鲟种群的影响以及更新中华鲟就地保护和管理建议。
Chinese sturgeon (Acipenser sinensis Gray,1835) is a large anadromous sturgeon with the sole sturgeon species crosses the northern temperate zone. Historically, the species ranged widely occurring in the offshore of China (including Yellow Sea, East China Sea, Taiwan Strait, Korean Peninsula and Japan Sea) and the large rivers which flow into these seas (involving Yangtze River, Pearl River, Minjiang River, Qiantangjiang River and Yellow River). Currently, the populations of Minjiang River, Pearl River, Qiantangjiang River and Yellow River have been vanished, the Yangtze River population is the only remaining population of this species. The construction of Gezhouba Dam (GZD) blocked the migratory routes, and the spawning grounds accompanying with pre-spawning holding habitats up the GZD were disappeared in1981. Fortunately, spawning event was found from the GZD to Gulaobei reach with the length of30km in the following year, of which the stable spawning ground was located about3.85km long in the reach from GZD to Miaozui. The scale of spawning ground was only as5%large as the historical. In2003, the impounding of Three Gorges Dam (TGD) changed the natural hydrological rhythm of river reach below the GZD. In2006, the River Adjust Project below in the spawning ground altered the river bedform, which all affected the normal distributions and spawning of adult Chinese sturgeon. In addition, due to the habitat degradation, water pollution, navigation and bycatch, the stock of Chinese sturgeon have been markedly decreasing. This trend has not been reversed although a series of protective measurements were made to protect and restore the population, such as listing it as the first class of protected animals in China, prohibiting fishing, establishing the Nature Reserve and implementing artificial propagation from1983. Finally, the species was classified as Critically Endangered (CR) on the IUCN Red List in2010.
     The late sexual mature and long reproductive cycle of Chinese sturgeon are adverse to restore the population, but it would be compensated by the large fecundity. Consequently, these features reflect that it is critical to protect each adult. In order to protect and restore the population, it would be important to understand their complete migrations and habitats in the Yangtze River, and ensure the spawning success of each adult Chinese sturgeon. In this paper, the ultrasonic telemetry, echosounder, microhabitat measuring and Geographic Information System was employed to study the migration in the Yangtze River and habitat distributions in the key reach. Secondly, the relationship between the distributions of fish and some critical variables were analyzed, and habitat suitability models were established. Finally, the pre-spawning holding habitats in the key reach were determined and the potential pre-spawning holding habitats were searched based on the models. The results would supply the scientific reference for protecting the pre-spawning holding habitats and spawning ground, and exploring the potential habitats. The main methods and results in this study are as follows:
     1. From2006to2009, twenty seven ultrasonic-tagged wild adult Chinese sturgeon Acipenser sinensis [8males,19females; total length (LT) range=245~368cm] were captured on the spawning ground just downstream of the GZD in the Yangtze River. Twenty-six individuals were located for7~707days (mean number of relocations=859; range=3~4549). Sturgeon movements were divided into four stage-categories:1) Spawning Migration. Two tagged sturgeons (one female and one male) returned to the Yangtze River and migrated from the Yangtze Estuary (rkm0) to the spawning ground (rkm1678) between June and October. Their mean upstream ground speed was0.54km/h (0.26~1.77km/h) and2.20km/h (1.82~2.35km/h), and the speed of the male was faster than the female.2) Pre-spawning Holding. Four of five females tagged in November2008stayed within rkm1678.00~1674.15for about one year before the spawning period.3) Spawning Movements. All sturgeons swam mostly from the tailrace of the GZD (rkm1678) to the Miaozui (rkm1674.15) reach and some moved downstream about18.21rkm (range=3.93~24.64rkm), but then, returned upstream to the GZD. Most tagged sturgeons were on the spawning ground on the day when the spawning occurred.4) Post-spawning Migration. Males (N=6) and females (N=2) departed the spawning area on a different time schedule, females leaving before males. The mean seaward ground speed of six sturgeons was4.87km/h (range=0.68~7.60 km/h). There were no significant differences in ground speeds among reaches or between sexes (reaches=ANOVA, P=0.56>0.05; sexes=ANOVA, P=0.69>0.05). These broad spatiotemporal scale results will help establish an effective protection strategy for the species in the Yangtze River.
     2. Twenty-five ultrasonic-tagged wild adult Chinese sturgeons were used to study the distributions on the staging-spawning ground during the spawning seasons. The spatial distribution type of tagged adults was clumped (CE=0.332<1). Most all adult locations (91%) were in the USS, the east section (left side) of the dike, the head (upstream reach) of the DSS, and in the Shilihong reach. The distribution area of MCP was1.67km2, the5rkm from GZD (rkm1678) to Shilihong (rkm1673). Only9%of all locations were at Moji Hill (rkm1671), Yanzhiba Bar (rkm1665.5) and Huyatan (rkm1653). All data indicated that adults selected the main channel for moving upstream or within the spawning grounds. There was significant difference in distributions of fish before and after spawning (P<0.001), and the differences were also found within the different years and between sexes. The mean inhabiting depth of ripe fish was8.71m (95%CI8.58~8.85m), the depth ripe fish used decreased gradually before spawning, and then, swimming depth increased after spawning, with most shallow depths occurring on the spawning day (mean=5.12m). One-way ANOVA analysis showed that there was a significant difference (P<0.001) between sexes for depth use, with females using deeper depths than males. Also, depth use was significantly different between day and night (P<0.001), with adults using deeper water during the day than at night. The mean depth of non-ripe fish was14.59m (95%CI=13.75~15.43m) which was significant deeper than the mean depth of ripe females (ANOVA, P<0.001).
     3. The raster maps based on depth, bottom velocity, slope, and substrate embeddedness from GZD to Shilihong were established and the variable vaules were extracted from the maps. The mean depth of positions where tagged A. sinensis were located was10.10m and had a significant difference from the entire reach. The lagest value was38.32m. The mean velocity magnitude of inhabiting sites (Mean=1.18m/s,95%CI=1.16~1.19m/s) was larger than the entire reach (Mean=1.14m/s,95%CI=1.12~1.16m/s). The bottom velocity magnitude of locations was0.97m/s (95%CI=0.95~0.98m/s), also larger than the entire reach (Mean=0.95m/s,95%CI=0.94-0.96 m/s). For the topography, the average slope of fish locations was2.15°(95%CI1.96-2.33°) which was smaller than the total reach (mean=3.26°;95%CI=3.12-3.41°). The percentage of bottom sediments of fish locations was significantly larger than the total reach. ANOVA analysis also showed that the mean depth, mean velocity, bottom velocity and channel slope all had significant differences from the entire spawning ground. Pearson correlation analysis showed there was significant relationship between the environment variables. Finally, the suitability curves and habitat suitability index was modelled and the weighted usable areas for ripe and non-ripe fish was0.37km2and0.18km2, respectively.
     4. During the winter of2010and2011, hydroacoustics was used to detect the pre-spawning sturgeons in the key reach (GZD to Wuhan,620km) and the total of64signals of adult Chinese sturgeons was detected. The paths of2137.5km and610km were detected during2010and2011, correspondingly, the number of46and18individuals was found. The four clumped reaches were identified:the staging-spawning ground below the GZD (5individuals), Yanzhiba Bar (5individuals), Meizixi (8individuals) and Tiaoguan (23individuals), were similar as the historical distributions in the published paper and the results from our team. The mean depth of fish used, water depth of fish locations and the percentage apart from bottom were17.69m (95%CI=15.84~19.53m),21.63m (95%CI=19.00~24.26m) and85.66%(95%CI82.09~89.24%). These indicated that the fish were mostly close to the river bottom mostly. ANOVA analysis and the Non-parameters test was used to study the four reaches, which the results showed as follows:the depth of fish used in the staging-spawning ground below the GZD and Yanzhiba Bar reach was significant difference from the Meizixi and Tiaoguan, but no difference were found between later two reaches; the depth of fish locations was significant difference between each other except the results between the GZD and Yanzhiba Bar; However, there was no significant difference in the water layer of fish. In general, the stock was similar in the staging-spawning ground below the GZD and Yanzhiba Bar, but different from the Meizixi and Tiaoguan reaches.
     5. Depending on the measurement of aboitc environments and distributions of Chinese sturgeon, the key-factor suitability index curves of pre-spawning holding habitat for Chinese sturgeon were established. Also, the habitat suitability index model were built for the two main pre-spawning holding habitat i.e. Yanzhiba and Tiaoguan. Combined with the parameters of topographic and depth on the five natural reaches, the suitable pre-spawning holding habitat should be as follows:the type of reach was meandering or braided, the reach had sound bar, the length of habitat and deep water zones (>19m) were21.39km and13.88km, respectively. The turning angle of river channel was172°. The river width and the width of deep zones were874m and279m, respectively. The mean depth of thalweg and maximum depth were28.01m and40.55m. the value of S/L was2.56. Finally, nine potential pre-spawning holding habitats were extracted, which were involved four better suitable habitats and five suitable habitats.
     6. Based on the results of reproductive migrations and distributions of adult Chinese sturgeon in the Yangtze River, this study analyzed and discussed how the human activities, especially, the hydraulic projects, influence the normal migrating and selecting habitats of the adults. This paper provided specific frameworks for the protections and managements. To protect adult Chinese sturgeon in situ, a series of study work need be done in the future, such as studying sturgeon migratory mechanisms, improving the knowledge of sturgeon habitat, understanding the complete requirements of adults in the existing habitat, exploring potential spawning grounds and pre-spawning holding habitats, assessing human activities impact on the population, and updating in situ conserving and managing recommendations.
引文
1. 班璇,李大美.葛洲坝枢纽工程对中华鲟产卵场的生态水文学影响研究.水电2006国际研讨会,2006,昆明,936-943
    2. 班璇,李大美.大型水利工程对中华鲟生态水文学特征的影响.武汉大学学报(工学版),2007,40(3):10—13
    3. 班璇,李大美,李丹.葛洲坝下游中华鲟产卵栖息地适宜度标准研究.武汉大学学报(工学版),2009,42(2):172-177
    4. 班璇.中华鲟产卵栖息地的生态需水量.水利学报,2011,42(1):47-55
    5. 常剑波.长江中华鲟产卵群体结构和资源变动.[博士学位论文].武汉:中国科学院水生生物研究所,1999
    6. 陈细华.鲟形目鱼类生物学与资源现状.北京:海洋出版社,2007,1-203
    7. 陈永柏.三峡水库运行影响中华鲟繁殖的生态水文学机制及其保护对策研究.[博士学位论文].武汉:中国科学院水生生物研究所,2007
    8. 成庆泰.鱼类的洄游.生物学通报,1984,(6):7-9
    9. 董首悦,董黎君,李松海,木村里子,赤松友成,王克雄,王丁.江西鄱阳湖湖口水域船舶通行对长江江豚发声行为的影响.水生生物学报,2012,36(2):246-254
    10. 付小莉,李大美,金国裕.葛洲坝下游中华鲟产卵场流场计算和分析.华中科技大学学报(自然科学版),2006,9:111-113
    11.顾嗣明.探鱼仪的应用和维修.北京:农业出版社,1987,1-323
    12. 何大仁,蔡厚才.鱼类行为学.厦门:厦门大学出版社,1998,1-388
    13. 胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵情况初步调查及探讨.淡水渔业,1983,13(5):15-18
    14.金国裕,李大美,付小莉.葛洲坝下游中华鲟产卵场流场模拟和分析.水电2006国际研讨会,2006,昆明,944-950
    15.柯福恩,胡德高,张国良.葛洲坝水利枢纽对中华鲟的影响——数量变动调查报告.淡水渔业,1984,14(3):16-19
    16.柯福恩,危起伟.中华鲟产卵洄游群体结构和资源量估算的研究.淡水渔业,1992,22(4):7-11
    17.李种,彭静,廖文根.长江中游四大家鱼发江生态水文因子分析及生态水文目 标确定.中国水利水电科学研究院学报,2006,4(03):170-176
    18. 李罗新,张辉,危起伟,杜浩,洪克明.长江常熟溆浦段中华鲟幼鱼出现时间与数量变动.中国水产科学,2011,18(3):611-618
    19.刘伯胜,雷家煜.水声学原理.哈尔滨:哈尔滨工程大学出版社,1997,7-8
    20.刘文萍.鱼类的洄游.四川文物,1994,(S1):53-55
    21.鲁大椿,柳凌,方建萍,章龙珍.中华鲟精液的生物学特性和精浆的氨基酸成分.淡水渔业,1998,28(6):18-20
    22.栾震宇,施勇,陈炼钢,金秋.三峡工程蓄水前后长江中游水位流量变化分析.人民长江,2009,40(14):44-46
    23.任玉芹,王珂,段辛斌,阴双雨,李世健,刘绍平,陈大庆.鳙目标强度和行为特征的水声学研究.淡水渔业,2011,41(02):90-96
    24.任玉芹,王珂,段辛斌,刘绍平,陈大庆.水声学探测在江河鱼类资源评估中的技术分析.渔业现代化,2010,37(02):64-68
    25. 四川省长江水产资源调查组和湖北省长江水产研究所.长江鲟鱼类的研究.1976,1-200
    26. 四川省长江水产资源调查组.长江鲟鱼类生物学及人工繁殖研究.成都:四川科学技术出版社,1988,1-228
    27.谭细畅.水声学探测在内陆水体鱼类资源研究中的几个应用.[博士学位论文].武汉:中国科学院水生生物研究所,2009
    28.谭细畅,李新辉,林建志,周东华,高翔,李嘉敏.基于水声学探测的两个广东鲂产卵群体繁殖生态的差异性.生态学报,2009,29(04):1756-1762
    29.谭细畅,史建全,张宏,陶江平,杨建新,祁洪芳,李新辉.EY60回声探测仪在青海湖鱼类资源量评估中的应用.地球物理学报,2009,21(6):865-872
    30.陶江平,乔晔,杨志,常剑波,董方勇,万力.葛洲坝产卵场中华鲟繁殖群体数量与繁殖规模估算及其变动趋势分析.水生态学杂志,2009,2(2):37-42
    31.陶江平,乔晔,谭细畅,常剑波.中华鲟回声信号判别分析及其在葛洲坝产卵场的空间分布.科学通报,2009,54(19):2975-2982
    32. 陶江平.基于水声学的长江葛洲坝江段鱼类时空分布研究及GIS建模.[硕士学位论文].武汉:中国科学院水生生物研究所,2009
    33.王成友,危起伟,杜浩,张辉,刘志刚.超声波遥测在水生动物生态学研究中的应用,生态学杂志,2010,29(11):2286-2292
    34. 王崇瑞.青海湖裸鲤资源水声学评估.[硕士学位论文].武汉:华中农业大学,2011
    35. 王家生,卢金友,柴晓玲,姚仕明.三峡工程运用后水沙输移变化对长江中游河岸带生境影响初步分析.“三峡工程建成后对长江中游的影响”专题论坛——2007中国科协年会分论坛之十,2007,湖北武汉,55-59
    36.王克雄,王丁,赤松友成.水生哺乳动物信标跟踪记录技术及其应用.水生生物学报,2005,29(1):91-96
    37. 王克雄.长江江豚行为和声学观察研究.[博士学位论文].武汉:中国科学院水生生物研究所,2005
    38. 王儒述.三峡工程与长江中游湿地保护.三峡大学学报(自然科学版),2005,27(04):289-293
    39.王尚玉,廖文根,陈大庆,段辛斌,彭期冬,王珂翀,李.长江中游四大家鱼产卵场的生态水文特性分析.长江流域资源与环境,2008,17(06):892-897
    40.王远坤,夏自强,王桂华,杨宇.中华鲟产卵场平面平均涡量计算与分析生态学报,2009,29(1):538-544
    41.危起伟,柯福恩,庄平,罗俊德,杨文华,周瑞琼.论长江口中华鲟幼鱼的保护.见:李渤生,詹志勇编,CNPPA/IUCN第41届工作会议文集.绿满东亚:第一届东亚地区国家公园与保护区会议,北京,1993,北京:中国环境科学出版社,1994,786-793
    42.危起伟,杨德国,柯福恩,Kynard B, Kieffer M.长江中华鲟超声波遥测技术.水产学报,1998,22(3):211-217
    43.危起伟,杨德国,柯福恩.长江鱼类的保护对策.见:黄真理主编,21世纪长江大型水利工程中的生态与环境保护.北京:中国环境科学出版社,1998,208-216
    44.危起伟.长江中华鲟繁殖行为生态学与资源评估.[博士学位论文].武汉:中国科学院水生生物研究所,2003
    45.危起伟,陈细华,杨德国,刘鉴毅,朱永久,郑卫东.葛洲坝截流24年来中华鲟产卵群体结构的变化.中国水产科学,2005,12(4):452-457
    46.韦章平.中华鲟产卵场水动力特征及鲟卵输移特性研究.[硕士学位论文].南京:南京水利科学研究院,2010
    47.魏卓,张先锋,王克雄,赵庆中,匡新安,王小强,王丁.长江江豚对八里江 江段的利用及其栖息地现状的初步评价.动物学报,2003,49(02):163-170
    48.杨德国,危起伟,王凯,陈细华,朱永久.人工标志放流中华鲟幼鱼的降河洄游.水生生物学报,2005,29(1):26-30
    49.杨德国,危起伟,陈细华,刘鉴毅,朱永久,王凯.葛洲坝下游中华鲟产卵场的水文状况及其与繁殖活动的关系.生态学报,2007,27(3):1-7
    50.杨宇.中华鲟葛洲坝栖息地水力特性研究.[博士学位论文].南京:河海大学,2007
    51.杨宇,严忠民,乔晔.河流鱼类栖息地水力学条件表征与评述.河海大学学报(自然科学版),2007,35(2):125-130
    52.杨宇,谭细畅,常剑波,严忠民.三维水动力学数值模拟获得中华鲟偏好流速曲线.水利学报,2007(增刊):531-534
    53.易雨君,王兆印,陆永军.长江中华鲟栖息地适合度模型研究.水科学进展,2007,18(4):538-543
    54.易雨君.长江水沙环境变化对鱼类的影响及栖息地数值模拟.[博士学位论文].北京:清华大学,2008
    55.英晓明.基于IFIM方法的河流生态环境模拟研究.[硕士学位论文].南京:河海大学,2006
    56.余文畴,卢金友.长江河道演变与治理.北京:中国水利水电出版社,2005,105-112
    57.余志堂,邓中粦,周春生,许蕴玕.葛洲坝水利枢纽截流后的长江家鱼产卵场.见:中国鱼类学会主编,鱼类学论文集(第四辑).北京:科学出版社,1985,193-208
    58.余志堂,许蕴旰,邓中粪,周春生,向阳.葛洲坝水利枢纽下游中华鲟繁殖生态的研究.见:中国鱼类学会主编,鱼类学论文集(第五辑).北京:科学出版社,1986,1-14
    59.虞功亮,刘军,许蕴,常剑波.葛洲坝下游江段中华鲟产卵场食卵鱼类资源量估算.水生生物学报,2002,26(6):591-599
    60.张辉,危起伟,杨德国,杜浩,张慧杰,陈细华.葛洲坝下中华鲟自然繁殖流速场的初步观测.中国水产科学,2007,14(2):183-191
    61.张辉,危起伟,杨德国,杜浩,张慧杰,陈细华.葛洲坝下游中华鲟产卵场地形分析.生态学报,2007,27(10):3945-3955
    62.张辉,危起伟,杨德国,杜浩,张慧杰,陈细华.基于流速梯度的河流生境多样性分析——以长江湖北宜昌中华鲟自然保护区核心区江段为例.生态学杂志,2008,27(4):667-674
    63. 张辉.中华鲟自然繁殖的非生物环境.[博士学位论文].武汉:华中农业大学,2009
    64.张慧杰.长江宜昌和宜宾江段鱼类资源的水声学初步调查.[硕士学位论文].武汉:华中农业大学,2007
    65. 张信.青海湖裸鲤资源量的水声学评估.[硕士学位论文].武汉:华中农业大学,2005
    66.张用梅.鱼类的洄游.生物学通报,1964,(05):20-24
    67. 中国科学院环境评价部和长江水资源保护科学研究所.长江三峡水利枢纽环境影响报告书(简写本).北京:科学出版社,1996,1-34
    68. 中国科学院三峡工程生态与环境科研项目领导小组.长江三峡工程对生态与环境的影响及对策研究.北京:科学出版社,1988,28-29
    69. http://www.acoustics.washington.edu/intro.php.
    70. Able K W, Grothues T M. An approach to understanding habitat dynamics of flatfishes:Advantages of biotelemetry. J Sea Res,2007,58:1-7
    71. Anderson M A, Whiteaker L, Wakefield E, Amrhein C. Properties and distribution of sediment in the Salton Sea, California:an assessment of predictive models. Hydrobiologia,2008,604:97-110
    72. Anderson M A, Pacheco P. Characterization of bottom sediments in lakes using hydroacoustic methods and comparison with laboratory measurements. Water Res, 2011,45:4399-4408
    73. Anonymous. Echo sounding. Nature,1925,115:689-690
    74. Arnold G, Dewar H. Electronic Tags in Marine Fisheries Research:A 30-Year Perspective. Elect Tag Trac Mar Fish,2001,7-55
    75. Auer N A, Baker E A. Assessment of lake sturgeon spawning stocks using fixed-location, split-beam sonar technology. J Appl Ichthyol,2007,23:113-121
    76. Bain M B. Atlantic and shortnose sturgeons of the Hudson River:common and divergent life history attributes. Environ Biol Fish,1997,48:347-358
    77. Ban X, Li D M. Ecological hydrological influence of large water conservancy projects on Acipenser Sinensis in Yangtze River. Engineering Journal of Wuhan University,2007,3:10-13
    78. Beamesderfer R C P, Farr R A. Alternatives for the protection and restoration of sturgeons and their habitat. Environ Biol Fish,1997,48:407-417
    79. Bellquist L F, Lowe C G, Caselle J E. Fine-scale movement patterns, site fidelity, and habitat selection of ocean whitefish (Caulolatilus princeps). Fish Res,2008,91: 325-335
    80. Bemis W E, Kynard B. Sturgeon rivers:an introduction to acipenseriform biogeography and life history. Environ Biol Fish,1997,48:167-183
    81. Benson R, Turo S, Jr B. Migration and Movement Patterns of Green Sturgeon (Acipenser medirostris) in the Klamath and Trinity rivers, California, USA. Environ Biol Fish,2007,79:269-279
    82. Bergthold C, Chojnacki K, Delonay A, Mestl G. Seasonal movements and habitat use of adult pallid sturgeon in the lower Missouri River, USA. Am Fish Soc An Me, 2009, Nashville TN, USA
    83. Billard R, Lecointre G. Biology and conservation of sturgeon and paddlefish. Rev in Fish Biol Fish,2001,10:355-392
    84. BioSonics Inc.. User Guide:Visual Bottom Typer 1.19b. Seattle, WA:BioSonics Inc.,2008,1-102
    85. Birstein V J. Sturgeons and paddlefishes:Threatened fishes in need of conservation. Cons Biol,1993,7:773-787
    86. Birstein V J, Bemis W E, Waldman J R. The threatened status of acipenseriform species:a summary. Environ Biol Fish,1997,48:427-435
    87. Bohl E. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia,1980,44:368-375
    88. Brandt S B. Acoustic assessment of fish abundance and distribution. Murphy B R, Williseds D W eds., Fisheries Techniques,2nd Edition. Am Fish Soc,1996, 385-431
    89. Bruch R M, Binkowski F P. Spawning behavior of lake sturgeon (Acipenser fulvescens). J Appl Ichthyol,2002,18:570-579
    90. Busch S, Mehner T. Hydroacoustic Estimates of Fish Population Depths and Densities at Increasingly Longer Time Scales. Inter Rev Hydrob,2009,94:91-102
    91. Carlson J K, Heupel M R, Bethea D M, Hollensead L D. Coastal habitat use and residency of juvenile Atlantic sharpnose sharks(Rhizoprionodon terraenovae). Estuar Coast,2008,31(5):931-940
    92. Casselman J M, Penczak T, Carl L, Mann R H K, Holick J. An evaluation of fish sampling methodologies for large river systems. Pol Archiv Hydrob,1990,37: 521-551
    93. Chebanov M S, Savelyeva E A. New strategies for brood stock management of sturgeon in the Sea of Azov basin in response to changes in patterns of spawning migration. J Appl Ichthyol,1999,15:183-190
    94. Chen D, Zhang X, Tan X, Wang K, Qiao Y, Chang Y. Hydroacoustic study of spatial and temporal distribution of Gymnocypris przewalskii (Kessler,1876) in Qinghai Lake, China. Environ Biol Fish,2009,84:231-239
    95. Chen D G, Xie Y, Mulligan T J, MacLennan D N. Optimal partition of sampling effort between observations of fish density and migration speed for a riverine hydroacoustic duration-in-beam method. Fish Res,2004,67:275-282
    96. Childs A R, Cowley P D, Naesje T F, Booth A J, Potts W M, Thorstad E B, Okland F. Estuarine use by spotted grunter Pomadasys commersonnii in a South African estuary, as determined by acoustic telemetry. African J Mar Sci,2008,30:123-132
    97. Chivers R C, Emerson N, Burns D R. New acoustic processing for underway surveying. J Hydrog,1990,56:9-17
    98. Cholwek G, Yule D, Eitrem M, Quinlan H, Doolittle T. Mapping Potential Lake Sturgeon Habitat in the Lower Bad River Complex. In:USGS,2005,1-21
    99. Clark J S, Rizzo D M, Watzin M C, Hession W C. Spatial distribution and grographic condition of fish habitat in streams:an analysis using hydroaulic modeling and geostatistics. River Res Appl,2008,24:885-899
    100. Clark P J, Evans F C. Distance to nearest neighbour as a measure of spatial reltionships in populations. Ecology,1954,35:445-453
    101. Cohen A. Sturgeon poaching and black market caviar:a case study. Environ Biol Fish,1997,48:423-426
    102. Collins A, Heupel M, Simpfendorfer C. Spatial Distribution and Long-term Movement Patterns of Cownose Rays Rhinoptera bonasus Within an Estuarine River. Estuar Coast,2008,31:1174-1183
    103. Conte F S, Doroshov S I. Hatchery manual for the White sturgeon Acipenser transmontanus Richardson with application to other north American Acipenseridae. Oakland:University of California Press,1988,104
    104. Cooke D W, Leach S D. Implications of a migration impediment on shortnose sturgeon spawning. J N Am Fish Manag,2004,24:1460-1468
    105. Cooke S J, Niezgoda G H, Hanson K C, Suski C D, Phelan F J S, Tinline R, Philipp D P. Use of CDMA acoustic telemetry to document 3-D positions of fish:Relevance to the design and monitoring of aquatic protected areas. Mar Technol Soc J,2005, 39:31-41
    106. Cowx L G, Welcomme R L. Rehabilitation of rivers for fish. Blackwell Science, 1998,1-260
    107. Crance J H. Habitat suitability index models and instream flow suitability curves: shortnose sturgeon. US Department of the Interior, Fish and Wildlife Service, Washington, DC. Biological Report,1986,1-31
    108. Curry R A, Van de Sande J, Whoriskey F G. Temporal and spatial habitats of anadromous brook charr in the Laval River and its estuary. Environ Biol Fish,2006, 76:361-370
    109. Curtis G L, Ramsey J S, Scarnecchia D L. Habitat use and movements of shovelnose sturgeon in Pool 13 of the upper Mississippi River during extreme low flow conditions. Environ Biol Fish,1997,50:175-182
    110. Dewar H, Mous P, Domeier M, Muljadi A, Pet J, Whitty J. Movements and site fidelity of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia. Mar Biol,2008,155:121-133
    111. Dolloff A, Kershner J, Thurow R F. Underwater observation. In:Murphy B R, Willis D W eds, Fisheries Techniques,2nd edn. Bethesda, Maryland:Am Fish Soc,1996, 533-554
    112. Dresser B K, Kneib R T. Site fidelity and movement patterns of wild subadult red drum, Sciaenops ocellatus (Linnaeus), within a salt marsh-dominated estuarine landscape. Fish Manag Ecol,2007,14:183-190
    113. Du H, Wei Q W, Zhang H, Liu Z G, Wang C Y, Li Y H. Bottom substrate attributes relative to bedform morphology of spawning site of Chinese sturgeon Acipenser sinensis below the Gezhouba dam. J Appl Ichthyol,2011,27:257-262
    114. Duncan M S, Wrege B M, Parauka F M, Isely J J. Seasonal distribution of Gulf of Mexico sturgeon in the pensacola bay system, Florida. J Appl Ichthyol,2011,27: 316-321
    115. Erickson D L, North J A, Hightower J E, Weber J, Lauck L. Movement and habitat use of green sturgeon Acipenser medirostris in the Rogue River, Oregon, USA. J Appl Ichthyol,2002,18:565-569
    116. Fairchild E A, Rennels N, Howell H. Using Telemetry to Monitor Movements and Habitat Use of Cultured and Wild Juvenile Winter Flounder in a Shallow Estuary. Tag Trac Mar Anim Elec Dev,2009,9:5-22
    117. FAO. Fisheries acoustics:A practical manual for aquatic biomass estimation.1983, 1-2
    118. Fernandes S J, Zydlewski G B, Zydlewski J D, Wippelhauser G S, Kinnison M T. Seasonal Distribution and Movements of Shortnose Sturgeon and Atlantic Sturgeon in the Penobscot River Estuary, Maine. Trans Am Fish Soc,2010,139:1436-1449
    119. Foote K G. Fish target strengths for use in echo integrator surveys. J Acoust Soc Am, 1987,82(3):981-987
    120. Fox D A, Hightower J E, Parauka F M. Gulf Sturgeon Spawning Migration and Habitat in the Choctawhatchee River System, Alabama-Florida. Trans Am Fish Soc, 2000,129:811-826
    121. Fox D A, Hightower J E, Parauka F M. Estuarine and nearshore marine habitat use by gulf sturgeon from the Choctawhatchee River system, Florida. Biology, Manag Protect North Am Stur,2002,28:111-125
    122. Freitas R, Sampaio L, Rodrigues A M, Quintino V. Seabottom classification across a shallow-water bar channel and near-shore shelf, using single-beam acoustics. Estuar Coast Shelf Sci,2005,65:625-632
    123. Fretwell S D. Populations in a Seasonal Environment. Princeton:Princeton University Press,1972,1-224
    124. Fuldner K. Zur struckur beschreibung in mischbestanden. Forstrachiv,1995,66: 235-240
    125. Gaspar C, Chateau O, Galzin R. Feeding sites frequentation by the pink whipray Himantura fai in Moorea(French Polynesia) as determined by acoustic telemetry. Cybium,2008,32:153-164
    126. George D G, Winfield I J. Factors influencing the spatial distribution of zooplankton and fish in Loch Ness, UK. Freshw Biol,2000,43:557-570
    127. Gessner J, Bartel R. Sturgeon spawning grounds in the Odra River tributaries:A first assessment. Bol. Inst Esp Oceanogr,2000,16:127-137
    128. Godlewska M, Jelonek M. Acoustical estimates of fish and zooplankton distribution in the Piaseczno reservoir, Southern Poland. Aquatic Ecol,2006,40:211-219
    129. Goldman K J, Anderson S D. Space Utilization and Swimming Depth of White Sharks, Carcharodon carcharias, at the South Farallon Islands, Central California. Environ Biol Fish,1999,56:351-364
    130. Guisan A, Zimmermann N E. Predictive habitat distribution models in ecology. Ecol Model,2000,135:147-186
    131. Gunn J, Block B A. Advances in acoustic, archival, and satellite tagging of tunas. Tuna:Physiol Ecol Evol,2001:167-224
    132. Hale R S, Horne J K, Degan D J, Conners M E. Paddlefish as Potential Acoustic Targets for Abundance Estimates. Trans Am Fish Soc,2003,132:476-758
    133. Hatten J R, Parsley M J. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA. Ecol Model,2009,220:3638-3646
    134. Helfman G S. Underwater methods. In:Nielsen L A, Johnson D L eds, Fisheries Techniques. Bethesda, Maryland:Am Fish Soc,1983,349-370
    135. Hensel K, Holcik J. Past and current status of sturgeons in the upper and middle Danube River. Environ Biol Fish,1997,48:184-200
    136. Heublein J C, Kelly J T, Crocker C E, Klimley A P, Lindley S T. Migration of green sturgeon, Acipenser medirostris, in the Sacramento River. Environ Biol Fish,2009, 84:245-258
    137. Hightower J E, Zehfuss K P, Fox D A, Parauka F M. Summer habitat use by Gulf sturgeon in the Choctawhatchee River, Florida. J Appl Ichthyol,2002,18:595-600
    138. Hilborn R, Walters C J. Quantitative fisheries stock assessments:choices, dynamics and uncertainty. London:Chap Hall,1992,1-570
    139. Hildebrand L, McLeod C, McKenzie S. Status and management of white sturgeon in the Columbia River in British Columbia, Canada:an overview. J Appl Ichthyol, 1999,15:164-172
    140. Hodgson W C. Echosounding and the pelagic fisheries. Fish Inves Ser 2,1950, 17(4):25
    141. Hodgson W C, Fridriksson A. Report on echo-sounding and Asdic for fishing purposes. Rapp P-v Reun Cons Int Explor Mer,1955,139:1-45
    142. Holbrook B V, Hrabik T R, Branstrator D K, Yule D L, Stockwell J D. Hydroacoustic Estimation of Zooplankton Biomass at Two Shoal Complexes in the Apostle Islands Region of Lake Superior. J Great Lakes Res,2006,32:680-696
    143. Holick J. General Introduction to Fishes and Acipenseriformes. In:J Holick ed, Freshwater fishes of Europe (Vol Ⅰ part Ⅱ). Wiesbaden:Aula Verlag,1989,460-469
    144. Houston J J P. Status of the Lake Sturgeon (Acipenser Fulvescens) in Canada. Can Field-Naturalist,1987,101:171-185
    145. Hu J, Zhang Z, Wei Q, Zhen H, Zhao Y, Peng H, Wan Y, Giesy J P, Li L, Zhang B. Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent. PNAS,2009,106:9123-9124
    146. Hubert W A, Southall P D, Crance J H. Habitat suitability index models and instream flow suitability curves:paddlefish. US Department of the Interior, Fish and Wildlife Service, Biological Report Washington, DC,1984,1-32
    147. Insley S J, Robson B W, Yack T, Ream R R, Burgess W C. Acoustic determination of activity and flipper stroke rate in foraging northern fur seal females. En Species Res,2008,4:147-155
    148. Jacobson R B, Laustrup M S. Habitat Assessment for Pallid Sturgeon Overwintering Surveys, Lower Missouri River. Micra Pallid sturgeon habitat report, Columbia, 2000,1-47
    149. Jadot C, Donnay A, Acolas M L, Cornet Y, Anras M L B. Activity patterns, home-range size, and habitat utilization of Sarpa salpa (Teleostei:Sparidae) in the Mediterranean Sea. Ices J Mar Sci,2006,63:128-139
    150. Johnson J H, LaPan S R, Klindt R M, Schiavone A. Lake sturgeon spawning on artificial habitat in the St Lawrence River. J Appl Ichthyol,2006,22:465-470
    151. Kenneth F T, Craig A H, Tobias J K. Quantifying the behavioral response of spawning chum salmon to elevated discharges from Bonneville Dam, Columbia river, USA. River Res Appl,2010,26:87-101
    152. Khodorevskaya R P, Krasikov E V, Fedin A A, Fedorov V A, Shvedov V V. Abundance and distribution of the beluga sturgeon Huso huso in the Caspian Sea. Vop Ikhtiol,2002,42:56-63
    153. Kieffer M, Kynard B. Annual movements of shortnose and Atlantic sturgeons in the Merrimack River, Massachusetts. Trans Am Fish Soc,1993,122:1088-1103
    154. Kieffer M C, Kynard B. Pre-spawning and non-spawning spring migrations, spawning, and effects of river regulation and hydroelectric dam operation on spawning of Connecticut River shortnose sturgeon. In:Kynard B, Bronzi P, Rosenthaleds H eds, Life history and behaviour of Connecticut River shortnose and other sturgeons. Germany:World Sturgeon Conservation Society,2012,73-113
    155. Kino M, Miayzaki T, Iwami T, Kohbara J. Retinal topography of ganglion cells in immature ocean sunfish, Mola mola. Environ Biol Fish,2009,85:33-38
    156. Krykhtin M L, Svirskii V G. Endemic sturgeons of the Amur River:kaluga, Huso dauricus and Amur sturgeon, Acipenser schrenckii. Environ Biol Fish,1997,48: 231-239
    157. Kubecka J, Duncan A, Butterworth A. Echo counting or echo integration for fish biomass assessment in shallow water. In:Weyderteds M ed, Proceedings of the European Conference on Underwater Acoustics. Amsterdam:Elsevier,1992, 129-132
    158. Kynard B, Wei Q W, Ke F E. Use of ultrasonic telemetry to locate the spawning area of Chinese sturgeon. Chinese Sci Bull,1995,40:668-671
    159. Kynard B. Life history, latitudinal patterns, and status of the shortnose sturgeon, Acipenser brevirostrum. Environ Biol Fish,1997,48(1):319-334
    160. Kynard B, Suciu R, Horgan M. Migration and habitats of diadromous Danube River sturgeons in Romania:1998-2000. J Appl Ichthyol,2002,18:529-535
    161. Kynard B, Pugh D, Parker T, Kieffer M. Using a semi-natural stream to produce young sturgeons for conservation stocking:maintaining natural selection during spawning and rearing. J Appl Ichthyol,2010,27:420-424
    162. Kynard B, Kieffer M C, Horgan M, Burlingame M, Vinogradov P, Kynard B E. Seasonal movements among river areas, migration strategies, and population structure of the divided Connecticut River Shortnose Sturgeon population:the effects of Holyoke Dam. In:Kynard B, Bronzi P, Rosenthaleds H eds, Life history and behaviour of Connecticut River shortnose and other sturgeons. Germany:World Sturgeon Conservation Society, Special Publ.,2012,1-49
    163. Lagardere J P, Ducamp J J, Favre L. A method for the quantitative evaluation offish movements in salt ponds by acoustic telemetry. J Exp Mar Biol Ecol,1990,141: 221-236
    164. LeBreton G T O, Beamish FWH, McKinley R S. Sturgeons and paddlefish of North America. Netherlands:Kluwer Academic Publishers,2005,1-323
    165. Lecointre G. Aspects historiques et heuristiques de l'Ichtyologie systematique. Cybium,1994,18:339-430
    166. Li C J, Wei Q W, Zhou L. Molecular and expression characterization of two somatostatin genes in the Chinese sturgeon, Acipenser sinensis. Comp Biochem Physiol-Part A:Mol Integ Physiol,2009,154:127-134
    167. Lino P G, Bentes L, Abecasis D, dos Santos M N, Erzini K. Comparative Behavior of Wild and Hatchery Reared White Sea Bream (Diplodus sargus) Released on Artificial Reefs Off the Algarve (Southern Portugal). Tag Trac Mari Anim Elec Dev, 2009,9:23-34
    168. Liu L, Wei Q, Guo F, Zhang J, Zhang T. Cryopreservation of Chinese sturgeon (Acipenser sinensis) sperm. J Appl Ichthyol,2006,22:384-388
    169. Lower N, Moore A, Scott A P, Ellis T, James J D, Russell I C. A non-invasive method to assess the impact of electronic tag insertion on stress levels in fishes. J Fish Biol,2005,67:1202-1212
    170. Lucas M C, Baras E. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish,2000,1:283-316
    171. Luecke C, Wurtsbaugh W A. Effects of moon and daylight on hydroacoustic estimates of pelagic fish abundance. Trans Am Fish Soc,1993,122:112-120
    172. Lynn R J. Variability in the spawning habitat of Pacific sardine(Sardinops sagax) off southern and central California. Fish Oceanog,2003,12:541-553
    173. Lyons J. A hydroacoustic assessment of fish stocks in the River Trent, England. Fish Res,1998,35:83-90
    174. MacArthur L D, Babcock R C, Hyndes G A. Movements of the western rock lobster (Panulirus cygnus) within shallow coastal waters using acoustic telemetry. Mar Freshw Res,2008,59:603-613
    175. MacLennan D N, Simmonds J. Fisheries Acoustics. London:Chap Hall,1992, 1-325
    176. Makowski C, Seminoff J, Salmon M. Home range and habitat use of juvenile Atlantic green turtles (Chelonia mydas L.) on shallow reef habitats in Palm Beach, Florida, USA. Mar Biol,2006,148:1167-1179
    177. Mason D M, Johnson T B, Harvey C J, Kitchell J F, Schram S T, Bronte C R, Hoff M H, Lozano S J, Trebitz A S, Schreiner D R, Conrad Lamon E, Hrabik T. Hydroacoustic Estimates of Abundance and Spatial Distribution of Pelagic Prey Fishes in Western Lake Superior. J Great Lakes Res,2005,31:426-438
    178. McDowall R M. The occurrence and distribution of diadromy among fishes. Am Fish Soc Sym.1987,1-13
    179. McDowall R M. Diadromy in fishes. Migrations between freshwater and marine environments. London:Croom Helm,1988,1-308
    180. McDowall R M. Diadromy:origins and definition of terminology. Copeia,1992, 1992:248-251
    181. McKinstry C A, Simmons M A, Simmons C S, Johnson R L. Statistical assessment of fish behavior from split-beam hydro-acoustic sampling. Fish Res,2005,72: 29-44
    182. Mehner T. Prediction of hydroacoustic target strength of vendace (Coregonus albula) from concurrent trawl catches. Fish Res,2006,79:162-169
    183. Merwade V, Cook A, Coonrod J. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environ Model Sof,2008, 23:1300-1311
    184. Meyer C G, Holland K N, Wetherbee B M, Lowe C G. Movement patterns, habitat utilization, home range size and site fidelity of whitesaddle goatfish, Parupeneus porphyreus, in a marine reserve. Environ Biol Fish,2000,59:235-242
    185. Meyer C G, Holland K N, Papastamatiou Y P. Seasonal and diel movements of giant trevally Caranx ignobilis at remote Hawaiian atolls:implications for the design of Marine Protected Areas. Mar Ecol-Prog Ser,2007,333:13-25
    186. Mitamura H, Mitsunaga Y, Arai N, Viputhanumas T. Comparison of two methods of attaching telemetry transmitters to the Mekong giant catfish, Pangasianodon gigas. ZoolSci,2006,23:235-238
    187. Mitson R B, Wood R J. An automatic method of counting fish echoes. J Cons Int Explor Mer,1962,26:281-291
    188. Moir H J, Pasternack G B. Relationships between mesoscale morphological units, stream hydraulics and Chinook salmon (Oncorhynchus tshawytscha) spawning habitat on the Lower Yuba River, California. Geomorphology,2008,100:527-548
    189. Myers G S. Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia,1949,1949:89-97
    190. Nealson P A, Tritt G W. Feasibility Assessment of split-beam hydroacoustic techniques for monitoring shortmose sturgeon in the Delaware River. WA,2003, 1-39
    191. Nelson G J, Platnick N. Systematics and biogeography Cladistics and vicariance. New York:Columbia University Press,1981,48-49
    192. Niklitschek E J, Secor D H. Modeling spatial and temporal variation of suitable nursery habitats for Atlantic sturgeon in the Chesapeake Bay. Estuar Coastal Shelf Sci,2005,64:135-148
    193. Ohta I, Kakuma S. Periodic behavior and residence time of yellowfin and bigeye tuna associated with fish aggregating devices around Okinawa Islands, as identified with automated listening stations. Mar Biol,2005,146:581-594
    194. Olney J E, Latour R J, Watkins B E, Clarke D G. Migratory behavior of American shad in the York River, Virginia, with implications for estimating in-river exploitation from tag recovery data. Trans Am Fish Soc,2006,135:889-896
    195. Orlowski A. Application of multiple echoes energy measurements for evaluation of sea bottom type. Oceanologia,1984,19:61-78
    196. Ortega L, Heupel M, Beynen P, Motta P. Movement patterns and water quality preferences of juvenile bull sharks (Carcharhinus leucas) in a Florida estuary. Environ Biol Fish,2009,84:361-373
    197. Planque B, Bellier E, Lazure P. Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy(Engraulis encrasicolus) in the Bay of Biscay. Fish Oceanog,2007,16:16-30
    198. Papastamatiou Y P, Lowe C G, Caselle J E, Friedlander A M. Scale-dependent effects of habitat on movements and path structure of reef sharks at a predator-dominated atoll. Ecology,2009,90:996-1008
    199. Paragamian V L, Wakkinen V D, Kruse G. Spawning locations and movement of Kootenai River white sturgeon. J Appl Ichthyol,2002,18(4-6):608-616
    200. Parker N C, Giorgi A E, Heidinger R C, Jester D B, Prince E D, Winans G A. Fish-Marking Techniques. In:Parker N ed, American Fisheries Society Symposium. Proceedings of the International Symposium and Educational Workshop on Fish-Marking Techniques, University of Washington,1990, Washington:Am Fish Soc Symp,1990,1-879
    201. Parkyn D C, Murie D J, Colle D E, Holloway J D. Post-release survival and riverine movements of Gulf of Mexico sturgeon(Acipenser oxyrinchus de) following induced spawning. J Appl Ichthyol,2006,22:1-7
    202. Parsley M J, Anders P J, Miller A I, Beckman L G. Factors Affecting White Sturgeon Spawning and Recruitment in the Columbia River Downstream from McNary Dam. In:Beamesderfer R C, Nigro A A eds, Status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam, Portland,1992,61-79
    203. Parsley M J, Wright C D, Leeuw B K, Kofoot E E, Peery C A, Moser M L. White sturgeon(Acipenser transmontanus) passage at the Dallas Dam, Columbia River, USA. J Appl Ichthyol,2007,23:627-635
    204. Parsley M J, Popoff N D, Wright C D, Leeuw B K. Seasonal and diel movements of white sturgeon in the lower Columbia River. Trans Am Fish Soc,2008,137: 1007-1017
    205. Patterson C. Morphology and interrelationships of primitive actinopterygian fishes. Am Zool,1982,22:241-259
    206. Pecl G T, Tracey S R, Semmens J M, Jackson G D. Use of acoustic telemetry for spatial management of southern calamary Sepioteuthis australis, a highly mobile inshore squid species. Mar Ecol-Prog Ser,2006,328:1-15
    207. Peltonen H, Malinen T, Tuomaala A. Hydroacoustic in situ target strength of smelt (Osmerus eperlanus L.). Fish Res,2006,80:190-195
    208. Pikitch E K, Doukakis P, Lauck L, Chakrabarty P, Erickson D L. Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish,2005,6:233-265
    209. Plantalech M-L N, Thorstad E, Davidsen J G, Land F, Sivertsg R D, Mckinley R S, Finstad B. Vertical movements of Atlantic salmon post-smolts relative to measures of salinity and water temperature during the first phase of the marine migration. Fish Manag Ecol,2009,16:147-154
    210. Qiao Y, Tang X C, Brosse S, Chang J B. Chinese Sturgeon (Acipenser sinensis) in the Yangtze River:a hydroacoustic assessment of fish location and abundance on the last spawning ground. J Appl Ichthyol,2006,22:140-144
    211. Ralston S L, Horn M H. High tide movements of the temperate-zone herbivorous fish Cebidichthys violaceus (Girard) as determined by ultrasonic telemetry. J Exp Mar Biol Ecol,1986,98:35-50
    212. Richardson I D, Cushing D H, Harden J F R, Beverton R J, Blacker R W. Echo sounding experiments in the Barents Sea. Fish Investig Ser 2,1959,22:55
    213. Rochard E, Castelnaud G, Lepage M. Sturgeons (Pisces:Acipenseridae); threats and prospects. J Fish Biol,1990,37:123-132
    214. Rose G A. A review of problems and new direction in application of fisheries acoustic on the Canadian East coast. Fish Res,1992,14:105-128
    215. Scherbino M, Truskanov M D. Determination of fish concentration by means of acoustic apparatus. ICES,1966:1-6
    216. Schismenou E, Giannoulaki M, Valavanis V D, Somarakis S. Modeling and predicting potential spawning habitat of anchovy(Engraulis encrasicolus) and round sardinella{Sardinella aurita) based on satellite environmental information. Essential Fish Habitat Mapping in the Mediterranean,2008,201-214
    217. Seibel D. Habitat selection, movements, and response to illumination of shortnose sturgeons in the Connecticut River. [MS Thesis]. Amherst:University of Massachusetts,1993
    218. Sheehan R J, Rasmussen J L. Large rivers. In:Kohler C C, Hubert W A eds. Inland Fisheries Management in North America. Bethesda:Am Fish Soc,1993,445-468
    219. Simmonds J, MacLennan D. Fisheries Acoustics:Theory and Practice. Oxford: Blackwell Science,2005,1-437
    220. Stark K E, Jackson G D, Lyle J M. Tracking arrow squid movements with an automated acoustic telemetry system. Mar Ecol-Prog Ser,2005,299:167-177
    221. Sternlicht D D, de Moustier C P. Time-dependent seafloor acoustic backscatter (10e100 kHz). J Acoust Soc Am,2003,114:2709-2725
    222. Sulak K J, Randall M T, Edwards R E, Summers T M, Luke K E, Smith W T, Norem A D, Harden W M, Lukens R H, Parauka F, Bolden S, Lehnert R. Defining winter trophic habitat of juvenile Gulf Sturgeon in the Suwannee and Apalachicola rivermouth estuaries, acoustic telemetry investigations. J Appl Ichthyol,2009,25: 505-515
    223. Suski C D, Ridgway M S. Seasonal pattern of depth selection in smallmouth bass. J Zool,2009,279:119-128
    224. Tao J P, Qiao Y, Tan X C, Chang J B. Species identification of Chinese sturgeon using acoustic descriptors and ascertaining their spatial distribution in the spawning ground of Gezhouba Dam. Chinese Sci Bull,2009,54:3972-3980
    225. Taquet C, Taquet M, Dempster T, Soria M, Ciccione S, Roos D, Dagorn L. Foraging of the green sea turtle Chelonia mydas on seagrass beds at Mayotte Island (Indian Ocean), determined by acoustic transmitters. Mar Ecol-Prog Ser,2006,306: 295-302
    226. Taquet M, Dagorn L, Gaertner J C, Girard C, Aumerruddy R, Sancho G, Itano D. Behavior of dolphinfish (Coryphaena hippurus) around drifting FADs as observed from automated acoustic receivers. Aquat Living Res,2007,20:323-330
    227. Tegowski J, Lubniewski Z. The use of fractal properties of echo signal for acoustical classification of bottom sediments. Acoust/Acta Acoust,2000,86:276-282
    228. Thibault I, Dodson J J, Caron F. Yellow-stage American eel movements determined by microtagging and acoustic telemetry in the St Jean River watershed, Gaspe, Quebec, Canada. J Fish Biol,2007,71:1095-1112
    229. Tungate D S. Echo-sounder surveys in the autumn of 1956. Fish Investig Ser,1958, 12:3-17
    230. Turner H V, Wolcott D L, Wolcott T G, Hines A H. Post-mating behavior, intramolt growth, and onset of migration to Chesapeake Bay spawning grounds by adult female blue crabs, Callinectes sapidus Rathbun. J Exp Mari Biol Ecol,2003,295: 107-130
    231. Tytler P, Thorpe J E, Shearer W M. Ultrasonic tracking of the movements of atlantic salmon smolts (Salmo salar L) in the estuaries of two Scottish rivers. J Fish Biol, 1978,12:575-586
    232. Tytler P, Holliday F G. Temporal and spatial relationships in the movements of loch dwelling brown trout, Salmo trutta L., recorded by ultrasonic tracking for 24 hours. J Fish Biol,1984,24:691-702
    233. Ubeda A J, Simpfendorfer C A, Heupel M R. Movements of bonnetheads, Sphyrna tiburo, as a response to salinity change in a Florida estuary. Environ Biol Fish,2009, 84:293-303
    234. Uglem I, Bjorn P A, Dale T, Kerwath S, Okland F, Nilsen R, Aas K, Fleming I, McKinley R S. Movements and spatiotemporal distribution of escaped farmed and local wild Atlantic cod(Gadus morhua L.). Aquacult Res,2008,39:158-170
    235. Vismara R, Azzellino A, Bosi R, Crosa G, Gentili G. Habitat suitability curves for brown trout(Salmo trutta fario L.) in the River Adda, Northern Italy:comparing univariate and multivariate approaches. Reg River Res Manag,2001,17:37-50
    236. Wang Y K, Xia Z Q. Assessing spawning ground hydraulic suitability for Chinese sturgeon (Acipenser sinensis) from horizontal mean vorticity in Yangtze River. Ecol Model,2009,220:1443-1448
    237. Wardle C S, Hall C D. Marine video. In:Wratten S D ed, Video techniques in the animal ecology and behaviour. London:Chap Hall,1994,89-111
    238. Watanabe Y, Wei Q, Yang D, Chen X, Du H, Yang J, Sato K, Naito Y, Miyazaki N. Swimming behavior in relation to buoyancy in an open swimbladder fish, the Chinese sturgeon. J Zool,2008,275:381-390
    239. Watson W H, Schaller S Y, Chabot C C. The Relationship between small- and large-scale movements of horseshoe crabs in the great bay estuary and limulus behavior in the laboratory. Biol Conserv Hor Crab,2009,131-147
    240. Wei Q, Li P, Psenicka M. Ultrastructure and morphology of spermatozoa in Chinese sturgeon (Acipenser sinensis Gray 1835) using scanning and transmission electron microscopy. Theriogenology,2007,67:1269-1278
    241. Wei Q W, Ke F E, Zhang M J, Zhuang P, Luo D J, Zhou Y Q, Yang W H. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environ Biol Fish, 1997,48:241-255
    242. Wei Q W, Kynard B, Yang D G, Chen X H, Du H, Shen L, Zhang H. Using drift nets to capture early life stages and monitor spawning of the Yangtze River Chinese sturgeon (Acipenser sinensis). J Appl Ichthyol,2009,25:100-106
    243. Welch D W, Melnychuk M C, Rechisky E R, Porter A D, Jacobs M C, Ladouceur A, McKinley R S, Jackson G D. Freshwater and marine migration and survival of endangered Cultus Lake sockeye salmon (Oncorhynchus nerka) smolts using POST, a large-scale acoustic telemetry array. Can J Fish Aquat Sci,2009,66:736-750
    244. Whitty J M, Morgan D L, Peverell S C, Thorburn D C, Beatty S J. Ontogenetic depth partitioning by juvenile freshwater sawfish (Pristis microdon:Pristidae) in a riverine environment. Mar Freshw Res,2009,60:306-316
    245. Windle M, Rose G. Do cod form spawning leks? Evidence from a Newfoundland spawning ground. Mar Biol,2007,150:671-680
    246. Wolter C, Freyhof J. Diel distribution patterns of fishes in a temperate large lowland river. J Fish Biol,2004,64:632-642
    247. Wood A B, Smith F D, McGeachy J A. Amagnetostriction echo depth-recorder. J Inst Elect Eng,1935,76:550-567
    248. Yang D, Kynard B, Wei Q, Chen X, Zheng W, Du H. Distribution and movement of Chinese sturgeon, Acipenser sinensis, on the spawning ground located below the Gezhouba Dam during spawning seasons. J Appl Ichthyol,2006,22:145-151
    249. Yang Y, Yan Z, Chang J. Hydrodynamic Characteristics of Chinese Sturgeon Spawning Ground in Yangtze River. J Hydrod,2008,20:225-230
    250. Yeiser B G, Heupel M R, Simpfendorfer C A. Occurrence, home range and movement patterns of juvenile bull (Carcharhinus leucas) and lemon (Negaprion brevirostris) sharks within a Florida estuary. Mar Freshw Res,2008,59:489-501
    251. Yi Y J, Wang Z Y, Yang Z F. Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecol Model,2010,221864-875
    252. Yokota T, Masuda R, Takeuchi H, Tsuzaki T, Arai N. Individual consistency between diel activity during rearing and behavior after release in red tilefish Branchiostegus japonicus revealed by laboratory observation and acoustic telemetry. Fish Sci,2007, 73:500-511
    253. Zhang H, Wei Q W, Du H. A bedform morphology hypothesis for spawning areas of Chinese sturgeon. Environ Biol Fish,2008,84:199-208
    254. Zhang H, Wei Q W, Kynard B, Du H, Yang D G, Chen X H. Spatial structure and bottom characteristics of the only remaining spawning area of Chinese sturgeon in the Yangtze River. J Appl Ichthyol,2011,27:251-256
    255. Zhao X, Barlow J, Taylor B L, Pitman R L, Wang K, Wei Z, Stewart B S, Turvey S T, Akamatsu T, Reeves R R, Wang D. Abundance and conservation status of the Yangtze finless porpoise in the Yangtze River, China. Biol Conserv,2008,141: 3006-3018
    256. Zhuang P, Kynard B, Zhang L, Zhang T, Cao W. Ontogenetic Behavior and Migration of Chinese Sturgeon, Acipenser sinensis. Environ Biol Fish,2002,65: 83-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700