用户名: 密码: 验证码:
重油掺混配伍相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渣油在储存、运输、加工过程中均会受到胶体稳定性的影响。如炼厂在渣油延迟焦化加工过程中,可能会出现原料混合罐中沉积、换热器沉积结焦、加热炉管结焦和产物分布变差等问题;一些渣油减粘之后处理不当在运输过程中会分相,沉积,装卸难度都很大,给工业操作带来麻烦。这些问题想要得到有效地解决,就需要选择合适的胶体稳定性评价方法。
     本文在前人对于渣油原油稳定性研究的基础之上,首先研究了四种稳定性评价方法-质量分数电导率法、分光光度法、HRS值法、EP值法对实验选用渣油的适用性。结果表明,质量分数电导率法是一种简单快捷的、结果直观的实验方法,对于渣油稳定性评价结果准确,且应用范围广,而且实验结果符合渣油本身性质,可以定量的给出实验结果;HRS值法结果直观,可以定性也可以定量,但是对于油品的选择性较高;紫外分光光度法需要采用多点法数据步骤较为复杂,结果准确度较高,低稀释下测得的沥青质起始点与浓度呈直线,高稀释条件下得到的曲线呈指数型;EP值法既可以定性定量的说明渣油的稳定性,EP0/EPmin还可以用于预测该油品能否与其它油品混合而不造成稳定性问题。此外,通过渣油结构的分析,实验考察了渣油结构性质与稳定性的关系,认为渣油各组分的含量、结构都对渣油胶体稳定性有影响,具有较低的H/C比、且芳碳率和芳环数、偶极距等较大的沥青质较容易从渣油中分离出来,从而破坏沥青质稳定结构;沥青质的沉积不但与沥青质的含量有关,还与体系对其分散状况有关。
     其次,采用质量分数电导率方法研究了搀兑体系渣油稳定性的变化情况。实验结果表明可知,两种稳定性不好的油品搀兑稳定性会变差,掺入与渣油相容性较好的馏分油可增强渣油稳定性。热反应过程中,渣油稳定性变差,但是加入了适当的馏分油,会延缓稳定性变差,从而延缓生焦诱导期;馏分油搀兑的越多稳定性改善的越多。生焦诱导期不光是胶体稳定性决定的,还与其他因素有关,如残炭,等。
     再次,由于添加抑制剂是增强体系稳定性的重要方法,实验还采用相对准确、快捷的质量分数电导率法评价了几种沥青质分散剂的优劣及其作用原理。实验结果说明,与渣油配伍性好的试剂对沥青质抑制作用更强,配伍性不好的可能会加速沥青质从渣油体系中沉积出来。
Colloidal stability of petroleum influences the reservoir, transporting and process of crude oils. During delayed coking process of residues, colloidal instability problem might occur, and cause fouling in the storage tanks and heat exchanger, coke formation on the wall of the furnace tubes and nozzles, or the undesirable product distribution which seriously affected the normal operation of oil refinery. Some residues might phase split during transportation, and lead to the difficulty of loading and unloading of the residues. To work out these problems, suitable methods for testing colloidal stability must be selected or set up.
     Firstly, four methods were characterized for testing colloidal stability. Results show that, mass fraction conductivity method is a simple, swift method. It can give an accurate result that fitted the properties of the residues in where it was used and can be used in a wide range. This method tells the differences of residues but do not tell whether the oil is stable or not, researches need to compare oil samples to get the result they want. HRS value method shows the result in an intuitive way, the result can be given in both qualitative and quantitative ways, however it can not be used in a wide range. Ultraviolet spectrophotometric method needs multi-steps to carry out one measurement. It might be complex, but the results with this method are accurate. In low dilution system asphaltene precipitation starting points have a linear relationship with their concentrations in toluene; while in high dilution system the relation is exponent. EP value method can not only tell the results in both qualitative and quantitative ways, but also foretells residues compatibility when they are blended with other oils through a parameter EPo/EPmin. Besides, the relationships of colloidal stability with residues components and their properties are examined. It is shown that the composition and the properties determine the stability of the residues. Asphaltenes with low H/C ratio and more polarity, higher aromaticity and condensation degree easily deposits from residues and ruined the stability of its colloidal system. Deposition of asphaltenes depends on asphaltene contents and also their dispersion conditions.
     Secondly, the stabilities of residues colloidal system were studies when they were mixed with other oils. Results show that when two oils both with low stabilities were blended their mixture oil has lower colloidal stability. And when residues with similar compatibility were mixed together, the colloidal stability of the mixture can be improved. During thermal reaction, residues colloidal stability became worse, but the situation can be delayed by being added suitable fraction oils, and the more, the better. Colloidal stability is not the only cause influencing the induction period of coke formation, other factors like carbon residue also play important role.
     Thirdly, addition of asphaltene deposition inhibitor is an effective way of improving residues stability. The determination of the colloidal stability of residues by mass fraction conductivity method was conducted in order to appraise the performance of several asphaltene deposition inhibitors. Results show that inhibitors with good compatibility with residues can improve colloidal stability of residue system, otherwise, it can accelerate asphaltene depositing rate from residues.
引文
[1]张刘军,高金森,徐春明.我国重油转化工艺技术[J].河南石油,2004,18(5):35-36
    [2]程之光.重油加工技术[M].北京:中国石化出版社,1994
    [3]陶春风.延迟焦化装置长周期生产中存在的问题及解决措施[J].石油炼制与化工,2000,31(2):17-20
    [4]王文智,张立海.延迟焦化装置掺炼催化裂化油浆的技术经济分析[J].中外能源,2007, 12:82-84
    [5]丁华成,苑剑锋.催化剂的失活研究及其在使用中的改进建议[J].广州化工,2010,38(11):100-101
    [6] Basdasarian A J, Bereczky E L . Investigation of 26-year-old hydroprocessing reactors[J].Materials performance, 1994, 33(7):63-64
    [7]刘海彬,赵辉.开停工过程造成加氢反应器破坏的原因分析及防护措施[J].1999,27(3):191-193
    [8]王英杰,张中洋.我国渣油加油处理技术分析[J].当代化工,2007,36(3):221-223
    [9]石斌,门秀杰.自由基引发剂对重油加氢裂化的影响研究[J].燃料化学学报,2010,38(4):423-427
    [10]韩崇仁.加氢裂化工艺与工程[M].北京:北京石化出版社,2001:132-300
    [11]李家栋,崔德春.进一步认识和评价延迟焦化工艺[J].石油化工技术经济,2001,17(6): 28 - 31
    [12]谢传欣,孙大勇.减粘裂化工艺技术及进展(Ⅰ) [J].抚顺石油学院学报,2000,20(1):1-6
    [13]谢传欣,孙大勇.减粘裂化工艺技术及进展(Ⅱ) [J].抚顺石油学院学报,2000,20(2):3-8
    [14]张连红,赵德智,曹祖宾.辽河超稠油减粘裂化工艺研究[J].抚顺石油学院学报,2000,20(3):30-33
    [15]宋安太.塔河常压渣油结焦特性及焦化加工对策[J].炼油技术与化工,2004,34(7):6-9
    [16]柳国荣,张连忠.上海石化延迟焦化装置大油气管线结焦情况分析与对策[J].金山油化纤,2001,21(1):17-19
    [17]黎元生.减粘裂化技术研究进展[J].抚顺烃加工技术,2001,5:11-15
    [18]汪华林,陈于勤,白志山,等.废弃生物质的延迟焦化处理方法[P].中国:ZL200510027541.4.2008-05-07
    [19]邵建海,张立海,郭守学.延迟焦化装置掺炼浮渣存在问题与对策[J].炼油与化工,2005,16(1):30- 32
    [20]梁文杰,阙国和,陈月珠.我国原油减压渣油的化学组成与结构:Ⅰ减压渣油的化学组成[J].石油学报(石油加工),1991,7(3):1-7
    [21] Leontaritis K J, Amaefule J O.A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition[J].SPE 23810, 1992
    [22]李生华,刘晨光,阙国和,等.减压渣油的胶体结构及其形成[J].石油大学学报(自然科学版),1997, 21(6):71-76
    [23]梁文杰,阙国和,陈月珠.我国原油减压渣油的化学组成与结构:Ⅱ减压渣油及其各组分的平均结构[J].石油学报(石油加工),1991,7(4):1-11
    [24]梁文杰.石油化学.山东东营:石油大学出版社[M],1995:64-65,280
    [25]张龙力,杨国华,阙国和,等.大港常压渣油各组分平均偶极矩的研究[J].燃料化学学报,2007,35(3):289-292
    [26]文萍,李庶峰,阙国和.减压渣油及其组分热转化前后平均结构参数的变化[J].石油学报(石油加工),2009,25(2):266-270
    [27]文萍,沐宝泉,于道永,等.减压渣油热转化前后氮分布[J].石油大学学报(自然科学版),2002 , 26(1):85 - 87
    [28]刘东,王宗贤,阙国和.渣油中沥青质胶粒缔合状况探究[J].燃料化学学报,2002,30(3):281-284
    [29]郭爱军.王宗贤.阙国和.饱和烃促进渣油热反应初期生焦的考察[J].燃料化学学报,2001,29(5):408-412
    [30] Victor V Likhasky, Rustem Z Syuntyaev.New colloidal stability index for crude oils based on polarity of crude oil components[J].Energy& fuels, 2010, 24: 6483-6488
    [31]杨照,郭天民.沥青质沉淀研究进展综述[J].石油勘探与开发,1997, 24(5):98-103
    [32]秦匡宗,郭绍辉.石油沥青质[M].北京:石油工业出版社,2002,11:24-76
    [33]张会成,颜涌捷,齐邦峰,等.关于阿曼渣油在加氢处理过程中胶体稳定性的研究[J].石油学报(石油加工),2007,23(6):91-95
    [34]张龙力,杨国华,张庆轩,等.渣油胶体稳定性与热反应生焦性能的关系[J].石油化工高等学校学报,2005,18(1):4-6
    [35]张龙力,张世杰,杨国华,等.常压渣油热反应过程中的胶体的稳定性[J].石油学报(石油加工),2003, 19(2):82-87
    [36]李生华,刘晨光.渣油热反应体系中第二液相形成与热处理温度的关系[J].石油学报(石油加工),1998,14(1):11-16
    [37]张会成,颜涌捷,齐邦峰,等.渣油加氢处理对渣油胶体稳定性的影响[J].石油与天然气化工,36(3):197-200
    [38] Escobedo J, Mansoori G A.Viscometric determination of the onset of asphaltene flocculation: a novel method[J].SPE Production& Facilities,1995,10(2):115-118.
    [39]李美霞,刘晨光,梁文杰,等.用粘度法研究石油中沥青质沉积的起始点[J].石油大学学报(自然科学版),1997,21(5):75-78
    [40] E.Y.Sheu, D.A.Storm, M.B.Shields.Adsorption kinetics of asphaltenes at toluene/acid solution interface[J].Fuel, 1995, V74 (10): 1475-1479
    [41] Chung F.Modeling of asphaltene and wax precipitation.US DOE NIPER-498, 1991, 1-43
    [42] De Boer R B,Leerlooyer K.Screening of crude oils for asphaltene precipitation:theory, practice and selection of inhibitors[J].Soc Petrol Engrs Production Facilities,1995,(1):55-61
    [43] Bouts M N, R J Wiersma. An evaluation of new asphaltene inhibitors: laboratory study and field testing[J].SPE28991, 1995, 782-787
    [44] Fuhr B J.Effects of diluents and carbon dioxide on asphaltene flocculation in heavy oil solution.Proc.4th UNITAR and UNDP Intl.conference on heavy oil and tar sands, 1989, 2, 637-646.
    [45] Macmillan D J.A unified approach to asphaltene precipitation: laboratory measurement and modeling[J], SPE28990.1995, 471-480
    [46] Jamaluddin A K M.Deasphalted oil- a natural asphaltene solvent[J], SPE 28993.1995, 513-522
    [47] Takhar S.Prediction of asphaltene deposition during production model description and experimental details[J]. SPE30108. 1995, 311-316
    [48]刘东,王宗贤,阙国和.渣油中沥青质胶粒缔合状况探究[J].燃料化学学报,2002,30(3):281-284
    [49] Jesper Bartholdy, Simon Ivar Andersen . Changes in asphaltene stability during hydrotreating[J].Energy & fuels, 2000, 14:52-55
    [50] Omar Ocanto, Francia Marcano . Influence of experimental parameters on the determination of asphaltenes flocculation onset by the titration method[J].Energy & Fuels, 2009, 23:3039-3044
    [51] Fotland P, Anfindsen H.Detection of asphaltene precipitation and amounts precipitated by measurement of electrical conductivity.Fluid Phase Equilibria, 1993,82: 157-164.
    [52] Fotland P.Precipitation of asphaltenes at high pressures, experimental technique and results[J].Fuel Science & Technology International, 1996,14(1&2):313-325.
    [53]李美霞,刘晨光,梁文杰.用电导率法研究石油中沥青质沉积问题[J].石油学报(石油加工),1998,14(4):74-79
    [54]张龙力,杨国华,孙在春,等.质量分率电导率法研究几种不同渣油的胶体稳定性[J].燃料化学学报,2003,31(2):l15-118
    [55]张龙力,杨国华,孙在春,等.质量分率电导率法研究中东常压渣油中的沥青质聚沉[J].石油学报(石油加工),2002,18(6):56-60
    [56] Andersen S I, Bardi K S . Aggregation of asphaltene as determined by calorimetry.Journal of colloid& interface science, 1991, 142(2):497-502
    [57] Burke, Hobbs, Kashou.Measurement and modeling of asphaltene precipitation[J].JPT, 1990:1440-1446
    [58] Hotier G, Robin M.Effects of different diluents on heavy oil products.Revue de L’Institute Francase du pet, 1983, 38(1):102-120
    [59] James H.Gary, Glenn E.Handwerk.Refining technology and economics[M].New york, Marcel Dekker, Inc., 2001:243-248
    [60] J.G.Speight.The chemistry and technology of petroleum [M].CRC press, Taylor & Francis, 2007:410-415
    [61] Shell.Determination of the state of peptization of asphaltenes in oils (P-value).Shell SMS-1600-80.Shell methods series;1984
    [62]王宗贤,耿亚平,郭爱军,等.馏分循环对延迟焦化加热炉管结焦规律影响的实验研究[J].石油炼制与化工,2010,41(9):65-69
    [63]孙蕊,陈静,张荣,等.原油及重油强化蒸馏研究进展[J].江苏化工,2005,33(1):18-21
    [64]赵凤兰,鄢捷年.沥青质沉积抑制剂和清除剂研究[J].油田化学,2004,21(4):310-312
    [65]周迎梅,王继乾,张龙力,等.沥青质分散剂对沥青质的稳定剂缔合的影响[J].燃料化学学报,2008,36(1):65-69
    [66]李传,崔敏,石斌,等.表面活性剂对渣油胶体性质影响的初步研究[J].石油学报(石油加工),2007,23(6):44-50
    [67]李传,崔敏,王继乾,等.表面活性剂对渣油沥青质体系分散性质的影响[J].应用化学,2008,251:85-89
    [68]奇赫达.用于石油产品的沥青质分散剂[P].美国:200610168434.2007-06-20
    [69] Wright J R.Journal of Colloid and Interface Science, 1963, 18:223-288
    [70]张龙力,杨国华,阙国和,等.常压渣油组分的电导率[J].石油学报(石油加工),2009, 25(4):577-581
    [71]张磊,阙国和.渣油中无机盐水分散剂的电学性质研究[J].石油仪器,2008,22(3):40-43
    [72]胡玉峰,杨兰英,林雄森,等.原油正构烷烃沥青质聚沉机理研究及沉淀量测定[J].石油勘探与开发,2000,27(5):109-111
    [73] Mohammad Sedghi, Lamia Goual.Role of resins on asphaltene stability[J].Energy Fuels, 2010, 24:2275-2280
    [74]于双林,张龙力.不同性质油品对渣油胶体稳定性的影响[J].石油炼制与化工,2009,40(12):43-46
    [75] Victor V.Likhasky, Rustem Z.Syuntyaev.New colloidal stability index for crude oils based on polarity of crude oil components[J]. Energy& fuels, 2010, 24: 6483-6488
    [76]瞿国华,黄大智,梁文杰.延迟焦化在我国石油加工中的地位和前景[J].石油学报(石油加工),2005,21(3):25-26
    [77]张立新.中国延迟焦化装置的技术进展[J].炼油技术与工程,2005,35(6):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700