用户名: 密码: 验证码:
海拉尔油田集输油管道安全运行技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海拉尔油田针对“偏、远、散、寒”的特殊地理环境特点,结合不同区块开发的实际情况,灵活地采用了“提、拉、掺、树、混”等集油工艺,并于2009年实现了原油管道外输。集输系统原油含水率在转相点附近时,管内介质的粘度会急剧增大,从而带来井口回压急剧上升,会给油井及集油系统带来危害;部分输油管道投产以来出现了比较严重的结蜡现象,加之输量较低及运行输量波动较大的影响,使外输油干线实际运行时摩阻快速上升,直接影响到输油管线的安全运行。因此,有必要从调查管道的历史运行参数、分析各站点的运行方案及其调整情况出发,研究海拉尔集输油管道运行存在的问题、成因及潜在风险,提出合理的集输油运行方案及建议措施。
     本论文的主要研究内容包括:
     (1)分析海拉尔油田含水原油不同温度、剪切速率下的粘度随含水率变化规律,研究确定出各区块含水原油乳化体系的转相点,以此给出双管掺水、环状掺水及电加热等集油工艺的包括含水率、集油温度等的适应性指标体系,并提出当集油系统原油含水率达到转相点附近时的解决措施。
     (2)测定净化外输油的密度、比热容、凝固点、含蜡量、胶质、沥青质含量及全粘温曲线,给出海拉尔油田各区块净化油的基础物性及粘温性质;以净化外输油剪切速率与剪切应力的变化关系及剪切速率与粘度的变化关系为基础,确定原油的流变指数、稠度系数、屈服值等流变特征参数;测定净化外输油的析蜡点、反常点及析蜡峰温,试验得出温度对外输油析蜡量及比热容的影响规律。
     (3)结合海拉尔外输油管道运行现状,针对蜡晶颗粒的溶解、析出、聚集及其空间网状体结构的恢复与形成机制,通过考察凝点指标的变化,实验研究热作用、剪切作用对外输油流动性能的影响;分别考虑海拉尔油田实际运行中不同净化油的混合比例及性质差异较大的两种油品的变比例混合,测试混合油基础物性、粘温特征参数及流变特征参数,研究分析掺混对原油流动性的影响。
     (4)根据差压法原理,建立测定海拉尔原油蜡沉积速率室内模拟试验装置,在确定不同流态区管壁处剪切应力、管壁处蜡分子浓度梯度、管道沿线温降分布及径向温度梯度的基础上,覆盖各种典型工况条件(包括温度梯度、流速等)开展管输原油蜡沉积模拟试验,并根据各相关参数的确定方法及模拟试验数据,回归建立适合海拉尔原油管道的蜡沉积速率模型。
     (5)分析热油管道的“管道特性允许最小输量”和“热力条件允许最小输量”的区别与联系,指出管道实际运行的允许最小输量应是它们中的较大值。在计算确定海拉尔油田各输油管道允许最小输量的基础上,结合开发部门的产能预测,从添加降凝剂、热处理改性、加水输送、增加中间加热站、正反输运行等保证含蜡原油管道低输量安全运行的常规方法中,优选适合于每条管道的设计调整方案,并给出相应的主要工程量。
According to the characteristics of special geographical environment, such as'remote, far, scatter, cold', and combined with the actual situation of different blocks development, the oil gathering process of'raise, pull, blend, dendroid, mix'was adopted in Hailaer Oilfield, and the pipeline transportation of crude oil was realized in 2009. When the water content of crude oil in gathering system is near the phase transition point, the medium viscosity in tube will increase dramatically, then lead to a sharp rise of wellhead back pressure, and bring harm to oil wells and gathering system. Some pipelines have come out the serious phenomenon of wax deposition since operation, and coupled with effects of lower transmission capacity and much rate fluctuation, which makes pipelines route friction on the rapid rise with the actual operation, and the safe operation of pipeline is affected directly. Therefore, it is necessary to start from surveying the history operating parameters of the pipeline and analyzing the all site's operation scheme and adjustive conditions to research the existing problems, causes and potential risks of the Hailaer oil gathering and transporting pipeline in operation, and then the reasonable operation scheme and measures of setting oil is put forward.
     The main contents of this paper include:
     (1)Analyze the law of viscosity with water ratio variation under different temperature and shear rate for water cut oil of Hailaer Oilfield, determine the phase transition point of watered cut oil emulsification system for each block, thus the adaptability index system including water ratio, oil gathering temperature, etc. for double-tube with water, circular tube with water and electrical heating oil gathering process is provided. And also the solutions are put forward when water ratio reaches the phase transition point of oil gathering system.
     (2)Test the density, specific heat capacity, freezing point, wax content, colloid, asphaltene content and full viscosity-temperature curve of exported purification oil, thus the foundamental physical property and viscosity-temperature properties of purification oil for each block in Hailaer Oilfield are given out. The rheological characteristic parameters such as rheological index, consistency coefficient and yield value are ascertained on the basis of the variation relationship between shear rate and shear stress, between shear rate and viscosity for purification oil. Test wax precipitation point, abnormal point and wax precipitation peak of purification oil, the influence law of temperature on wax precipitation amount and specific heat capacity is got through experiment.
     (3)Combined with the current situation of oil pipeline in Hailaer, to counter the dissolution, precipitation, aggregation of wax particle and the recovery and formation mechanism of its spatial network structure, the influence of thermal effect and shear effect on the flow property of exported is studied through experiment by investigating the changes of solidification point. Considering the mixture ratio of different purification oil and the variable mixing ratio of two kinds of oil that have quite different properties respectively during actual operation of Hailaer Oilfield, the influence of mixing on crude oil flowability is studied through determination the basical physical properties, viscosity-temperature feature parameters and rheological parameters of the mixed oil.
     (4)According to the principle of differential pressure method, the indoor simulation experiment device of wax deposition rate for Hailaer crude oil is set up. Based on the determination of pipe wall shearing stress, wax molecular concentration gradient at pipe wall, temperature drop distribution along pipeline and radial temperature gradient for different flow pattern, the wax deposition experiment of oil transferring pipeline which covers all the typical working conditions including temperature gradient, flow velosity etc. is developed. And the wax deposition rate model for the crude oil pipeline in Hailaer is established on the basis of the determining method for the related parameters and the simulation experiment data.
     (5)The difference and relation between two kinds of allowed minimum transportation amount of hot oil pipeline, namely 'the allowed minimum transportation amount of pipeline characteristics' and 'the allowed minimum transportation amount of thermal condition' is analyzed, and it is pointed that the allowed minimum transportation amount of the actual pipeline in operation should be the higher one. Based on the calculation for the allowed minimum transportation amount of various pipelines in Hailaer Oilfield, combined with the productivity prediction of development department, the suitable design adjustment scheme for every pipeline is selected from the conventional method of ensuring the safe operation of low transportation amount in waxed oil pipeline, including the addition of pour point depressant, modification of heat treatment, blending water transportation, increasing the number of middle heating stations, operation of positive and negative transportation, etc., and also the corresponding major projects is given.
引文
[1]宋晓莉.我国能源消费特点及对策[J].科技创新导报,2009,29:165.
    [2]秦雁霞.我国能源消费分析[J].科技信息,2008,3:190.
    [3]龚树鹏.中国石油管道公司发展战略的几点思考[J].油气储运,2005,24(8):31-33.
    [4]张劲军.易凝高粘原油管输技术及其发展[J].中国工程科学,2002,4(6):71-76.
    [5]李鸿英,张劲军.蜡对原油流变性的影响[J].油气储运,2002,21(11):6-12.
    [6]梁文杰.石油化学[M].东营:石油大学出版社,1995.
    [7]敬加强,杨莉,秦文婷等.含蜡原油结构形成机理研究[J].西南石油学院学报,2003,25(6):49-52.
    [8]敬加强,杨莉,罗平亚等.含蜡原油结构的存在性研究[J].西南石油学院学报,2001,23(6):67-70.
    [9]喻西崇,冯叔初.含蜡原油管道胶凝形成机理研究进展[J].油气储运,2000,19(11):6-8.
    [10]杨筱蘅.输油管道设计与管理[M].东营:中国石油大学出版社,2006.
    [11]从德胜.原油管道蜡沉积若干问题的研究综述[J].江汉石油职工大学学报,2008,21(4):61-65.
    [12]李汉勇,宫敬,于达等.石油管线蜡沉积试验研究进展[J].石油矿场机械,2010,39(6):5-11.
    [13]Hamouda A A,Viken B K.Wax Deposition Mechanism under High-Pressure and in Presence of Light Hydro-carbons [R]. SPE 25189,1993.
    [14]Josueda S T, Antonio C, Fernandes. Study of the paraffin deposit formation using the coldfinger methodology for Brazilian crude oils[J]. Journal of Petroleum Science and Engineering,2004,45 (1-2):47-60.
    [15]Matlach WJ,Newberry M E. Paraffin Deposition and Rheological Evaluation of High Wax Content Altamont Crude Oils[J]. SPE 11851,1983.
    [16]Burger E D, Perkins T K, St riegler J H. Studies of Wax Deposition in the Trans-Alaska Pipeline [J]. Journal of Petroleum Technology,1981,33 (6):1075-1086.
    [17]Majeed A, Bringedal B, Overa S. Model Calculates Wax Deposition for North Sea Oils[J]. OGJ,1990 (6):63-69.
    [18]Weingarten J S, Euchner J A. Methods for Predicting Wax Precipitation and Deposition [J]. SPE Production Engineering,1988.
    [19]Hsu J J. Wax Deposition Scale-Up Modeling for Waxy Crude Production Lines [J]. OTC 7778,1995.
    [20]Hsu J J, Lean S J. Validation of Wax Deposition Model by a Field Test [J]. SPE 48867, 1998.
    [21]黄启玉.含蜡原油管道蜡沉积模型的研究[D].北京:中国石油大学(北京),2000.
    [22]Brown T S, Niesen V G, Erikson D D. Measurement and Prediction of Kinetics of Paraffin Deposition [R]. SPE 26548,1993.
    [23]Burger E D and Perkins:Studies of Wax Deposition in the Trans-Alaska Pipeline[J]. JPT, 1981.
    [24]蔡均,张国忠,邢晓凯等.含蜡原油管道蜡沉积研究进展[J].油气储运,2002,21(11):12-16
    [25]Bern P A,Withers V R and Cairns J R:Wax Deposition in Crude Pipelines, European Offshore Petroleum Conference & Exhibition,London,1980.
    [26]Weingarten J S and Euchner J A:Methods for Predicting Wax Precipitation and Deposition, SPE Production Engineering,1988.
    [27]Majeed A, Bringedal B and Overa S:Model Calculates Wax Deposition for N. Sea Oils, OGT,June 18,1990.
    [28]Ribeiro F S, Mendes P R S and Braga S L:Obstruction of Pipelines due to Paraffin Deposition during the Flow of Crude Oils, Int. J. Heat Transfer,1997,40(18).
    [29]Hamouda A A, Ravnoy J M. Prediction of wax deposition in pipelines and field experience on the influence of wax on drag reducer performance[R]. OTC 7060,1992:669-679.
    [30]Singh P, Venkatesan R et al:Formation and Aging of Incipient Thin Film Wax-Oil Gels, AIChE J.,2000,46.
    [31]Singh P, Venkatesan R et al:Morphlogical Evolution of Thick Wax Deposits during Aging, AIChE J.,2001,47.
    [32]蔡均猛,张国忠.用差压新方法确定模型环道蜡沉积厚度[J].石油大学学报(自然科学版),2003,27(6):68-71
    [33]黄启玉,张劲军,严大凡.一种新的蜡沉积模型[J].油气储运,2003,22(11):22-25.
    [34]黄启玉,李瑜仙,张劲军.普适性结蜡模型研究[J].石油学报,2008,29(3):459-462.
    [35]黄启玉,吴海浩,张劲军.新疆原油蜡沉积规律研究[J].油气储运,2000,19(1):29-32.
    [36]黄启玉,张劲军,高学峰等.大庆原油蜡沉积规律研究[J].石油学报,2006,27(4):125-129.
    [37]周诗岽,江国业,吴明等.蜡沉积速率的逐步回归模型[J].抚顺石油学院学报,2003,23(4):27-30.
    [38]周诗岽,吴明,王俊.基于人工神经网络的原油管道蜡沉积速率模型[J].西安石油大学学报(自然科学版),2004,19(1):38-40.
    [39]周诗岽,吴明.管道输送原油蜡沉积速率模型研究[J].辽宁石油化工大学学报,2004,24(2):73-77.
    [40]姜宝良,张国武,赵晨阳.原油蜡沉积研究进展[J].油气储运,2005,24(10):1-4.
    [41]王丽娟.含蜡原油石蜡沉积过程热力学研究[D].大连;大连理工大学.2007.
    [42]Won K W:Thermodynamics for Solid Solution-Liquid-Vapor Equil., Wax Phase Formation from Heavy Hydrocarbon Mixtures, Fluid Phase Equil.,1986(30).
    [43]Won K W:Thermodynamic Calculation of Cloud Point Temperature and Wax Composition of Refined Hydrocarbon Mixtures, Fluid Phase Equil.,1989(53).
    [44]Hansen J H and Pedersen K S:Thermodynamic Model for Predicting Wax Formation in Crude Oils, AIChE,1988(34).
    [45]Svendsen J A:Mathematical Modeling of Wax Deposition in Oil Pipeline Systems, AIChE,1993(39).
    [46]Pedersen K S:Prediction of Cloud Point Temperatures and Amount of Wax Precipitation, SPE 27629, SPE Production & Facilities,1995.
    [47]Huanquan Pan:Pressure and Composition Effect on Wax Precipitation:Experimental Data and Model Results, SPE Production & Facilities,1997.
    [48]曾丹苓.一个基于非平衡热力学理论的核沸腾汽泡长大的数学模型[J].工程热物理学报,1994,15(1):9-12.
    [49]曾丹苓,王飞,刘朝.利用非平衡热力学理论研究过热液中汽泡的成长[J].中国科学(A辑),1997,27(10):922-929.
    [50]刘林林,王宝辉,王丽等.原油降凝剂种类及应用[J].化工技术与开发,2006,35(2),13-15.
    [51]戚国荣,高建厂,周孝瑞等.不同分子结构星形降凝剂对油品降凝、降粘性能的影响[J].石油学报(石油加工),2000,16(1),40-46.
    [52]陈建康,张建国,王燕舞.浅谈降凝剂的作用及应用现状[J].石油商技,2003,21(6):30-31.
    [53]廖克俭.MAOC降凝剂的研究[J].石油炼制与化工,1998,29(1):28.
    [54]王丽娟,田军.聚合物型原油降凝剂的作用机理及应用[J].精细石油化工,1997,(5):5-8.
    [55]胡合贵,戚国荣,高建厂等.不同分子结构星型降凝剂对油品降凝、降粘性能的影响[J].石油学报(石油加工),2000,16(1):40-45.
    [56]王彪,张怀斌,张付生等.一种新型原油降凝剂的研究.石油学报,1998,19(2):97-102.
    [57]宋昭峥,葛际江,张贵才等.高蜡原油降凝剂发展概况[J].石油大学学报,2001,25(6):132-137.
    [58]牟建海.原油降凝剂的研究进展[J].化工科技市场,2001,(10).
    [59]李传宪,张春光,孙德军等.降凝剂对蜡油中析出与溶解影响的物理化学研究[J].高等学校化学学报,2003,24(8):1451-1455.
    [60]杨飞,李传宪,林名桢等.含蜡原油降凝剂与石蜡作用机理的研究进展与探讨[J].高分子通报,2009(24).
    [61]张拂晓,方龙,聂兆广等.高凝原油降凝剂的制备及其降凝机理[J].石油学报,2009,25(16).
    [62]赵荣祥,曹祖宾,岳坤霞等.降凝剂的应用概况[J].当代化工,2003,32(4):55-57.
    [63]刘忠辉.降凝剂的筛选、评价及机理探讨[J].油气储运,1994,13(6):20-23.
    [64]张帆.马-惠线、红-惠线应用降凝剂进行原油混输的研究[J].油气储运,1988,7(5):21-24.
    [65]郭秀玲.濮临线CE降凝剂的应用与研讨[J].油气储运,1997,16(6):7-10.
    [66]林炜.刘义敏.CE2H降凝剂在河石输油管道上的应用[J].油气储运,1997.13(2):9-11..
    [67]鲍冲,严大凡.含蜡原油热处理管输送工艺的研究[J].华东石油学院学报,1983(3).
    [68]许高达.北疆含蜡原油热处理常温输送[J].油气储运,1990,9(4).
    [69]刘建伟.大庆外输原油热处理室内实验研究[J].油气储运,1986,5(3).
    [70]葛腾泽,赵建兴.原油热处理规律研究[J].石油规划设计,2009.
    [71]曲慎扬等.原油管道工程[M].北京:石油工业出版社,1991.
    [72]西拉斯AP,汤楷孙等译.石油及天然气的开采及输送[M].北京:石油工业出版社,1989.
    [73]马伟平,李立,徐海红等.任京输油管道加降凝剂正反输运行规律研究[J].油气储运,2006,25(2)27-30.
    [74]李立,丁芝来,姜征峰等.任京输油管道加降凝剂正反输现场试验[J].油气储运,2005,24(1)37-42.
    [75]向秀平,杨振中.魏荆线低输量下加剂输送与正反输的经济分析[J].油气储运,1996(15)17-8.
    [76]马最良,刘永红.热泵站的现状及在我国应用的前景[J].哈尔滨建大学,1994.
    [77]熊筱,徐长安,花振开等.加热泵站采用控制粘度加热输送工艺的必要性[J].油气储运,1995,14(6):1-3.
    [78]王妍,张建民,武小勇等.油田掺水集输系统掺水、回站双流程仿真的实现[J].东北石油大学,2010.1.
    [79]王鸿膺,寇杰,张传农.河口稠油掺水降粘输送试验研究[J].油气储运,2005,24(3)35-38.
    [80]王仁宪,傅国蓉.重油掺水技术介绍能源工程[J].1988.
    [81]赵光理,吴龙.高粘度原油气饱和输送方法的研究,油田地面工程[J].1986,2(1).
    [82]冯叔初,郭揆常.油气集输与矿场加工[M].东营:中国石油大学出版社,2006.
    [83]李传宪,杨飞,林名桢等.草桥稠油O/W乳状液的稳定性与流变性研究[J].高校化学工程学报,2008,22(5):755-761.
    [84]李时宣.西峰原油乳状液流变性研究[J].油气田地面工程,2004,23(9):18-19.
    [85]刘扬,李杰训,王东.三元复合驱采出水中油珠的稳定性与破乳脱稳[J].国外油田工程,2008,24(11):5-8.
    [86]陈涛,张国亮.化工传递过程基础[M].第二版.北京:化学工业出版社,2002.
    [87]梁文懂,肖时钧.传递现象基础[M].北京:冶金工业出版社,2006.
    [88]王涛,朴香兰等.高等传递过程原理[M].北京:化学工业出版社,2005.
    [89]张帆,王福宾,张石兴.乳状液性质及其影响因素[J].油气田地面工程,2005,24(12)
    [90]于勇哲.含蜡原油流变性研究[D].大庆石油学院,2008.
    [91]李鸿英,张劲军,高鹏.蜡晶形态、结构与含蜡原油流变性的关系[J].油气储运,2004.23(9):19-23,61.
    [92]宋艾玲.华北原油流变性及加剂输送方案研究[D].西南石油大学,2006.
    [93]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986.
    [94]刘扬,司明林,魏立新等低温集输管道沉积速率及热洗周期的确定与分析[J].科学技术与工程,2010,10(10):2456-3458,2471.
    [95]李传宪,黄启玉,韩明秀.原油老化对流变性的影响[J].油田地面工程,1994,13(5):15-18,20.
    [96]刘剑锋,吴明.低输量含蜡热油管道的优化运行研究[J].辽宁石油化工大学学报.2005,25(4):39-41.
    [97]浦宁.含蜡原油比热容及热油管道轴向温降近似公式[J].1992,11(4):45-51.
    [98]夏慧芳,张劲军.低速剪切影响加剂原油低温流动性机理[J].油气储运,2001,20(2):32-34
    [99]刘扬,关晓晶.油气集输系统优化设计研究[J].石油学报,1993,14(3):110-117.
    [100]康凯,刘扬,刘晓燕等.热油管道稳定运行热力计算模型[J].油气田地面工程,2010,29(12):33-34.
    [101]欧阳伟雄,刘扬,魏立新.埋地混输管道热力计算分析[J]油气储运,2007,26(8):23-26.
    [102]曾春雷,杨海东.输油管道总传热系数的计算和结蜡对总传热系数的影响[J].应用科学,2010,15:103-105.
    [103]罗塘湖.原油和油品管道的热力与水力计算[M].石油工业出版社.1987:55-57.
    [104]Burger ED, Perkins TK. Studies of Wax Deposition in the TransAlask Pipeline[J]. 1981.SPE 8788.
    [105]Hsu J J C,Santamaria M M.Wax deposition of waxy live crudes under turbulent flow condition.SPE 28480,1994.
    [106]Hsu JJC. Wax deposition scale-up modeling for waxy crude production ines [J].1995, OTC 7778.
    [107]Hamouda AA,Viken B K.Wax deposition mechanism under high-pressure and in presence of light hydrocarbons [J].SPE 25189,1993.
    [108]付子航.大庆原油管道蜡沉积数学模型的研究及应用[D].北京:石油大学,2002.
    [109]张林霞,袁宗明.埋地热油管道稳定运行轴向温降分析[J].天然气与石油.2006,24(2):24-26.
    [110]张凤桐.含蜡原油管道流动特性研究[D].哈尔滨工业大学,2007.
    [111]刘扬,关晓晶,刘巨宝.集输管道可靠性的最优化算法[J].油田地面工程,1993,12(1):63-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700