用户名: 密码: 验证码:
典型岩溶小流域水土流失监测体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水土流失是目前最严重的世界性环境问题之一,给全球和区域生态环境带来严重的影响。我国西南岩溶区是世界上最大的岩溶裸露连片区,面积约6.2×105km2,区域内地质条件复杂,岩溶极为发育,构成了独特的“二元结构”,地貌类型多种多样,生态环境脆弱,抗干扰能力差;同时西南岩溶区是我国少数民族和贫困人口的集中区域,长期的社会经济落后影响当地的生态环境保护和建设;脆弱的生态环境加上不合理的人类活动,使得区域内水土流失状况十分严重,很多地方甚至出现“无土可流”的石漠化状况,使得当地的生态环境和生态安全受到严重的挑战,对该区域社会经济发展造成了严重危害。
     为探索广西水土流失与石漠化分布规模、水土流失过程和形成演化机制,对水土流失进行科学预测、评价,广西区水土保持监测总站与岩溶地质研究所合作开展了“漓江上游流域水土流失遥感监测研究与生态基地建设”项目;本研究以此为契机,选取寨底地下河流域为研究对象,开展水土流失监测研究工作。
     本论文通过对寨底地下河流域水土流失的监测,采用传统监测和改进的模型监测相结合的方法,对岩溶区水土流失影响因素进行了详细的分析,采用实地监测和3S技术提取各监测指标,从而计算出流域水土流失量,并对区域水土流失敏感性进行了分析,构建了岩溶小流域水土流失监测体系。
     本文的主要结论如下:
     (1)通过河流产沙量的传统方法对流域水土流失进行了监测,结果表明:寨底地下河总出口2010年泥沙输出量2013.6t,而流域内地下河出口泥沙泥沙总输出量2922.81t,两者之间有909.21t的差距;可以说明岩溶区水土流失产生的泥沙并不能完全从地下河出口带出,其原因应该是有部分的泥沙在地下河中产生沉淀;从寨底地下河流域计算的数据上来看,约30%的泥沙留在地下河系统中。
     (2)针对岩溶小流域的土壤可蚀性因子的计算方法进行了改进,以土地利用方式为依据进行K因子的计算;通过RUSLE模型方法对流域水土流失进行了监测,结果表明:寨底地下河流域年均土壤流失总量为16655.44t,年均侵蚀模数为504.71t/(kn2·a);按照《岩溶地区水土流失综合治理技术标准》(SL461-2009)的划分,寨底地下河流域土壤侵蚀强度属于中度,其年均土壤侵蚀模数约为岩溶地区容许土壤流失量(50t/(km2·a))的10倍。
     (3)两种方法的结果相差较大,基于泥沙输出量的计算结果仅为基于RUSLE模型计算结果的12%-18%;基于地下河出口的水土流失量计算,寨底地下河流域土壤侵蚀强度属于轻度,而基于RUSLE方程的水土流失估算,寨底地下河流域土壤侵蚀强度属于中度;基于RUSLE方程的水土流失估算比较符合2005年7月至2007年5月期间的“中国水土流失与生态安全综合考察”结果。
     (4)对岩溶区水土流失空间格局的分析过程中,提出了“单位因子影响率”的概念,以数值的大小来表示影响土壤侵蚀的因子,如高程、坡度、植被覆盖、土地利用等对岩溶区水土流失的影响程度。
     (5)通过对寨底地下河流域水土流失敏感性分析,得到了流域内地下河出口处为水土流失最敏感性区域,在水土流失的分区治理和区域生态保护中,应注意对地下河出口区域的水土保持和生态环境的保护。
     (6)基于水土流失传统监测和模型监测的实施,以及对寨底地下河水土流失的分析,从目标、指标和实施三个层面对水土流失监测体系进行了讨论,通过对基于数据库技术的水土流失监测信息平台的论述,提出了完整的岩溶小流域水土流失监测体系。
     本文主要创新点如下:
     (1)通过对岩溶小流域水土流失的监测,得出了水土流失过程中约30%的泥沙(相对于小流域土壤流失总量)留在地下河系统中;
     (2)以土地利用方式为基础,结合试验方法,改进了RUSLE方程中土壤可蚀性因子K值的计算方式,使RUSLE在岩溶区的应用更具有适用性;
     (3)为表示各种环境因子对土壤侵蚀的影响程度,提出土壤侵蚀的单位因子影响率的概念,可以用数字的大小来表征不同因子对土壤侵蚀影响程度;
     (4)应用多因子分析方法,结合RS和GIS技术对研究区水土流失的敏感性进行了评价,充分考虑了不同生态环境因子组合下水土流失的潜在危险性,具有较高的可信度。
Soil erosion is one of the most serious global environmental problems, have serious repercussions to the global and regional ecological environment. The southwest China karst area is the world's largest karst exposed even Area, an area of about6.2×105km2, with complex geological conditions in the region, karst is well developed, constitutes a unique "dual structure", a variety of landforms, a fragile ecological environment anti-jamming capability; karst Areas of Southwest China's ethnic minorities and the poor are concentrated, long-term socio-economic backwardness of the local ecological environment protection and construction; fragile ecological environment and irrational human activities, making the region the situation is very serious soil erosion, and many places even the soilless flow rocky desertification situation, the local ecological environment and ecological safety of the serious challenges caused serious harm to the regional socio-economic development.
     As one of the Karst Areas of Southwest Guangxi region in hilly red soil and karst landform widespread soil erosion in an area of2.81km2, accounting for 11.87%of the total land area, severe soil erosion leading to a lot of land surface soil have been depleted not usein some areas has been a direct threat to the survival of the local people, facing a dual crisis of ecology and the poverty and backwardness; soil erosion brought about by sediment causing siltation of rivers, channels and reservoirs, exacerbated by the occurrence of floods and droughts; soil erosionhas become a serious constraint to economic and social sustainable development of Guangxi. The size distribution of the Guangxi Water Resources Department to explore Guangxi soil erosion and rocky desertification and soil erosion processes and the formation and evolution mechanism, scientific prediction of soil erosion, evaluation, carried out in cooperation with the Institute of Karst Geology of the Lijiang River Basin Soil Erosion Remote Sensing Research and ecological base construction projects; this study as an opportunity to select Zhaidi underground river basin study, carried out the study of soil erosion monitoring.
     Through the Zhaidi underground river basin soil erosion monitoring in this paper, the use of traditional monitor and improve the model to monitor a combination of methods, carried out a detailed analysis of the influencing factors of soil erosion in karst areas, the use of field monitoring and3S technology to extract the monitoring indicatorsin order to estimate watershed soil erosion, and regional soil erosion sensitivity analysis, build the karst small watershed soil erosion monitoring system.
     The main conclusions are as follows:
     (1) Through the traditional method of river sediment yield to watershed soil erosion monitoring results showed that:in2010, Zhaidi underground river basins total exports sediment output2013.6t, Basin Mainland export of sediment sediment output2922.8lt between909.2lt gap; description of the karst and of soil erosion, sediment and can not be fully brought out from the underground river exports, the reason should be part of the sediment to precipitate in the underground river; from the data calculated by the underground river basin, about30percent of the sediment left in the underground river system.
     (2) Calculated for the karst small watershed soil erodibility factor improved land use patterns as a basis for the calculation of the K factor; monitoring the watershed soil erosion through the RUSLE model approach, the results show that:Zhaidi underground river basin, average annual total soil loss for16655.44t, the average annual erosion modulus504.7lt/(km2·a); in accordance with the division of the karst area comprehensive soil erosion control technical standards (SL461-2009), Zhaidi underground river basin soil erosion intensity is moderate, the average annual soil erosion modulus of about karst areas of soil loss tolerance (50t/(km2·a))10times.
     (3) The results of the two methods quite different results based on the calculation of the sediment output is only calculated based on the RUSLE model results from12%to18%; soil erosion based on exports of the underground river, Soil erosion of Zhaidi underground river basin is mild intensity, while soil erosion estimates based on the RUSLE equation Zhaidi underground river basin soil erosion intensity is moderate; RUSLE equation-based soil erosion estimates more in line with the results of the Chinese water and soilloss and ecological safety inspection (from July2005to May2007)".
     (4) In the karst area of soil erosion spatial pattern analysis, the concept of "unit factor affecting the rate" to value the size of the impact of soil erosion factors, such as elevation, slope, vegetation cover, land use,extent of the effects of erosion of karst areas.
     (5) Through the sensitivity analysis on t Zhaidi underground river basins soil erosion, has been the most sensitive areas of the basin Mainland lower river at the exit for soil erosion, soil erosion in the area of governance and regional ecological protection should be noted that exports to the underground riverthe region's soil and water conservation and protection of ecological environment.
     (6) Based on monitoring the implementation of soil erosion in the traditional monitoring and modeling, and analysis of soil erosion on Zhaidi underground river basin, from the goals, targets and implementation of three levels of soil erosion monitoring system is discussed through the land and water based on database technologyloss of monitoring information platform for the discussion of karst small watershed soil erosion monitoring system.
     The main innovations are as follows:
     (1) Karst small watershed soil erosion monitoring, obtained about30%of the sediment in the process of soil erosion (relative to the total loss of small watershed soil) to stay in the underground river system;
     (2) Based on land use, with the experimental method,improved the RUSLE equation soil erodibility factor K value calculated RUSLE more applicable in the karst area;
     (3) To represent a variety of environmental factors, the impact on soil erosion, soil erosion the unit factors affect rate concept can be used to characterize the size of the number of different factors impact on soil erosion;
     (4) The application of multi-factor analysis, combined with RS and GIS technology to evaluate the sensitivity of the study area soil erosion, give full consideration to the potential risk of soil erosion in the different ecological environments combination of factors, a high level of credibility.
引文
[1]水利部,中国科学院,中国工程院.中国水土流失防治与生态安全:西南岩溶区卷[M].北京:科学出版社,2010:77-81.
    [2]蔡德所.抢抓机遇扎实工作实现广西水土保持工作新跨越[J].中国水土保持,2012,(3):1-4.
    [3]Miller M F. Waste through soil erosion [J]. Journal Am Soc Agron,1926, (18):153-160.
    [4]Bennet H H. Soil Conservation[M]. New York:McCraw Hill,1939.
    [5]Cook H L. The nature and controlling variables of the water erosion process[J]. Soil Sci Soc Am Proceedings,1936, (1):60-64.
    [6]Hush Hammond Bennett. Soil Conservation[M]. New York,1938.
    [7]Zingg A W. Degree and length of land slope as it affects soil loss in runoff [J]. Agricultural Engineering, 1940, (21):59-64.
    [8]Smith D D. Interpretation of soil conservation data for field use[J]. Agricultural Engineering,1941, (22): 173-175.
    [9]Browning G M, Parish C L, Glass J A. A method for determining the use and limitation of rotation and conservation practices in control of soil erosion in Iowa[J]. Journal of the American Society of Agronomy,1947, (39):65-73.
    [10]Musgrave G W. The quantitative evaluation of factors in water erosion —A first approximation[J]. Journal Soil and Water Cons,1947, (2):133-138.
    [11]Wischmeier W H, Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains[R]. USDA Agricultural Handbook No.282.1965.
    [12]Wischmeier W H. Punched cards record runoff and soil-loss data[J]. Agricultural Engineering,1955, (36):664-666.
    [13]Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses[Z]. USDA Agricultural Handbook No.537.1978.
    [14]Planagan D C, Ascough J C, Nicks A D, et al. Overview of the WEPP erosion prediction model[R]. Technical Documentation, USDA Water Erosion Prediction Project,1995.
    [15]Renard,K G, Foster G R, et al. Predicting soil erosion by water. A guide to conservation planning with the revised universal soil loss equation (RUSLE)[S]. USDA. Agric. Handb. No.703. Washington, DC.U.S. Gov. Print. Office,1997.
    [16]Menzel R G. Transport of Strontium-90 in runoff. Science (Washington),1960, (131):499-500.
    [17]Graham E R. Factors affecting Sr-85 and I-131 removal by runoff water [J]. Water and Sewage Works, 1963, (110):407-410.
    [18]Rogowski A S, Tamura T. Movement of 137Cs by runoff, erosion and infiltration on the alluvial Captinasilt loam[J]. Health Physics,1965, (11):1333-1340.
    [19]Ritchie J C, McHenry J R, Gill A C. Fallout 137Cs in the soils and sediments of three small watersheds[J]. Ecology,1974, (55):887-890.
    [20]Knaus R M.Accretion and canal impacts in a rapidly subsiding wetland/Ⅱ.A new soil horizon maker method for measuring recent accretion[J]. Estuaries,1989,12(4):269-278.
    [21]The New Zealand Resource Inventory, Erosion classification, National Water and Soil Conservation Authority,Water and Soil Miscellaneous Publication, No.85.1985
    [22]Meyer L D. Evaluation of the universal soil loss equation[J]. Journal of Soil and Water Conservation, 1984, (39):99-104.
    [23]Norman Hudson. Soil Conservation[M]. Third Edition,1995.
    [24]Poesen J W, Torri D, Bunte K1 Effects of rock fragments on soil erosion by water at different spatial scales:a review, Catena[J].1994, (23):141-166.
    [25]Bunte K, Poesen J W1 Effects of rock fragment covers on erosion and transport of noncohesive sediment by shallow overland flowl Water Resources Research[J],1993,29, (5):1415-1424.
    [26]Larson W E, Lindstrom M J, Schumacher T E. The role of severe storm in soil erosion:A problem needing consideration 1J1 Soil and Water Consl,1997,52(2):90-95.
    [27]Gobin A, Govers G, Jones R, et al. Assessment and reporting on soil erosion (Background and workshop report. Technical Report No.94). Copenhagen:European Environment Agency,2003:103.
    [28]王礼先,朱金兆.水土保持学(第2版)[M].北京:中国林业出版社,2005.
    [29]Morgan R P C, Quinton J N, Smith R E,et al. The European Soil Erosion Model(EUROSEM):A dynamic approach for predicting sediment transport from fields and small catchmentsl Earth Surface Processes and Landforms,1998,23:527-544.
    [30]Gobin A, Govers G, KirkbyM, et al. TechnicalAnnex:Pan-European soil erosion risk assessment project(contract No.QLKS-CT-1999-01323). European Commission,1999
    [31]De Roo, A P J, C G. Wesseling, C J Ritsema. LISEM:A Single-Event Physically Based Hydrological and soil Erosion Model for Drainage Basins.I:Theory. Input and Output[J]. Hydrological Processes, 1996,(10):1107-1118.
    [32]S M de Jong, M L Paracchini, F Berto lo, et al. Regional assessment of soil erosion using the distributed model SEM MED and remotely sensed data[J]. Catena,1999,37(3-4):291-308.
    [33]Batjes N H. Global assessment of land vulnerability to water erosion on a one half degree by one half degree grid[J].Land Degradation & Development,1996,7(4):353-365.
    [34]Reich P, Eswaran H,Beinroth F. Global dimensions of vulnerability to wind and water erosion[C]// Stott D E, Mohtar R H, Steihardt G C. Sustaining the Global farm. Selected papers from the 10th International Soil Conservation Organization Meeting. West Lafayette, IN,2001.
    [35]De Jong S M, Paraechini M L,Bertohi F, et al. Regional assessment of soil erosion using the dist ributedmodel SEMMED and remotely sensed data[J]. Catena,1999,37(3/4):291-308.
    [36]Kirkby M J,Abrahart R, McMahon M D, et al. MED-ALUS soil erosion models for global change[J]. Geomorphology,1998,24(1):35-49.
    [37]Kirkby M J, Bissonais Y L, Couhhard T J, et al. The development of land quality indicators for soil degradation by water erosion[J]. Agriculture, Ecosystems & Environment,2000,81(2):125-136.
    [38]R. Bou Kheir, C. Abdallah, M. Khawlie. Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS (in Engineering and environmental problems in karst:natural and anthropogenic hazards in karst areas), Engineering Geology,2008,99(3-4):239-254.
    [39]Le Bissonnais Y, Montier C, J amagne M,et al. Mapping erosion risk for cultivated soil in France [J]. Catena,2002,46(2/3):7222.
    [40]Gobin A,Govers G,Jones R, et al. Assessment and reporting on soil erosion[R]. European Environment Agency, Copenhagen,2003.
    [41]Lu, H, Prosser,1 P, Mo ran, C J, et al. Prediction of Sheet and Rill Erosion Over the Australian Continent[J]. Australian Journal of Soil Research,2003, (41):1037-1062.
    [42]长江流域水土保持综合考察队.长江流域土壤侵蚀区划报告[R].1986.
    [43]唐克丽.中国水土保持[M].2004.
    [44]李杰新.亚热带岩溶地区水土流失及治理[M].中国水土保持,1984,(7):7-10(64).
    [45]毕于远.岩溶地区的水土流失及治理.生态经济,1994,(3):34-37(21).
    [46]蒋忠诚,曹建华,杨德生,等.西南岩溶石漠化区水土流失现状与综合防治对策[J].中国水土保持科学,2008,(1):37-42.
    [47]Daoxian, Y. Rock desertification in the subtrop ical karst of south China[J]. Geomorph NF,1997, (108): 81-90.
    [48]林昌虎,朱安国.贵州喀斯特山区土壤侵蚀与防治[J].水土保持研究,1999,(2):110-114.
    [49]朱安国.略谈贵州山区的水土流失[J].中国水土保持,1982,(3):35-37.
    [50]周忠发,安裕伦.贵州省水土流失遥感现状调查及空间变化分析[J].水土保持通报,2000,(6):23-25(41).
    [51]何腾兵.贵州喀斯特山区水土流失状况及生态农业建设途径探讨[J].水土保持学报,2000,(1):28-34.
    [52]禄文斌.毕节地区的水土流失及其防治对策[J].中国水土保持,1992,(11):8-11(65).
    [53]林昌虎.黔东地区水土流失与防治研究[J].水土保持学报,2000,(1):41-44(135).
    [54]周忠发,游慧明.贵州纳雍县土壤侵蚀遥感调查与GIS空间数据分析[J].水土保持研究,2001,(1):93-97.
    [55]李秉林.广西水土流失问题综述[J].广西水利水电,1987,(3):37.
    [56]劳大全.广西水土保持的探索[J].水土保持研究,1998,(2):168-172.
    [57]张明阳,王克林,陈洪松.基于RS和GIS的喀斯特区域水土流失动态监测与分析——以广西环江县为例[J].资源科学,2007,(3):124-131.
    [58]杨慧,曹建华,张连凯.凌云县水土流失特性分析[J].中国水土保持,2006,(9):17-19.
    [59]张素红,李森,李红兵.粤北石漠化地区土壤侵蚀初步研究[J].中国岩溶,2006,(4):280-284.
    [60]黄金国.粤北岩溶山区水土流失现状与治理对策[J].水土保持研究,2007,(5):78-80(102).
    [61]魏兴萍.基于RS和GIS的重庆南川区水土流失变化研究[J].水土保持研究,2009,(5):60-65.
    [62]曹建华,蒋忠诚,杨德生,等.贵州省岩溶区水土流失、石漠化受岩溶环境制约[J].中国水土保持,2009,(1):20-23.
    [63]郑永春,王世杰.贵州山区石灰土侵蚀及石漠化的地质原因分析[J].长江流域资源与环境[J].2002,(5):461-465.
    [64]王恒松,熊康宁,刘云.喀斯特区地下水土流失机理研究[J].中国水土保持,2009,(8):11-14(64).
    [65]张信宝,王世杰,贺秀斌,等.碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失[J].地球与环境,2007,(3):202-206.
    [66]周念清,李彩霞,江思珉,等.普定岩溶区水土流失与土壤漏失模式研究[J].水土保持通报,2009,29,(1):7-11.
    [67]何师意,粱彬,关碧珠.湘西大龙洞地下河流域水土流失特征及其对水库工程的影响[J].中国岩溶,2008,(4):293-302.
    [68]熊翠微,喻元秀,朱克勇,等.贵州喀斯特山区公路建设中水土流失及其防治对策[J].环保科技,2007,(2):28-32.
    [69]王军,胡强.安庆铜矿水土流失特点及防治对策[J].水土保持研究,2001,(1):75-78(119).
    [70]张信宝,王世杰,曹建华.西南喀斯特山地的土壤硅酸盐矿物物质平衡与土壤流失[J].地球与环境,2009,(2):97-102.
    [71]李双岱,李兴中.从航片判译对清镇县跳登河流域水土流失特点的探讨[J].贵州地质,1990,(1):77-82.
    [72]王滨,陈立,王新宝,等.岩溶塌陷诱发水土资源退化模式研究——以鲁中南岩溶塌陷区为例[J].中国水土保持,2009,(7):13-15(64).
    [73]李阳兵,王世杰,王济.岩溶生态系统的土壤特性及其今后研究方向[J].中国岩溶,2006,(4): 285-289.
    [74]高华端,李锐.喀斯特地区原状土的可蚀性[J].中国水土保持科学,2007,(5):1-4.
    [75]赵洋毅,周运超,段旭.黔中石灰岩喀斯特表层土壤结构性与土壤抗蚀抗冲性[J].水土保持研究,2008,(2):18-21.
    [76]蒋燚,朱积余.桂东丘陵不同造林模式水土流失监测研究[J].广西科学,2003,(4):317-320.
    [77]李生,任华东,姚小华,等.典型石漠化地区不同植被类型地表水土流失特征研究[J].水土保持学报,2009,(2):1-6.
    [78]龙明忠,杨洁,吴克华.喀斯特峡谷区不同等级石漠化土壤侵蚀对比研究——以贵州花江示范区为例[J].贵州师范大学学报(自然科学版),2006,(1):25-30.
    [79]刘凤仙.贵州喀斯特地区林草措施对水土流失的影响[J].中国水土保持,2007,(12):38-39.
    [80]叶瑞卿,黄必志,邓菊芬,等.云南岩溶地区不同草地利用方式的经济与水保效应[J].草业科学,2008,(5):1-9.
    [81]张芳挺,熊康宁,陈浒,等.喀斯特高原山地水土流失影响因素及生态效益评价——以贵州毕节石桥小流域为例[J].水土保持研究,2009,(5):88-92(97).
    [82]裴建国,李庆松.典型岩溶峰丛山区土地利用与水土流失[J].水土保持通报,2006,(2):94-99.
    [83]许月卿,彭建.贵州猫跳河流域土地利用变化及其对土壤侵蚀的影响[J].资源科学,2008,(8):1218-1225.
    [84]彭韬,杨涛,王世杰,等.喀斯特坡地土壤流失监测结果简报[J].地球与环境,2009,(2):126-130.
    [85]吴秀芹,蔡运龙,蒙吉军.喀斯特山区土壤侵蚀与土地利用关系研究——以贵州省关岭县石板桥流域为例[J].水土保持研究,2005,(4):46-48(77).
    [86]陈强,常恩福,毕波,等.滇东南岩溶地区两种地类的水土流失比较[J].水土保持研究,2007,(1):281-283(286).
    [87]李品荣,孟广涛,李国昌.不同土地利用方式下土壤地力变化和水土流失状况研究[J].水土保持研究,2009,(3):95-99.
    [88]徐燕,龙健.贵州喀斯特山区土壤物理性质对土壤侵蚀的影响[J].水土保持学报,2005,(1):157-159(175).
    [89]傅瓦利,贾红杰,张文晖,等.岩溶山区土壤耕作侵蚀研究——以重庆市中梁山为例[J].中国岩溶,2006,(2):152-156.
    [90]蔡雄飞,王济,雷丽,等.不同雨强对我国西南喀斯特山区土壤侵蚀影响的模拟研究[J].水土保持学报,2009,(6):5-8(13).
    [91]王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑),1999,29(5):441-449.
    [92]张信宝,焦菊英,贺秀斌,等.允许土壤流失量与合理土壤流失量[J].中国水土保持科学,2007,(2):114-116(121).
    [93]张信宝,贺秀斌,文安邦,等.不同尺度域的侵蚀模数[J].水土保持通报,2006,(2):69-71.
    [94]韦启璠.我国南方喀斯特区土壤侵蚀特点及防治途径[J].水土保持研究,1996,(4):72-76.
    [95]柴宗新.试论广西岩溶区的土壤侵蚀[J].山地研究,1989,(4):255-260.
    [96]蒋有保.广西石灰岩地区水土流失及其治理措施的探讨[J].水土保持通报,1991,(3):25-28.
    [97]李阳兵,王世杰,魏朝富,等.贵州省碳酸盐岩地区土壤允许流失量的空间分布[J].地球与环境,2006,(4):36-40.
    [98]何永彬,李豪,张信宝,等.贵州茂兰峰丛草地洼地小流域侵蚀产沙的-(137)Cs法研究[J].中国岩溶,2009,28(2):181-188.
    [99]曹建华,蒋忠诚,杨德生,等.中国西南岩溶区土壤允许流失量及防治对策[J].中国水土保持,2008(12):40-45(72).
    [100]曹建华,蒋忠诚,杨德生,等.我国西南岩溶区土壤侵蚀强度分级标准研究[J].中国水土保持科学,2008,6(6):1-7.
    [101]吴士章,朱文孝,苏维河,等.喀斯特地区土壤侵蚀及养分流失定位试验研究——以贵阳市修文县久长镇为例[J].中国岩溶,2005,(3):202-205.
    [102]杨芳,王克勤,延红卫.尖山河流域不同植被类型坡面产流产沙量研究[J].林业调查规划,2009,(1):10-14.
    [103]王恒松,熊康宁,刘云.喀斯特地区冻融作用对土壤物理特性的影响——以王家寨-羊昌洞小流域为例[J].水土保持研究,2009,(2):101-106.
    [104]梅再美,熊康宁.喀斯特地区水土流失动态特征及生态效益评价——以贵州清镇退耕还林(草)示范区为例[J].中国岩溶,2003,(2):55-62.
    [105]白晓永,熊康宁,杨龙,等.喀斯特石漠化山区的水土流失及防治模式——以贵州省镇宁县为例[J].贵州师范大学学报(自然科学版),2005,(4):38-42.
    [106]杨成英,吴虹.桂林毛村岩溶地下河流域水土流失遥感动态监测研究[J].中国岩溶,2009,(2):206-211(224).
    [107]李阳兵,邵景安,王世杰,等.基于岩溶生态系统特性的水土流失敏感性评价[J].山地学报,2007,(6):671-677.
    [108]杨广斌,李亦秋,安裕伦.基于网格数据的贵州土壤侵蚀敏感性评价及其空间分异[J].中国岩溶,2006,(1):73-78.
    [109]卢远,华璀,周兴.基于GIS的广西土壤侵蚀敏感性评价[J].水土保持研究,2007,(1):98-101.
    [110]罗俊,王克林,陈洪松,等.桂西北喀斯特地区水土流失敏感性评价[J].长江流域资源与环境,2009,(6):579-584.
    [111]覃小群,邓艳,蓝芙宁,等.基于GIS技术的典型岩溶石山区土壤侵蚀危险性评价——以广西平果县果化示范区为例[J].安全与环境工程,2005,(4):69-72.
    [112]龙俐,熊康宁,王代懿,等.贵州花江喀斯特峡谷水土流失及治理效果[J].贵州师范大学学报(自然科学版),2005,(3):13-18.
    [113]周斌,杨柏林,洪业汤,等.基于GIS的岩溶地区水土流失遥感定量监测研究——以贵州省(原)安顺市为例[J].矿物学报,2000,(1):13-21.
    [114]汪文富.贵州普定后寨河流域土壤侵蚀模型与应用研究[J].贵州地质,2001,18(2):99-106.
    [115]张宏群,安裕伦,贵州省喀斯特山区水土流失遥感信息模型的建立[J].水土保持通报,2003,(5):39-42.
    [116]张信宝,贺秀斌,文安邦,等.侵蚀泥沙研究的~(137)Cs核示踪技术[J].水土保持研究,2007,61(2):152-154(157).
    [117]王玉宽,文安邦,张信宝.长江上游重点水土流失区坡耕地土壤侵蚀的~(137)Cs法研究[J].水土保持学报,2003,(2):77-80.
    [118]贾红杰,傅瓦利,赵俊丽,等.中梁山岩溶区坡耕地土壤侵蚀~(137)Cs法研究[J].西南大学学报(自然科学版),2008,(8):57-61.
    [119]傅瓦利,张治伟,张洪,等.岩溶区坡面土壤侵蚀特征研究[J].水土保持学报,2007,(5):38-41.
    [120]张治伟,傅瓦利,张洪,等.岩溶坡地土壤侵蚀强度的~(137)Cs法研究[J].山地学报,2007,(3):302-308.
    [121]白晓永,张信宝,王世杰,等.普定冲头峰丛洼地泥沙沉积速率的-(137)Cs法测定[J].地球与环境,2009,276(2):142-146.
    [122]丁晋利,郑粉莉,张信宝,等.利用~7Be研究侵蚀性降雨前后坡面土壤侵蚀空间分布特征[J].水土保持通报,2005,(2):16-19.
    [123]贺秀斌,韦杰,张信宝.水土保持减沙效益监测中的多核素联合示踪技术[J].水土保持通报, 2007,159(4):1-4.
    [124]徐琳,王红亚,蔡运龙.黔中喀斯特丘原区小河水库沉积物的矿物磁性特征及 其土壤侵蚀意义[J].第四纪研究,2007,(3):408-416.
    [125]吕明辉,王红亚,蔡运龙,等.贵州红枫湖HF1-2孔沉积物的磁性特征及其土壤侵蚀意义[J].湖泊科学,2008,(3):298-305.
    [126]李豪,张信宝,王克林,等.桂西北倒石堆型岩溶坡地土壤的~(137)Cs分布特点[J].水土保持学报,2009,102(3):42-47.
    [127]许月卿,邵晓梅.基于GIS和RUSLE的土壤侵蚀量计算——以贵州省猫跳河流域为例[J].北京林业大学学报,2006,28(4):67-71.
    [128]郑进军,张信宝,贺秀斌.川中丘陵区坡耕地侵蚀空间分布的WEPP模型和137Cs法研究[J].水土保持学报,2007,21(2):19-23.
    [129]韦复才,周游游.西南岩溶区生态地质环境特点及生态恢复重建策略[J].中国岩溶,2005,(4):282-287.
    [130]毕于远.岩溶地区的水土流失及治理[J].生态经济,1994,(3):34-37(21).
    [131]韦启璠.我国南方喀斯特区土壤侵蚀特点及防治途径[J].水土保持研究,1996,(4):72-76.
    [132]张清海,林昌虎,何腾兵.贵州喀斯特山区水土流失因素与生态修复对策探讨[J].贵州科学,2006,(3):62-65(74).
    [133]龙忠富,汪俊良,刘正书,等.百喜草不同种植模式的水土保持效应初探[J].山地农业生物学报,2004,(5):408-411.
    [134]李品荣,陈强,常恩福,等.滇东南石漠化山地不同退耕还林模式土壤地力变化初探[J].水土保持研究,2007,(4):177-180.
    [135]刘立新.坡改梯是岩溶山区水土保持的重要措施[J].中国水土保持,2008,(3):47-48.
    [136]陈群利,姚建陆,孟天友.喀斯特山区坡耕地整治工程效益分析[J].中国水土保持,2007,(7):27-28.
    [137]祁晓凡,罗为群,蒋忠诚,等.耕地整理对岩溶峰丛洼地生态环境的影响——以广西果化龙何地区为例[J].农业现代化研究,2008,(3):338-342.
    [138]何维彬.岩溶山区小流域水土保持综合治理及效益[J].农业装备技术,2009,(3):57-59.
    [139]宁茂岐,付宇文,方启彬,等.西南喀斯特地区生态修复监测系统设计[J].中国水土保持,2008,(3):35-37(64).
    [140]梁顺林,定量遥感[M],北京:科学出版社,2009,130-142.
    [141]邓书斌,ENVI遥感图像处理方法[M],北京:科学出版社,2010,197-208.
    [142]孙红雨,王长耀,牛铮,布和敖斯尔,李兵.中国地表植被覆盖变化及其与气候因子关系—基于NOAA时间序列数据分析[J].遥感学报,998,(3).204-210
    [143]易连兴,夏日元,唐建生,黄俊杰.地下水连通介质结构分析——以寨底地下河系统实验基地示踪试验为例[J].工程勘察,2010,(11):38-41.
    [144]Science and Education Administration,United States Department of Agriculture, Agricultural Handbook 537, Predicting Rainfall Erosion Losses, A Guide to Consevation Planting,1987,537
    [145]第一次全国水利普查水土流失普查技术技术细则[R].2010.4
    [146]卜兆宏,董勤瑞,周伏建,张立文.降雨侵蚀力因子新算法的初步研究[J].土壤学报,1992,(04):408-418.
    [147]谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,(04):6-11.
    [148]章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,(06):705-711.
    [149]周伏建,陈明华,林福兴,等.福建省降雨侵蚀力指标R值[J].水土保持学报,1995,9(1):13-18.
    [150]Moore I,G Burch.Physical basis of the length-slope factor in the universal soil loss equation[J].Soil Science Society of America Journal,1986,(50):1294-1298.
    [151]黄金良,洪华生,张珞平,等.基于GIS和USLE的九龙江流域土壤侵蚀量预测研究[J].水土保持学报,2004,18(5):75-79.
    [152]Renard K G,Foster G R,Weesies G A, et al. Predicting soil erosion by water:a guide to conservation planting with the Revised Universal Soil Loss Equation(RUSLE)[M].Handbook NO.703.U.S,Washington:Department of Agriculture,1997.105,107.
    [153]Liu B Y,Nearing M A,Risse L M.Slope gradient effects on soil loss for steep slopes[J].Transactions of the ASAE,1994,37:1835-1840.
    [154]Liu B Y.Nearing M A,Shi P J,et al.Slope length effects on soil loss for steep slopes[J].Soil Society of American Journal,2000,64:1795-1763.
    [155]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
    [156]于嵘,亢庆,张增祥,等.USLE/RUSLE模型中植被覆盖因子多光谱影像计算[J].遥感信息,2006(1):12-16.
    [157]许月卿,蔡运龙,彭建.土地利用变化的土壤侵蚀效应评价[M].北京:科学出版社,2008.
    [158]Renard K G, Foster G R, W ees iesG A, et a 1. RUSLE:revised universal soil loss equation. Journal of Soil and Water Conservation,1991,46 (1):30-33.
    [159]曹建华,袁道先,等.受地质条件制约的中国西南岩溶生态系统[M].北京:地质出版社,2005.
    [160]倪晋仁,李英奎.基于土地利用结构变化的水土流失动态评估[J].地理学报,2001,56(5):611-621.
    [161]杨泽贵,陈婷,林立金等.不同土地利用方式对水土流失的影响[J].人民长江,2009,40(11):68-70.
    [162]王丽,陈晓楠.植被覆盖对水土流失影响的研究[J].水土保持应用技术,2008,(2):12-14.
    [163]吕明辉,王红亚,蔡运龙.西南喀斯特地区土壤侵蚀研究综述[J].地理科学进展,2007,26(2):87-96.
    [164]刘康,康艳,曹明明等.基于GIS的山西省水土流失敏感性评价[J].水土保持学报,2004,18(5):168-170.
    [165]吴秀琴,张洪岩,李瑞改等.ArcGIS9地理信息系统应用与实践[M].北京:清华大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700