用户名: 密码: 验证码:
开采沉陷的动态过程及基于关键层理论的沉陷模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“三下”采煤最主要的技术难题是开采沉陷的防治技术。目前,以概率积分法为代表的开采沉陷预计方法可以预计地表充分采动或非充分采动后的各种静态指标,如下沉量、倾斜和曲率等,但不能预计地表移动的整个过程。开采沉陷对地表建(构)物的损害程度不仅取决于各种指标的最终结果(静态值),也取决于各种指标的变化过程(动态值)。因此,研究开采沉陷的动态过程对于沉陷灾害的预防和控制具有重要的理论意义和工程应用价值。本文以长壁工作面采煤引起的岩层移动和地表沉陷为主要研究对象,采用现场观测、数值模拟、理论分析、数学建模、实测验证等手段,对开采沉陷的动态过程进行了深入的研究和有益的探讨,取得了如下一些进展:
     1)提出了一种长壁式工作面开采煤层形成的地表下沉盆地及其走向、倾向主断面下沉曲线的拟合函数模型。模型中参数a、b控制沉陷盆地的范围,参数wm ax、d控制沉陷盆地的深浅及走向、倾向主断面下沉曲线的形状。实测资料验证,该函数能很好地拟合沉陷盆地主断面下沉曲线,与负指数函数、双曲正切函数模型相比,具有表达形式简单、参数容易取得、拟合程度高等优点。
     2)针对较大深厚比(开采深度与开采厚度之比大于25)条件下开采煤层形成矩形采空区的过程,提出了上覆岩层移动形成地表下沉盆地的形态和大小主要决定于离地表最近一层关键岩层的弯曲变形,并且地表下沉量远远小于关键岩层的厚度,关键层的变形符合弹性薄板弯曲变形的学术观点。
     3)用弹性薄板理论的半逆解法分别建立了缓倾斜煤层开采和倾斜煤层开采地表下沉盆地的力学模型,推导出了倾斜煤层开采时地表最大下沉点在倾斜方向的坐标公式和形态参数d的计算公式。
     4)提出了可描述地表点下沉过程的时间函数模型不仅能较好地拟合w-t曲线,而且由模型求出的v-t和a-t曲线也要符合地表点下沉的客观过程。从曲线形态、速度和加速度三个方面计算分析了knothe模型、Gompertz模型、logistic模型、Weibull模型,得出这些模型不能用于描述开采沉陷的动态过程。
     5)改进了knothe时间函数模型。模型参数可采用经验方法和最小二乘法相结合的方式确定,其中参数c决定地表点下沉时间的长短,参数k决定地表点下沉在时间轴上的具体路径,但参数的决定因素和物理意义还有待进一步研究。
     6)当采煤工作面以速度v0匀速向前推进时,设地表移动的启动距为l 0,工作面推进长度为l ,则可用工作面推进距离和速度代替改进的knothe时间函数模型中的时间t。
     7)用FLAC~(3D)软件模拟了某矿区煤层的开采过程。在计算模型的上表面经过开采中心点的走向和倾向剖面线上布置了18个垂直位移和位移速率的检测点,得出了在走向和倾向剖面线上各检测点在开采过程中的垂直位移曲线和速度曲线,其曲线形态与改进的knothe时间函数曲线十分相似。
     8)改进的knothe时间函数模型分别结合了基于关键层理论的开采沉陷模型和概率积分预计模型,建立了主断面下沉曲线、倾斜曲线和曲率曲线的动态模型。最后,主要采用南桐矿区的部分观测资料进行了验证,表明在主断面最终下沉曲线确定的情况下,动态模型可作出任意时刻的下沉曲线、倾斜曲线和曲率曲线。
The first Importance technological problem of coal mining under railway ,surface structure and water body is predicting and controlling the surface subsidence due to underground mining. The way of predicting the surface subsidence based on the theory of the probability integral is only obtained the static subsidence index such as the amount of subsidence ,incline and curvature at present. But this model is not described the whole surface subsidence course. The degree of the damage to building and structure not only is determined to the final surface subsidence due to underground mining but only the surface subsidence velocity and acceleration especially to the structure sensitive to the deformation just like railway , telecommunication line and mountain coast. So, the research of the dynamic course of the surface subsidence due to underground mining is profound theoretical and practical significance. The object of study in this paper is the rock stratum movement and surface subsidence up the long-wall mining coal face. Through the way of the field observation, numerical analysis mining, theoretical analysis, mathematical modeling and test by observation data, studied the dynamic course of the surface subsidence due to underground mining,obtain the following conclusion.
     1) A function model of the subsidence, incline and curvature is set up suited to the condition of mining coal by long-wall face. The parameter a and b determine the subsidence basin range and the parameter wmax and d determine the depth of the subsidence and the shape of the subsidence curve of the section of the basin in this model. This model can fit well the observation data. It is more advanced than the negative index function and hyperbolic tangent because of the function is brief and the parameter is obtained easily.
     2) The viewpoint in this paper is the suface subsidence is detemined by bend of the rock stratum near by the surface when the ratio of depth of embedment and thickness of the coal seam is very large up long-wall mining coal face. This key rock stratum is controlled the surface subsidence. The size of the surface subsidence is far below the rock thick. So the bend is fit for the theory of the flexible sheet.
     3) A surface subsidence basin model due to underground mining is seted up used the theory of the key stratum and elasticity sheet and inferd the formular of the parameter d and the excursion of the maximum dot on the y axis of the steep coal seam in this paper.
     4) By analyzing the dynamic course of the surface subsidence due to underground mining coal, the conclusion has been drawn that the w-t curve of the ground subsidence appears S-shaped. So the time function which can describe the subsidence course of the ground must fit not only the w-t curve but also the v-t curve and the a-t curve. Time functions which are usually used to fit the w-t curve of the foundation or roadbed settlement now such as the exponential time function, the hyperbolic time function, the Gompertz time function, the Logistic time function and the Weibull time function. Studying the w-t curve, v-t curve and a-t curve of these time functions finds that these times function is not feasible for describing the dynamic course of the ground subsidence due to underground mining.
     5) By adding a constant parameter k to the Knothe time function, a new time function model has been set up. The velocity and acceleration worked out from this new time function model is in accordance with the dynamic process of the surface subsidence. In this new model the parameter c decides how long the subsidence would continue; and the parameter k decides the path of the subsidence on the axis of time.
     6) The time parameter t is replance by the space parameter l of the mining face moving and the speed parameter v0 when the coal minging face is moving with a constant speed and the begin parameter l0 the surface subsidence.
     7) Use the FLAC~(3D) to simulate the mining coal course because of the advantage of the FLAC~(3D) for simulating the large deformation event of rock and soil engineering mechanics. The exploit extent is the most less than the size of computational model. The conclusion is obtain that the curve of the subsidence and velocity with the iteration steps is accord with the improved knothe time function for surface subsidence due to underground mining.
     8) Because of the subsidence of the point on the surface is independent on the space and time, so the model of the whole dynamic subsidence model can be set up by combining the improved knothe time function model with the section function of the surface subsidence basin or the basin model.This new subsidence dynamic model fits well the curve of the observation data of some coal mine. The dynamic model can describe the courve of the subsidence, incline and curvature when the curve of the section is certain.
引文
[1]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
    [2]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社, 1991.
    [3]沈光寒,李白英,吴戈,等.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992.
    [4]梅松华,盛谦,李文秀,等.地表及岩体移动研究进展[J].岩石力学与工程学报,2004,23(增1):4535-4538.
    [5]郝延锦,吴立新,戴华阳,等.用弹性板理论建立地表沉陷预计模型[J].岩石力学与工程学报,2006,25(增1): 2958-2961.
    [6]郝延锦,戴华阳,周文国,等.大采深全断面地表沉陷预测模型[J].采矿与安全工程学报,2006,25(4): 494-497.
    [7]李文秀,梁旭黎,赵胜涛,等.地下开采引起地表沉陷预测的弹性薄板法[J].工程力学,2006,23(8):177-181.
    [8]赵晓东,宋振骐.岩层移动复合层板模型的系统方法解析[J].岩石力学与工程学报,2001,20(2):197-201.
    [9]贾喜荣,翟英达.采场薄板矿压理论与实践综述[J].矿山压力与顶板管理,1999,12(4):21-25.
    [10]陈忠辉,谢和平,李全生.长壁工作面采场围岩铰接薄板组力学模型研究[J].煤炭学报,2005,30(2):172-176.
    [11]王红卫,陈忠辉,杜泽超.弹性薄板理论在地下采场顶板变化规律研究中的应用[J].岩石力学与工程学报,2006,25(增2):3769-3774.
    [12]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [13]翟所业,张开智.用弹性板理论分析采场覆岩中的关键层[J].岩石力学与工程学报,2004,23(11):1856-1860.
    [14]缪协兴,钱鸣高,采动岩体的关键层理论研究新进展[J].中国矿业大学学报,2000,29(1):25-28.
    [15]缪协兴,陈荣华,浦海.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [16]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [17]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,26(5):632-636.
    [18]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):403-409.
    [19]钟道昌,汤建泉,马庆云.采场覆岩破坏和运动规律的实验研究[J].矿山压力与顶板管理,1996(3):62-64.
    [20]康建荣,王金庄.采动覆岩力学模型及断裂破坏条件分析[J].煤炭学报,2002(2):16-20
    [21]茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999(2):1-4.
    [22]蒋金平.采空区地层沉陷过程中关键岩层的作用[J].岩土力学,2003(10):441-442.
    [23]朱卫兵,许家林,施喜书,等.覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J].岩石力学与工程学报,2009,2(2):403-409.
    [24]刘开云,乔春生,周辉,覆岩组合运动特征及关键层位置研究[J]岩石力学与工程学报,2004,23(8):1290-1293.
    [25]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2003.11.
    [26]徐永圻.煤矿开采学(修订本)[M]徐州:中国矿业大学出版社, 2003.11.
    [27] Cui ximin. Prediction of Progressive Surface Subsidence above Longwall Coal Mining using a Time Function[J].International Journal of Rock Mechanics & Mining Sciences ,2001,38:1057-1063.
    [28]崔希民,缪协新,赵英利,等.论地表移动过程的时间函数[J].煤炭学报,1999,24(5):453-455.
    [29]常占强,王金庄.关于地表点下沉时间函数的研究——改进的克诺特时间函数[J].岩石力学与工程学报,2003,22(9):1496-1499.
    [30]徐洪钟,李雪红.基于Logistic增长模型的地表下沉时间函数[J].岩土力学,2005,26(增):151-152.
    [31]张文志,邹友峰,任筱芳. Logistic模型在开采沉陷单点预测中的研究[J].采矿与安全工程学报,2009,26(4):486-489.
    [32]赵明忠,李德海. Verhulst模型模拟地表移动变形的时间过程[J].焦作工学院学报(自然科学版),2003.(1):1-4.
    [33]赵忠明.用生物生长规律划分地表移动变形时间阶段[J].有色金属(矿山部分),2005,57(6):27-28.
    [34]李德海.费尔哈斯模型预测地表移动变形[J].煤炭科学技术,2009(7):58-60.
    [35]彭小沾,崔希民,臧永强,等.时间函数与地表动态移动变形规律[J].北京科技大学学报,2004,26(4):341-344.
    [36]李德海.覆岩岩性对地表移动过程时间影响参数的影响[J].岩石力学与工程学报,2004,12(22):3780-3783.
    [37]穆满根.采空区地表移动变形的时间影响参数. [J].中国地质灾害与防治学报,2009,9(3):56-58.
    [38]高延法,贾君莹,李冰,等.地表下沉衰减函数与塌陷区稳定性分析[J].煤炭学报,2009,7(7):892-896.
    [39]朱广轶,朱乐君,郭影.地表沉陷动态时间函数研究[J].西安科技大学学报,2009(3):329-332.
    [40]赵忠明,王其胜,李德海.下沉速度法研究地表移动变形分布规律[J].辽宁工程技术大学学报,2003,6(3):313-316.
    [41]刘文涛,贾喜荣.开采沉陷动态预计流变模型及应用. [J].太原理工大学学报,2004,7(4):491-493.
    [42]解廷堃.开采沉陷动态预计中的流变模型及应用[J].露天采矿技术,2009,2(2):35.37.
    [43]郑彬,郭文兵,桑培淼.我国开采沉陷动态过程的研究现状与展望[J].现代矿业,2009,3(3):11-13.
    [44]黄乐亭,王金庄.地表动态沉陷变形的3个阶段与变形速度的研究[J].煤炭学报,2006,31(4)420-424.
    [45]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996,21(1):51-56.
    [46]王悦汉,邓喀中,吴侃.采动岩体动态力学模型[J].岩石力学与工程学报,2004,23(1):352-357.
    [47]张向东,范学理,赵德深.覆岩运动的时空过程[J].岩石力学与工程学报,2002,21(1):56-59.
    [48]梁运培,孙东玲.岩层移动的组合岩梁理论及其应用研究[J].岩石力学与工程学报,2002,21(5):654-657.
    [49]滕永海,阎振斌.采动过程中覆岩离层发育规律的研究[J].煤炭学报,1999(1):25-27
    [50]李新强,高延法,张庆松.开采沉陷动态数值仿真研究[J].岩石力学与工程学报,2004,23(1):86-90.
    [51] Ramesh P. Singh, Ram N. Yadav,Prediction of subsidence due to coal mining in Raniganj coalfield,West Bengal, India[J] Engineering Geology,1995(39):103.111.
    [52] L.J. Donnelly, H. De La Cruz, I. Asmar,The monitoring and prediction of mining subsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions,Antioquia, Colombia[J] Engineering Geology,2001(59):103-114.
    [53] J. Toran?n o, R. Rodr??guez, P. Ram??rez-Oyanguren , Probabilistic analysis of subsidence-induced strains at the surface above steep seam mining[J] International Journal of Rock Mechanics & Mining Sciences,2000(37):1161-1167.
    [54] KALENDRA B. SINGH and BHARAT B. DHAR,Sinkhole subsidence due to mining[J]Geotechnical and Geological Engineering, 1997(15): 327-341.
    [55] Tomam AmbromiW, Goran Turk,Prediction of subsidence due to underground mining by artificialneural networks[J] Computers & Geosciences,2003(29) 627–637.
    [56] C. Carnec ,C. Delacourt,Three years of mining subsidence monitored by SAR interferometry, near Gardanne France[J] Journal of Applied Geophysics ,2000(43):43–54.
    [57] A. Chrzanowsk,C. Monahan,B. Roulston,Integrated monintoring and modeling of ground subsidence in potash mines[J] International Journal of Rock Mechanics & Mining Sciences,1997(34).
    [58] M.I. A′lvarez-Ferna′ndez,C. Gonza′lez-Nicieza,A. Mene′ndez-D?′az,Generalization of the n–k influence function to predict mining subsidence[J] Engineering Geology ,2005(80):1–36.
    [59] A. K. Soni , K. K. K Singh,A. Prakash ? K. B. Singh , A. K. Chakraboraty,Shallow cover over coal mining: a case study of subsidence at Kamptee Colliery, Nagpur, India[J] Bull Eng Geol Environ ,2007(66):311–318.
    [60] RAJENDRA SINGH and T.N. SINGH,Investigation into the behaviour of a support system and roof strata during sublevel caving of a thick coal seam[J]Geotechnical and Geological Engineering 17: 21–35, 1999.
    [61] Srivastrava AMC, Bahuguna PP (1991) Critical review of mine subsidence prediction methods. Min Sci Technol 13(3):369–382 Stacey TR, Bell FG (1999) The influence of subsidence on planning and development in Johannesburg, South Africa[J] Environ Eng Geosci 5(4):373–388.
    [62] Van der Kooij, M., 1997. Land subsidence measurements at the Belridge oil fields from ERS InSAR data. [M]Proc. 3rd ERS Symposium. ESA, Florence, Italy.
    [63] Scharroo, R., Visser, P.N.A.M., Mets, J.G., 1998. Precise orbit determination and gravity field improvement for the ERS satellites.[J]J. Geophys. Res. 103 -C4., 8113–8127.
    [64] Finnie, G.J., 1999. Using neuralnetworks to discriminate between genuine and spurious seismic events in mines[J]Pureand Applied Geophysics 154 (1), 41–56.
    [65]刘光庆,谭志祥,岳尊彩,等.超长综放面开采地表移动变形规律的实测研究[J].矿业安全与环保,2007,34(2):7-9.
    [66]吴侃,邓喀中,周鸣.综采放顶煤表土层移动监测成果分析[J].煤炭学报,1999,24(1):21-24.
    [67]贺平,王东攀,高保彬.厚松散层地表移动变形预计的双曲函数法[J].煤矿开采,2005,4:2-5.
    [68]余华中,李德海,李明金.厚松散层放顶煤开采条件下地表移动参数研究[J].焦作工学院学报(自然科学版),2003,22(6):413-416.
    [69]谢广祥,常聚才,华心祝.开采速度对综放面围岩力学特征影响研究[J].岩土工程学报,2007,29(7):963-967.
    [70]余华中,李德海,李明金.厚松散层下开采预计的概率积分法修正模型[J].焦作工学院学报(自然科学版),2004.7(4):255-257.
    [71]高明中,余忠林.厚冲积层急倾斜煤层群开采重复采动下的开采沉陷[J].煤炭学报,2007,32(4):347-352.
    [72]曹树刚,刘延保,黄昌文,等.近水平煤层开采地表移动规律研究[J].采矿与安全工程学报,2006,23(1),74-77.
    [73]刘成,王来贵,王凤江.沉陷区内尾矿库变形预测[J].辽宁工程技术大学学报,2006,6(增):111-114.
    [74]剧成宇,邓喀中.工作面停采后地表下沉规律研究[J].金属矿山,2009(4):22-25.
    [75]苏美德,赵忠明,李德海.灰色系统理论模型在矿山开采沉陷中的应用[J].西部探矿工程,2003,4(4):82-83.
    [76]聂卫平,张彦宾,李德海.建筑物下条带开采地表移动与变形研究[J].有色金属(矿山部分),2007,5(3):12-15.
    [77]李德海,赵忠明,李东升.条带煤柱强度弹塑性理论公式的修正[J].矿冶工程,2004,6(3):16-18.
    [78]李德海,李东升,宋长胜.条带设计弹性理论的复变函数模型[J].辽宁工程技术大学学报,2003,2(1):58-60.
    [79]王东攀,李德海.永夏矿区地层非采动沉陷分析[J].矿业工程,2004,10(5):18-20.
    [80]彭苏萍,凌标灿,郑高升.采场弯曲下沉带内部巷道变形与岩层移动规律研究[J].煤炭学报,2002,2(1):21-25.
    [81]陈则连.煤矿采空区地表岩移对高速铁路的影响研究[J].铁道工程学报,2009,4(4):5-8.
    [82]黄平路,陈从新,肖国峰,等.复杂地质条件下矿山地下开采地表变形规律的研究[J].岩土力学,2009(10):3020-3024.
    [83]黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁”结构模型研究. [J].岩土力学,2009(9):2722-2726.
    [84]尹光志,鲜学福,代高飞.大倾角煤层开采岩移基本规律的研究[J].岩土工程学报,2001,23(4):450-453.
    [85] C. Gonzalez-Nicieza ,M. I. Alvarez-Fernandez ? A. Menendez-Diaz .A. E. Alvarez-Vigil,The influence of time on subsidence in the Central Asturian Coalfield[J] Bull Eng Geol Environ ,2007,(66):319–329.
    [86]余闯,刘松玉.路堤沉降预测的Gompertz模型应用研究[J].岩土力学,2005,26(1):82-86.
    [87]吴启星,胡辉.基于Gompertz成长曲线的真空预压软土沉降规律分析[J].岩石力学与工程学报,2005,25(增2):3600-3605.
    [88]徐洪钟,施斌,李雪红.全过程沉降量预测的Logistic生长模型及其适用性研究[J].岩土力学,2006,26(3):387-390.
    [89]王伟,卢延浩.基于Weibull曲线的软基沉降预测模型分析[J].岩土力学,2007,28(4):803-808.
    [90]涂许杭,王志亮,梁振淼,等.修正的威布尔模型在沉降预测中的应用研究[J].岩土力学,2005,26(4):622-628.
    [91]邓英尔,谢和平.全过程沉降的新模型与方法[J].岩土力学,2005,26(1):1-4.
    [92]王丽琴,靳宝成、杨有海.黄土路堤工后沉降预测新模型与方法[J].岩石力学与工程学报,2007,26(11):2370-2375.
    [93] Rodriguez-D?′ez, R., Toran?o-Alvarez, J., 2000. Hypothesis of themultiple subsidence trough related to very steep and vertical coal seams and its prediction through profile functions[J]Geotechnical and Geological Engineering 18, 289– 311.
    [94] Kelly M, Gale WJ, Luo X, Hatherly P, Balusu R, LeBlanc Smith G (1998) Long-wall caving process in different geological environments. Better understanding through the combination of modern assessment methods. In: International Conference on Geomechanics Ground Control in Mining and Underground Construction, University of Wollongong, pp 573–590.
    [95]姜岩.采场覆岩离层及分布规律[J].山东矿业学院学报,1997,16(1).
    [96]郭惟嘉.覆岩沉陷离层发育的解析特征[J].煤炭学报,2000(12):49-53.
    [97]苏仲杰,于广明,杨伦.覆岩离层变形力学模型及应用[J].岩土工程学报,2002,24(6):778-781.
    [98]苏仲杰.采动覆岩离层变形机理研究[D].辽宁工程技术大学,2002.
    [99]苏仲杰,于广明,杨伦.覆岩离层变形力学模型及应用[J].岩土工程学报,2002(6):778-781.
    [100]徐乃忠,张玉卓.覆岩离层注浆减缓地表沉陷的动态力学模型[J].西安科技学院学报,2000(6):35-38.
    [101]王金庄,康建荣,吴立新.煤矿覆岩离层注浆减缓地表沉降机理与应用探讨[J].中国矿业大学学报。1999,28(4):331-334.
    [102]赵德深.煤矿区采动覆岩离层分布规律与地表沉陷控制研究[D].辽宁工程技术大学,2001.
    [103]孟以猛,吕振先.高压注浆减缓地表沉陷技术在大屯矿区的应用[J].世界煤炭技术,1993(4):24-26.
    [104]毛仲玉,王学民.浮选尾矿水注浆充填控制地表斑裂下沉[J].煤炭科学技术,1995,23(4):26-29.
    [105]谢和平,周宏伟,王金安.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [106]尹尚先,汪益敏.采矿工作面推进的FLAC数值模拟[J].华南理工大学学报(自然科学版),2003,3(1):124-126.
    [107]赵洪亮.综放开采地表移动变形规律FLAC数值模拟与实践[J].煤炭工程,2009,4(4):89-91.
    [108]朱建明,徐秉业,朱峰,等.FLAC有限差分程序及其在矿山工程中的应用[J].中国矿业,2000,4(4):79-80.
    [109]武崇福,刘东彦,方志.FLAC3D在采空区稳定性分析中的应用[J].河南理工大学学报(自然科学版),2007,4(2):136-140.
    [110]蓝航,姚建国,张兴华,等.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,3(3):572-577.
    [111]王金安,焦申华,谢广祥.综放工作面开采速率对围岩应力环境影响的研究[J].岩石力学与工程学报,2006,25(6):1118-1123.
    [112]侯志鹰,王家臣.大同矿区“三硬”条件地表沉陷数值模拟[J].煤炭学报,2007,32(3):235-238.
    [113]伍永平,解盘石,杨永刚.大倾角煤层群开采岩移规律数值模拟及复杂性分析[J].采矿与安全工程学报,2007,24(4):391-394.
    [114]尹光志,代高飞,万玲.南桐煤矿开采岩移规律的数值模拟[J].重庆大学学报(自然科学版)2001,24(5):62-66.
    [115]高明中,余忠林.急倾斜煤层开采对地表沉陷影响的数值模拟[J].煤炭学报,2003,28(6):578-582.
    [116]彭苏萍,凌标灿,郑高升.采场弯曲下沉带内部巷道变形与岩层移动规律研究[J].煤炭学报,2007,27(1):21-25.
    [117]司荣军,王春秋,谭云亮.采场支承压力分布规律的数值模拟研究[J].岩土力学,2007,2(2):351-354.
    [118]蓝航,张华兴,姚建国.山区地表采动沉陷预计的数值模拟[J].煤炭学报,2007,32(9):912-916.
    [119]蓝航,李凤明,姚建国.露天煤矿排土场边坡下采动沉陷规律研究[J].中国矿业大学学报,2007,7(4):482-486.
    [120]武强,王龙,魏学勇.榆神府矿区大柳塔井田煤层群采地面沉陷可视化数值模拟[J].水文地质与工程地质,2003,6(6):37-39.
    [121]程东全,尹士献,李德海.厚黄土覆盖层条带开采关键层的数值模拟[J].矿冶工程,2008,12(6):8-14.
    [122]夏玉成,杜荣军.节理倾角对采煤沉陷影响的数值实验研究[J].矿业安全与环保,2008,12(6):1-3.
    [123]李敏,胡奎,陈卓求.南沱河堤下采煤地表沉陷预测的数值模拟研究[J].安徽理工大学学报(自然科学版),2008,6(2):6-9.
    [124]王树仁,张海清,慎乃齐,等.下伏采空区桥隧工程变形及受力响应特征分析[J].岩石力学与工程学报,2009,6(6):1144-1150.
    [125]许家林,钱鸣高,马文顶,等.岩层移动模拟研究中加载问题的探讨[J].中国矿业大学学报,2001,5(3):252-255.
    [126]余学义,尹士献,赵兵朝.采动厚湿陷性黄土破坏数值模拟研究[J].西安科技大学学报,2005 6(2):135-138.
    [127]孙学阳,夏玉成,白红梅.褶皱构造对采煤沉陷控制作用的数值模拟[J].煤炭学报,2007(5):490-493.
    [128]孙学阳,夏玉成,高东方.横向重复采动对煤矿区地表沉陷影响的数值模拟[J].矿业研究与开发,2008,6(3):14-16.
    [129]麻凤海,丁U.大倾角多煤层开采地表移动规律的数值模拟研究[J].中国矿业,2009(6):71-73.
    [130]陈晓祥,谢文兵,魏文政.岩层移动模拟研究中模型范围问题探讨[J].勘察科学技术,2006,6(3):73-91.
    [131] Pariseau W G.Applications of finite element analysis to mining Engineering[A].Hudson J A.Comprehensive Rock Engineering[M].oxfod pergamon press 1993.791-522.
    [132] M.I. A′lvarez-Ferna′ndez,C. Gonza′lez-Nicieza,A. Mene′ndez-D?′az,Generalization of the n–k influence function to predict mining subsidence[J] Engineering Geology ,2005(80):1–36.
    [133] Carnec, C., Massonnet, D., King, C., 1996. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]GRL 23.24., 3579–3582.
    [134] Batra, S.C. (1997) Challenges of safety in Indian mines during twenty first century. Proceedings of the 27th International Conference of Safety in Mines Research Institutes, (edited by BB Dhar and BCBhowmic)[J] New Delhi, pp. 117–126.
    [135] Doney D, Peng SS, Luo Y (1991) Subsidence prediction in Illinois coal basin. In: the 10th International Conference on Ground Control in Mining, pp 212–219.
    [136]袁灯平,马金荣,董正筑.利用ANSYS进行开采沉陷模拟分析[J].济南大学学报(自然科学版)2001,15(4):336-338.
    [137]唐巨鹏,潘一山.ANSYS在煤矿开采数值模拟中应用研究[J].岩土力学,2004,25(增2):229-332.
    [138]张庆松,高延法,李术才,开采沉陷的三维数值仿真与计算模型探讨[J]矿业研究与开发,2005,25(6):53-55.
    [139]孙超,薄景山,刘红帅,等.采空区地表沉降影响因素研究[J].吉林大学学报(地球科学版),2009(3):498-502.
    [140]张建全,戴华阳.采动覆岩应力发展规律的相似模拟实验研究[J].矿山测量,2003,(4):49-51.
    [141]曹建军,马其华,王宜泰.基于采场覆岩空间结构的宽条带开采技术研究[J].采矿与安全工程学报,2008,3(3):68-72.
    [142]康建荣,王金庄,温泽民.采动覆岩动态下沉速度规律的相似模拟研究[J].太原理工大学学报,2007,31(4):364-366.
    [143]杨化超,邓喀中,杨国东.矿山条带开采相似材料模型变形测量[J].吉林大学学报(地球科学版),2007,37(1):190-194.
    [144]高明中.急倾斜煤层开采岩移基本规律的模型试验[J].岩石力学与工程学报,2004,23(3):441-445.
    [145]任伟中,寇新建,凌浩美.数字化近景摄影测量在模型试验变形测量中的应用[J].岩石力学与工程学报,2004,23(3):436-440.
    [146]刘长武,郭永峰,姚精明.采矿相似模拟试验技术的发展与问题[J].中国矿业,2003,12(8):6-8.
    [147]苏承东,勾攀峰,邓广涛.采矿平面应力相似模拟试验装置的研制[J].河南理工大学学报(自然科学版),2007,26(2):141-145.
    [148]查剑锋,郭广礼,赵海涛,等.概率积分法修正体系现状及发展展望[J].金属矿山(自然科学版),2008,1(1):15-18.
    [149]杨守国.矿山地表移动预计系统及其在铁山南煤矿中的应用研究[D].重庆:重庆大学,2003,11.
    [150]徐芝纶.弹性力学(下)[M].北京:高等教育出版社,2006.12.
    [151]王俊民.板壳力学复习与解题指导[M].上海:同济大学出版社,2007.5.
    [152]黄义,何芳.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.4.
    [153]孟召平,苏永华.沉积岩体力学[M].北京:科学出版社,2006.9.
    [154]夏玉成,孙学阳,汤付全.煤矿区构造控灾机理及地质环境承载力研究[M].北京:科学出版社,2008.8.
    [155]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [156]尤明庆.试验结果的数学拟合与力学模型[J].岩石力学与工程学报,2008,27(2):251-257.
    [157]彭文斌.FLAC 3D实用教程M].北京:机械工业出版社,2008.1.
    [158]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:水利水电出版社,2009.1.
    [159]刘波,韩彦辉. FLAC原理实例与应用指南[M].北京:人民交通出版社,2005.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700