用户名: 密码: 验证码:
南岭成矿带重磁场特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南岭地区处于欧亚板块的东南端,东与太平洋板块毗邻,西接印度洋板块,在地理上是指五岭和九连山脉地区;南岭成矿带是我国重点部署矿产勘查的16个重点金属成矿区带中的五个重中之重之一。研究区内以与酸性岩浆岩有关的有色、稀有矿产高度富集为特色,是世界“钨都”、“锑都”和“锡都”。上个世纪以来,南岭地区诞生了许多成矿理论和学说,如花岗岩的壳源改造和同熔型成因理论、成矿系列理论和地洼构造学说等,近十几年来,随着大陆成矿作用研究的兴起,南岭再次成为相关理论研究的热点地区。本文依托国土资源部十二五科研专项:南岭地区燕山期深部岩浆活动与大规模成矿复杂性研究(编号:1212011121101),以地球物理探测为主要研究手段,运用重磁小波多分辨率分析、位场边界识别方法和技术,提取南岭地区不同深源层的岩体和构造信息,识别区内隐伏花岗岩分布,并对花岗岩侵入体的延深、形态等空间侵位特征进行反演,揭示岩石圈结构特征,探讨和分析区内岩浆系统结构和花岗岩成因等问题,并对南岭地区多金属成矿预测进行研究。论文取得的主要研究成果如下:
     (1)利用小波分析对1:20万布格重力和1:50万航磁数据进行多级分解,提取了场源似深度分别约为lkm、3km、8km、15km、25km的1-5阶细节。研究结果表明:重力异常小波1阶细节主要反映浅部及出露的小岩体的分布,这些小岩体往往是成矿的有利地带;如千里山岩体,其地表出露的岩体面积并不大,但其周围却有东坡、红旗岭、柿竹园、瑶岗仙、野鸡尾等;重力异常小波2阶细节主要反映浅部半隐伏岩体的分布,矿田往往分布在此类较大的局部重力异常周围。本文将1-5d细节之和作为南岭地区花岗岩引起的局部异常,花岗岩剩余重力异常信息呈现明显分区特征,以茶陵-郴县断裂为界,研究区北西部位岩体局部重力异常较大,变化范围-14~-27mGa1不等,南东地区较小,变化范围-8-20mGa1不等,说明北西区岩体较厚或者密度较小;而且不同时期花岗岩剩余重力异常信息也存在一定差异,早期花岗岩比晚期花岗岩的重力负异常值要大,其中早期花岗岩主要分布在北西区。
     (2)利用不同方向水平导数以及多尺度小波断裂识别方法,划分了南岭地区的断裂体系,指出了隐伏断裂、深大断裂的分布特征,并结合以往大地电磁和地震测深结果,指出了研究区的岩石圈断裂2条:城步-桃江断裂、常德-安仁断裂,莫霍面断裂5条:茶陵-郴州断裂、赣州-韶关断裂、大义山-郴州-大宝山断裂等。古俯冲带地幔楔与莫霍面断裂部位是岩浆入侵的突破口和诞生地,花岗质岩浆主要沿深大断裂上涌至上地壳形成地表岩体,并在线性断裂交汇处岩浆侵入最为有利,以断层为界的花岗岩断块的厚度较大,如诸广山,九嶷山等岩体。
     (3)利用水平总梯度模、Tilt梯度、Theta map以及归一化标准差的方法对南岭重力异常进行边缘识别,研究南岭地区隐伏花岗岩体分布范围,绘制了预测结果图。研究结果表明:区内全隐伏岩体分布在三才界、香花岭、钟山珊瑚等地.这类岩体中有些地表仪见小岩株,而地下隐伏规模较大,往往是成矿的重点区域;半隐伏岩体如骑田岭、瓦屋塘、萌诸岭-海洋山、阳明山-大义山等,这类岩体深部和周围存在延伸和扩大:此外,区内部分岩体呈深部相连,如千里山-骑田岭-香花岭、海洋山-都庞岭、阳明山-大义山等。
     (4)利用3D密度成像技术,揭示了千里山-骑田岭矿集区和九嶷山岩体的3D密度结构,并根据二度半人机交互反演和大地电磁测深剖而进一步深化对密度成像结果的认识,研究结果表明:千里山-骑田岭-香花岭岩体深部相连,并沿着北东向郴州-茶陵断裂可能直延伸到北东部的万洋山-诸广山,形成千里山-骑田岭-香花岭隐伏岩浆侵位通道,而九嶷山岩体特征为西厚东薄:南岭花岗岩体厚度一般为6~15km,少数接近30km:薄岩体一般比厚岩体宽度大,如越城岭岩体宽度为45kmm,厚度仅6km,而大义山岩体宽度26km,厚度可达22kmm。
     (5)根据重磁资料揭示的结果,对南岭花岗岩岩成因问题进行探讨和分析.得到以下认识:南岭地区花岗岩大多数岩体起源深度不超过30km,属于无根花岗岩,为该区“花岗岩成因以陆壳重熔为主”地质推论提供了直接的地球物理证据。本文认为在燕山运动早期太平洋板块向华夏板块的俯冲过程中,岩石圈发生减薄.软流圈上涌和玄武岩浆底侵提供的热源导敛原岩的部分熔融而形成燕山早期的“南岭花岗带”;推测郴州地区深部的上地幔顶部存在软流圈上涌形成的残留岩浆房,这个残留岩浆房岩浆底侵为下地壳原岩部分熔融提供了热源,并形成以诸广山-万洋山为中心的陆壳重熔区,为周围中生代岩浆大爆发的发源地,也为该地区大规模区域成矿作用提供了矿源和热源,从而形成了以千里山-骑田岭为中心的南岭深部矿集区的最佳场所。此外,猫儿山-越城岭地区中下地壳位置可能也存在大规模陆壳重熔区,
     (6)根据南岭深部构造特征,如莫霍面起伏、隐伏断裂和隐伏岩体分布等,研究它们与已知矿矿床的对应关系,得到以下认识:幔隆区通常对应着浅层构造的中、新生代盆地,与内生金属矿产关系小大;幔凹区则往往与浅层构造的隆起带相对应,虽有矿床形成,但小是成矿最有利地段在幔隆与幔拗之间的变异区(带),处在地壳增厚、减薄的交替地带,浅层构造活动强烈,多金属矿床分布很多。区内拧制岩浆活动和矿床分布的主要为北东向和北西向构造,不同方向和不同深度层次大断裂的交汇部位是岩浆侵入的突破口,也是矿床聚集的最佳场所,尤其是燕山期北(北)东向构造与先期东西构造交汇部位。
     (7)总结和归纳了南岭主要矿床的地质成矿规律以及地球物理、地球球化学特征,总结了“三高两低”的地质异常找矿模式,三高是指有较明显的视极化率、磁异常及地球化学多元素异常,两低是指低重力和低视电阻率部位,
The Nanling region, located in the southeast end of the Eurasian plate, adjacent to the east of the Pacific plate and to the west of Indian Ocean plate, geographically refers to the Wuling and the Jiulianshan areas. Nanling metallogenic belt is one of the five most important of the16key metal mineralization belts which our country set off metal exploration. This study area, abundant in non-ferrous and rare metals related to acidic magmatic rocks, is called the capital of tungsten, antimony and tin mineral in the world. Since the last century, many metallogenic theories were emerged in Nanling region, such as the theory of transforming granite crust source, the theory of metallogenic series and construction of geodepression theory etc.. In recent ten years, with the development of continental mineralization research, Nanling become a hot spot again to research related theory. This paper, based on the12-five-years research special project of Land and Resources department "Research on deep magmatic activity in Yanshan period in Nanling region and its metallogenic complexity (N:1212011121101)", using geophysical exploration as the main research means, with the help of method and the technology used in wavelet multi-resolution analysis and boundary detection of potential field to extract the information about granites and structures from different layers of deep source in Nanling region, identify the distribution of buried granite in the areas, invert the spatial features including buried depth and spatial shape of granite intrusions, reveals the structure characteristic of lithosphere, discusses and analysizes problems about the structure of magma system and granite formation and research the polymetallic metallogenic prediction in Nanling region. Paper's main research results are as follows:
     (1) We Multistaged1:200000bouguer gravity and1:50aeromagnetic data by Wavelet decompsition and wxtractd the1th~5th order details from the source in the depth of about1km,3km,8km,15km and25km respectively. The research results show that the the1th wavelet order details of gravity anomaly mainly reflects the distribution of small granite rocks in shallow and exposed areas and the small granites often are favorable belt for forming mineralization; Such as granites in Qianli shan whose exposed area is not large, but surrounded by Dongpo, Hongqiling, Yaogangxian, Shizuyuan, Yejinwei, etc.; The2th order details of Gravity anomaly mainly reflects the distribution of concealed granites in shallow layers, and orefields are often distributed in this area with larger negative gravity anomaly. This paper studies granite local anomalies caused by the sum of1th~5th order details in Nanling region, and information about the granites'residual gravity anomaly has assumed obvious zoning characteristics. Bounded by Chaling-Chenzhou fault, granites in the north west of the study area has a lager anomaly,ranged from14to27mgal, and south east area is smaller, ranged8to20mgal, which explain that rock in north west is thick or less density; And information in different periods about granites'residual gravity anomaly also has certain differences, the value of the early granites'negative of gravity anomaly is larger than that of late granites, and the early granite are mainly distributed in the north west.
     (2) By using the different direction of horizontal derivative and the multi-scale wavelet fault identification methods, we divided the fracture system in Nanling region, pointed out distribution characteristics of the concealed faults and deep faults; combined with the previous results of magnetotelluric and seismic prospecting, we pointed out2lithosphere faults in the study areas, including Chengbu-Taojiang fault, Changde-Anren fault; and5Moho fracture, such as Cha ling-Chenzhou fault, Ganzhou-Shaoguan fault, Dayi shan-chenzhou-Dabaoshan fault, etc. Ancient mantle wedge in subduction zones and Moho fault sites are an important controlling factor of granites instrusion. Magma mainly upwelled along the deep big faults to the earth's crust, then near the faults distribution, and corresponded to the gravity anomaly gradient belts, for which magma intrusion is most favorable place in the interchange of linear fracture, and a block of granite for fault is the biggest thickness, such as the granites in Zhuguang shan and Jiuyi shan,etc.
     (3) Using the method including the level total gradient modulus. Tilt gradient, Theta map and normalized standard deviation to conduct edge recognition to gravity anomaly in Nanling, we mapped the forecast result by studying the buried distribution of granite rock mass in Nanling region. The research results show that the concealed granite rocks distributed in the areas of Sancaijie. Xianghualing, Zhongshanshanhu and other places. Only small rock strain was found in some of this kind of rock mass surface, but the larger rock was underground concealed granite rocks where often is the key area of the metallogenic; Half concealed rock mass such as QitianLing, Wawutang, Mengzhuling and Mengzhu shans, Yangming shan and Dayi shan and so on. This kind of rock further expands into deep rock, and part of which is linked together in deep, such as Qianli shan-Qitianling-Xianghualing Haiyang shans-DouPangLing, Yangming shan-Dayi shan and so on.
     (4) By technique of3D density imaging, we revealed3D density and structure of granites in Qianlishan-Qitianling and Jiuyishan, further understood the findings of magnetotelluric according to the results of MT prospecting and2.5D interactive inversion of gravity anomaly profile. The results show that the Qianlishan-Qitianling-Xianghualing ore concentration area links together in deep, and may extend to the north east of Wanyangshan-Zhuguangshan along the north east of Chenzhou-Chaling fault, which forms a passageway of concealed magmatic emplacement to Qianlishan-Qitianling-Xianghualing, while the Jiuyishan granites is characterized for thickness in west and thinness in east. The thickness of Granite rocks in Nanling is about6-15km, commonly a few close to30km. Thin rock mass is generally larger than thick roc k in the width, such as rock mass in YueChengLing, the width is45km, and thickness is only6km; The granites of Dayishan, the width is26km, and thickness can be up to22km.
     (5) According to the result of gravity, magnetic, MT and seismic data, and discussing the causes of formation of Nanling granite, we got the following understanding:most of granite rock mass in Nanling region originated in depth less than30km, which are belong to no root granites, and provide direct geophysical evidence reasoning for geological inference of the topic that granites is resulted from continental crustal remelting. This paper believes that in the early movement of Yanshanian, in the process of subduction of the Pacific plate to the Cathaysian plate, lithosphere became thin, and the heat provided by the upwelling of the asthenosphere and the basaltic magma invasion led to partially melt the original rock which formed the early Yanshanian Nanling granite belts. We speculate that there is a residual magma chamber in the top of the upper mantle in Chenzhou area due to the asthenosphere upwelling. This residual magma chamber provides heat source for the partial melting of lower crust protolith, and help form the continental crust remelting area as the center of Zhuguangshan-Wanyangshan, is the birthplace of Mesozoic magmatic explosion, also offers mine source and heat source for mineralization in large areas of this region, where is the best Nanling mineralization zone centered Qianlishan-Qitianling. In addition, the middle and lower crust in Miaoershan-Yuechengling area may be in large continental crust remelting zone.
     (6) According to deep tectonic features in Nanling, such as Moho rolling, concealed fault and concealed granites distribution, etc., researching their corresponding relation with the known deposits, we got the following understanding:the mantle uplift area has few relationships with endogenous metal mineral, but usually corresponds to the shallow structure in the Mesozoic and Cenozoic basin; Mantle concave area tends to correspond to shallow tectonic uplift, although there is miberal deposits, not the most favourable metallogenic location. Between the variation area (belt) of mantle uplift and Mantle concave area, in alternating belt of crustal thickening and thinning, shallow tectonic activity is strong, and there are many mineral deposits distribution.The in N-W trend structures have the function of constructing ore and mine, and is the main structure factors about the distribution of orefields. the N-E trend structures control both the granites and ore, and it is the center of the magmatic activity where the different depth and different direction faults intersect, and it is also the best metallogenic place, especially the intersection between NNE trend structures and previous.
     (7) We summarized the geological metallogenic regularity, the characteristics of geophysics and geochemical about the famous mineral deposits in Nanling region, summed up the model of geophysical and geochemical mineral prospecting-two lows and three highs, two lows refer to negative gravity and lower resistivity, three highs refer to high AT anomalies and high ηS resistivity, and high geochemical anomalies such as Pb, Zn, Ag, As.
引文
Bhattacharyya, B. K.1965. Two-dimensional harmonic analysis as a tool for magnetic interpretation. Geophysics,30829-857.
    Boulanger, O., Chouteau, M.2001. Constraints in 3D gravity inversion. Geophysics Prospecting, 49265-280.
    Brown, L. D.1991. A new map of crustal terranes in the United States from COCORP deep seismic reflection profiling. Geophys J Int,1053-13.
    Brun, J. P., Wenze, F., ECORS-DEKORP-team.1991. Crustal-scale structure of the southern Rhinegraben from ECORS-DEKORP seismic reflection data. Geology,16758-762.
    Chris, W., Carlos, P., Peter, K.2005. Theta map:Edge detection in magnetic data. Geophysics,70 (4):39-43.
    Cordel, L., Grauch, V. J. S.1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, in Hinze, W. J., Ed., The utility of regional gravity and magnetic anomaly maps. Soc. Explor. Geophys,181-197.
    Cordell, L.1979. Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin. New Mexico:New Mexico Geol. Soc. Guidebook,30th Field Conf,59-64.
    Fernando, J. S. S. D., Valeria, C. F. B., Joao, B. C. S.2009.3D gravity inversion through an adaptive-leraning procedure. Geophysics,74 (3):9-21.
    Gordon, R. J., Cooper, Duncan, R.2008. Edge enhancement of potential-field data using normalized statistics. Geophysics,73 (3):1-4.
    Green, W. R.1975. Inversion of gravity profiles by use of a Backus-Gilbert approach. Geophysics, 40763-772.
    Guillen, A., Menichetti, V.1984. Gravity and magnetic inversion with minimization of a specific functional. Geophysics,30829-857.
    Hood, P., Mcclure, D. J.1965. Gradient measurements in ground magnetic prospecting. Geophysics,30 (3):403-410.
    Hugh, G., Miller., Vijay, S.1994. Potential filed tilt-a new concept for location of potential field sources. Journal of Applied Geophysics,32213-217.
    Last, B. J., Kubik, K.1983. Compact gravity inversion. Geophysics,48713-721.
    Li, Y. G., Oldenburg, D. W.1996.3-D inversion of magnetic data. Geophysics,61384-408.
    Li, Y. G., Oldenburg, D. W.1998.3-D inversion of gravity data. Geophysics,63109-119.
    MacCready, T., Goleby, B. R., Goncharov, A., Drummond, B. J., Lister, G. S.1998. A Framework of overprinting orogens based on interpretation of the Mount Isa deep seismic transect. Economoc Geology,93 (8):1422-1434.
    Parker, R. L.1973. The rapid calculation of Potential anomalies. Geophys.J.R.,31.
    Parker, R. L., Huesties, s. p.1974. The inversion of magnetic anomalies in the Presence of topoghy. J.Geophys.Res.,79(11).
    Pejiman, S., Denis, M., Michel, C., Pierre, K.2010.3D stochastic inversion of gravity data using cokriging and cosimulation. Geophysics,75 (1):1-10.
    Pilkington, M.1997.3-D magnetic imaging using conjugate gradients. Geophysics,621132-1142. Pyrenees-team-ECORS.1980. Deep reflection seismic survey across an entire orogenic belt, the ECORS Pysrenees profile. Nature,306506-511.
    Sorjonen-Ward., Zhang, Y., and Zhao, C.2002. Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences,49935-964.
    VanDecar, J. C., Snieder, R.1994. Obtaining smooth solutions to large, linear, inverse problems. Geophysics,59 (5):818-829.
    Verduzco, B., Fairhead, C. M., Green.2004. New insights to magnetic derivatives for structural mapping. The Leading Edge,23 (2):116-119.
    Yu, C. W.2011a. The characteristic target-pattern regional ore zonality of the Nanling region, China (1). Geoscience Frontiers,2 (2):147-156.
    Yu, C. W.2011b. The characteristic target-pattern regional ore zonality of the Nanling region, China (Ⅲ). Geoscience Frontiers,2 (2):551-561.
    Yu, C. W.2011c. The characteristic target-pattern regional ore zonality of the Nanling region, China (Ⅱ). Geoscience Frontiers,2 (2):323-347.
    Zhang, Z. J., Wang, Y. H.2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors,165114-126.
    Zhao, B., Zhang, Z., Bai, Z. M., Jose, J., Zhang, Z. J.2012. Shear velocity and Vp/Vs ratio structure of the crust beneath the southern margin of South China continen. Journal of Asian Earth Sciences.
    车勤建,李金冬,魏绍六,伍光英.2005.湖南千里山—骑田岭矿集区形成的构造背景初探.大地构造与成矿学,(02):204-214.
    陈毓川.2007.中国成矿体系与区域成矿评价.北京:地质出版社.
    陈召曦.(2012).位场数据的曲波变换与信息提取庆用:中国地质大学(北京).
    陈召曦,孟小红,郭良辉,刘国峰.2012a.基于GPU并行的重力、重力梯度三维正演快速计算及反演策略.地球物理学报,v.55(12):4069-4077.
    陈召曦,孟小红,刘国峰,郭良辉.2012b.基于GPU的任意三维复杂形体重重磁异常快速计算.物探与化探,v.36(01):117-121.
    邓晋福,肖庆辉,邱瑞照,刘翠,赵国春,于炳松,周肃,钟长汀,吴宗絮.2006.华北地区新生代岩石圈伸展减薄的机制与过程.中国地质,(04):751-761.
    邓阳凡,李守林,范蔚茗.2011.深地震测深揭示的华南地区地壳结构及其动务学意义.地球物理学报.54(10):2560-2574.
    地质矿产部《南岭项目》构造专题组.1988.南岭区域构造特征及控岩控矿构造研究.北京地质出版社.
    地质矿产部《南岭项目》构造专题组.1989.南岭地区花岗岩地质及其成因和成矿作用.北京地质出版社.
    丁鹏飞.2001.钦州—钱塘结合带及其控矿作用.北京地质出版社.
    董树文,李廷栋2009. SinoProbe——中国深部探测实验.地质学报,v.83(07):895-909.
    董树文,李廷栋, Probe团队,S.(2011).深部探测技术与实验研究(SinoProbe), pp.22.
    董树文,李廷栋,陈宣华,魏文博,高锐,吕庆田,杨经绥,王学求,陈群策,石耀霖等.2012.
    我国深部探测技术与实验研究进展综述.地球物理学报,v.55(12):3884-3901.
    段利华.1991.湘桂粤赣区域性位场资料的数据处理及其应用.矿产与地质,(04):318-324.
    冯佐海.(2003).广西姑婆山-花山花岗岩体侵位过程及构造解析:中南大学.
    冯杰.(2010).井地磁测联合反演研究:中国地质大学.
    付建明,谢才富,彭松柏,杨晓君,梅玉萍.2006.湖南骑田岭花岗岩及其暗色微粒包体的地
    球化学与壳幔岩浆的混合作用.地球学报,(06):557-569.
    管志宁,姚长利.1997.倾斜板状体磁异常总梯度模反演方法.地球科学(中国地质大学学报),22(1):81-85.
    郭海,张.,雷志源,覃永炎,周金华.2011.湖南省东坡铅锌矿区物化探异常特征及找矿作用.物探与化探,(02):192-197+202.
    郭良辉,孟小红,石磊.2010.磁异常△T三维相关成像.地球物理学报,v.53(02):435-441.
    郭良辉,孟小红,石磊,李淑玲.2009.重力和重力梯度数据三维相关成像.地球物理学报,v.52(04):1098-1106.
    郭华,于长春,吴燕冈.2009.改进的斜导数方法及应用.物探与化探,v.33(02):212-216.
    韩凯.(2012).华南东南部壳/幔电性结构特征及其动力学背景研究:吉林大学.
    侯遵泽,杨文采.1995.小波分析应用研究.物探化探计算技术,(03):1-9.
    侯遵泽,杨文采.1997.中国重力异常的小波变换与多尺度分析.地球物理学报,(01):85-95.
    华仁民,陈培荣,张文兰,姚军明,林锦富,张展适,顾晟彦.2005a.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,(03):291-304.
    华仁民,陈培荣,张文兰,陆建军.2005b.论华南地区中生代3次大规模成矿作用.矿床地质,(02):99-107.
    贾大成,胡瑞忠,卢焱.2002.湘东南玄武质岩石地球化学特征及构造环境.吉林大学学报(地球科学版),(03):209-214.
    江为为,郝天珧,胥颐,刘振峰,朱东英,涂广红.2007.中国中南地区综合地质地球物理研究.地球物理学报,(01):171-183.
    姜文亮,张景发.2011.川滇地区重力场与深部结构特征.地球物理学进展,v.26;No.110(06):1915-1924.
    姜文亮,张景发.2012.首都圈精细地壳结构-基于重力场的反演.地球物理学报,55(5):1646-1661.
    蒋甫玉,高丽坤.2012.基于改进的小子域滤波的重力异常及重力梯度张量边缘增强(英文).Applied Geophysics, v.9 (02):119-130+233.
    金鹤生,胡交平,伍意得.1987.界牌—马迹韧性剪切带的初步研究.湖南地质,(04):15-22.
    雷泽恒,乔.,许以明,2009.湖南上堡矿区钨锡矿成矿条件及找矿前景分析.地质与勘探, (02):44-52
    李少莲.1990.湘南地区隐伏地质构造与矿产预测.矿产与地质,(03):11-17-25.
    李媛媛,杨宇山.2009.位场梯度归一化标准差方法在地质体边界定位问题中的应用.地质科技情报,v.28,No.v.28(05):138-142.
    刘国兴,韩凯,韩江涛.2012.华南东南沿海地区岩石圈电性结构.吉林大学学报(地球科学版),v.42(02):536-544.
    刘树生,贾宝华,曾志方.2005.九嶷山锡矿田矿床地质特征及矿床成因.华南地质与矿产,(02):39-44
    刘天佑,吴招才,詹应林,周逵.2007.磁异常小波多尺度分解及危机矿山的深部找矿:以大冶铁矿为例.地球科学(中国地质大学学报),(011):135-140.
    陆庆岗.1993.南岭及令领区深部构成与钨矿分布.河北地质学院报,(04):333-344.
    路晓翠,张景发,朱鲁,陈丁,张鹏、李丽梅.2012.利用小波多尺度分解研究郯庐断裂带苏鲁段构造.地球物理学进展,v.27;No.111(01):58-67.
    吕庆田,史大年,汤井田,吴明安,常印佛.SinoProbc-03-CJ项目组.2011a.长江中下游成矿带及典型矿集区深部结构探测—-SinoProbe.03年度进展综述.地球学报、v.32;No.127(03):257-268.
    吕庆田,常印佛.SinoProbe.03项目组.(2011b).地壳结构与深部矿产资源立体探测技术实验——-SinoProbe.03 (?)项目介绍.pp.16.
    马国庆,李丽丽、杜晓娟.2012.磁张量数据的边界识界识别和解释方法.石油地球物理勘探,v.47(05):815-821:844-682.
    毛景文,陈懋弘、袁顺达,郭春丽.2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,v.85(05):636-658.
    毛景文,李红艳,王登红,彭陪.1998.华南地区中生代多金属矿床形成与地幔柱关系.矿物岩石地球化学通报,(02):63-65.
    毛景文,谢桂青,郭春丽,陈艈川.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球力学背景.岩石学报,(10):2329-2338.
    毛景文,李红艳.裴荣富.1995.湖南千里山岗岩体的Nd—Sr同位素及岩石成因研究.矿床地质,(03):235-242.
    宁津生.2002.卫星重力探测技术与地球重力场研究。大地测量与地球动力学,(01):1-5.
    秦葆瑚.1984a.湘南区域重磁异常的地质解释,及其在成矿预测中的应用.湖南地质,(02):1-14.
    秦葆瑚.1984b.湘南四个金属矿田的区域重磁异常特征.物探与化探,(01):34-40-33.
    秦葆瑚.1987.南岭区域重磁异常的地质解释.湖南地质, (01]:1-15.
    秦前清,杨宗凯.1994.实用小波分析.西安:西安电子科技大学出版社.
    饶家荣.(1993).华南、扬子微板块占俯冲-碰撞构造模型.In1993年中国地球物理学会第九届学术年会.pp.1.中国湖南长沙.
    饶家荣.2012.扬子、华夏古板块会聚带在湖南的位置.地球物理学报,55(2):484-502.
    饶家荣,王纪恒,曹一中.1993.湖南深部构造.湖南地质,(S1):2-311-101.
    饶家荣,我小燕,曾春芳.2006.南岭中段北缘深部构造—岩浆(岩)控矿规律及找矿方向.国 土资源导刊,(03):31-36.
    沈渭洲,凌洪飞.1994.岩背和塌山含锡花岗斑岩的同位素地球化学特征和物质来源.地球学报,(Z1):117-123.
    史大年,吕庆田,徐文艺,严加永,赵金花,董树文,常印佛.2012.长江中下游成矿带及邻区地壳结构——MASH成矿过程的P波接收函数成像证据?地质学报,v.86(03):389-399.
    水涛.1987.中国东南大陆基底构造格局.中国科学(B辑化学生物学农学医学地学),(04):414-422.
    宋才见,覃贤禄,谭湘宁,羊春华.2007.湖南城步地区重力异常的初步研究.物探与化探,(05):414-419+434.
    孙文科.2002.低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场——卫星重力大地测量的最新发展及其对地球科学的重大影响.大地测量与地球动力学,(01):92-100.
    汤吉方,傅太安,龚家财.(1986).南岭地质矿产科研报告集.In 南岭地区有色金属矿床的构造控制静征及分布规律.宜昌地质矿产研究所.
    童潜明,李荣清,张建新.2000.郴临深大断裂带及其两侧的岩浆岩特征.华南地质与矿产,(03):8-16.
    王大勇.(2010).长江中下游矿集区综合地质地球物理研究:吉林大学.
    王德滋.2004.华南花岗岩研究的回顾与展望.高校地质学报,(03):305-314.
    王德滋,周新民.2002.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化.北京科学出版社.
    王登红,林文蔚,杨建民,阎升好.1999.试论地幔柱对于我国两大金矿集中区的控制意义.地球学报,(02):45-50.
    王登红,唐菊兴,应立娟,陈郑辉,许建祥,张家菁,李水如,曾载淋.2010.“五层楼+地下室”找矿模型的适用性及其对深部找矿的意义.吉林大学学报(地球科学版),v.40(04):733-738.
    王登红,陈毓川,陈郑辉,刘善宝,许建祥,张家菁,曾载淋,陈富文,李华芹,郭春丽.2007.南岭地区矿产资源形势分析和找矿方向研究.地质学报,(07):882-890.
    王懋基.1985.根据重力场研究华南地壳结构.物探与化探,(03):161-169.
    王懋基.1994.黑水—泉州地学断面的重磁解释.地球物理学报,(03):321-329.
    王万银.2012.位场解析信号振幅极值位置空间变化规律研究.地球物理学报,v.55(04):1288-1299.
    王万银,张功成,梁建设.2010.位场垂向导数零值位置空间变化规律研究(英文).Applied Geophysics, v.7 (03):197-209+292.
    王想,李桐林.2004.Tilt梯度及其水平导数提取重磁源边界位置.地球物理学进展,(03):625-630.
    吴福元,徐义刚,高山,郑建平.2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报,v.24(06):1145-1174.
    吴福元,葛文春,孙德有,郭春丽.2003.中国东部岩石圈减薄研究中的几个问题.地学前缘,(03):51-60.
    伍光英.(2005).湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用:中国地质大学 (北京)
    习宇飞.(2011).磁场多分量联合反演研究,vol.博士.武汉:中国地质大学(武汉).
    肖红全,赵葵东,蒋少涌,姜耀辉,凌洪匕.2003.湖南东坡矿田金船塘锡铋矿床铅位素地球化学及成矿年龄.矿床地质,(03):264-270.
    肖庆辉,刘勇,冯艳芳,邱瑞照,张昱.2010.中国东部中生代岩石圈演化与太平洋板块俯冲消减关系的讨论.中国地质,v.37;No.339(04):1092-1101.
    熊小松,高锐,李秋生,卢古武,王海燕,李文辉,管烨.2009.深地震探测揭示的华南地区莫霍面深度.地球学报,v.30;No.116(06):774-786.
    徐海军,张永志,段虎荣,夏朝龙.2012GOCE卫星监测的中国区域重力异常.地球物理学进展,v.27;No.112(02):404-408.
    严加永,吕庆田,孟贵祥,赵金花.2009.铜陵矿集区中酸性岩体航磁3D成像及对深部找矿方向的指示.矿床地质,v.28(06):838-849.
    杨明桂,黄水保,楼法生,唐维新,毛素斌.2009.中国东南陆区岩石圈结构与大规模成矿作用.中国地质,v.36;No.332(03):528-543.
    杨明桂,梅勇文.1997.钦-杭古板块结合带与成矿带的主要特征.华南地质与矿产(03):52-59.
    杨帅.(2006).南岭地区钨锡矿床分布规律及成矿预测:中国地质大学(北京)
    杨文采.1989.地球物理反演和地震层析成象.北京地质出版社.
    杨文采.2003.大别苏鲁地区层状地幔反射体及其解释.地球物理学报,(02):191-196+289-291.
    杨文采,施志群,侯遵洋,程振炎.2001.离散小波变换与重力异常多重分解.地球物理学报,(04):534-541+582.
    杨宇山,李媛媛,刘天佑.林家辉,付家灿,张建新.2003.小波细节的微分特征及其在重力场断裂分析中的应用.地质与勘探,(01):41-44.
    余饮范,楼海.1994.水平梯度法捉取重磁源边界位置.物探化探计算技术,(04):363-367.
    於崇文.1987.南岭地区区域地球化学.北京:地质出版社.
    於崇文,彭年.2009.南岭地区区域成矿分带性—空同步化.北京:地质出版社.
    张风旭,张风琴,刘财,刘万崧,孟令顺.2007.断裂构造精细解释技术——三方向小子域滤波.地球物理学报,(05):1543-1550.
    张恒磊.(2011).现代信号处理的位场滤波方法,vol.博士.武汉:中国地理大学(武汉).
    张恒磊,刘天佑.2009.基于小波分析的磁测数据处理流程及解释方法.物探与化探,v.33(06):686-690.
    张恒磊,刘天佑-朱朝吉,周肇武.2011a.高精度磁测找矿效果——以青海尕林格矿区为例.物探与化探,v.35(01):12-16.
    张恒磊,刘天佑,杨宇山.2011b.各向异性标准化方差计算重磁源边界.地球物学报,v.54(07):1921-1927.
    张季生,高锐,李秋生,管烨,彭聪,李朋武.卢古武,侯贺晟.2010.庐枞火山岩盆地及其外围重、磁场特征.岩石学报,v.26(09):2613-2622.
    张世晖.(2003).海洋卫星测高重力数据处理方法研究及在冲绳海槽的应用,vo1.博士.武汉:中国地质大学(武汉)
    张用夏.1984.华南地区环形构造及其成因.地质论评,(05):437-445.
    赵振华,包志伟,张伯友,熊小林.2000.柿竹园超大型钨多金属矿床形成的壳幔相互作用背景.中国科学(D辑:地球科学),(S1):161-168.
    郑洪伟,耿树方,杨贵,刘淑聪.2012.中国东部地区深部结构的层析成像.地质通报,v.31;No.206(07):1069-1077.
    朱朝吉,周肇武,刘天佑,张恒磊.2011a.高精度磁测找矿效果:以青海尕林格矿区为例.地质与勘探,v.47;No.433(02):277-283.
    朱朝吉,周肇武,张恒磊,刘天佑.2011b.小波多尺度分解方法在尕林格Ⅱ矿群深部找矿中的应用.地质科技情报,v.30;No.136(01):71-75.
    朱介寿,蔡学林,赵风清.2005.中国华南及东海地区岩石圈三维结构及演化.北京地质出版社.
    朱金初,张辉,谢才富,张佩华,杨策.2005.湘南骑田岭竹枧水花岗岩的锆石SHRIMPU-Pb年代学和岩石学.高校地质学报,(03):335-342.
    朱自强,黄国祥.1996.柿竹园矿田重磁资料的三维反演及成矿预测.矿产与地质,(01):66-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700