用户名: 密码: 验证码:
宁夏灌淤时间序列的土壤碳库量演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳库是全球陆地系统最大的碳库,对缓解因二氧化碳等温室气体增加导致的全球气候变化具有重要的调节作用。同时,因为受到自然或人为因素的影响,土壤有机碳库处于动态变化之中。在影响土壤有机碳库变化的诸多因素中,灌溉被认为是提高土壤有机碳库的重要措施之一。在我国西北地区,灌溉农业的历史悠久,而且因流经这些区域的河水中常常含有大量的泥沙,而对灌区农田土壤性状产生强烈影响。由于河水中泥沙在农田中不断沉积,再加上人为的耕作施肥形成了具有一定厚度的人为土壤——灌淤土。灌淤土在我国宁夏引黄灌区分布最集中、最深厚,而且灌溉时间序列明显。为揭示长期引用高含沙河水灌溉耕作对土壤有机碳变化产生的影响及其增加土壤有机碳库的特殊机制,本研究以宁夏引黄灌区为研究区域,选取了具有不同灌溉时间序列的5种类型的土壤,于2009年10月底进行实地调查与采样,研究引黄灌区5种类型土壤在不同灌溉耕作时间序列下土壤有机碳含量及密度的剖面分布及变化特征,并与无灌溉耕作的自然土壤进行对比估算其变化速率,分析了不同灌溉耕作时间下灌淤层土壤有机碳库的变化。本研究还收集了1980年全国第二次土壤普查的107个土壤剖面(0-100cm)和65个表层样(0~20cm),以及测土配方施肥的143个表层样的数据资料,对比分析了宁夏引黄灌区近30年来土壤有机碳库的空间变异特征,以及灌区土壤有机碳库变化的主要驱动因素。主要研究结果如下:
     1.灌溉耕作引起的土壤有机碳含量的变化因土壤类型的不同而存在差异;在相同的灌溉耕作时间下,5种类型土壤的有机碳密度大小顺序为:灌淤土>潮土>新积土>风沙土>淡灰钙土;与同类型未灌溉耕作的土壤比较,灌溉耕作影响下各类型土壤的有机碳密度均有不同程度的增加,相同的灌溉耕作时间下土壤有机碳密度增幅排列次序为:风沙土>潮土>灌淤土>淡灰钙土>新积土。宁夏引黄灌区土壤的固碳效应因土壤类型的不同存在明显差异。
     2.不同灌溉时间序列下,土壤有机碳含量及密度差异性显著(P<0.05);灌溉耕作时间越长,表层土壤有机碳含量及密度增加越明显,受其影响的土层也越深,土壤剖面(0~100cm)有机碳密度增加越多。引黄灌溉是影响宁夏灌区土壤有机碳的重要因素,对增加土壤有机碳密度作用突出。
     3.宁夏引黄灌区土壤有机碳库为24.13Tg,其中82.8%的土壤有机碳库储存于灌淤层中,与未受灌溉耕作影响的对照自然土壤相比,上壤有机碳库增加约16.83Tg,灌淤层土壤有机碳库增加占总增加量的87.8%;表层(0~20cm)土壤有机碳含量的增加量和土壤有机碳密度(0~100cm)的增加量均与灌溉耕作时间显著相关;灌淤层土壤有机碳密度的增加量与灌溉耕作时间极显著相关(P<0.01)。说明长期引用高含沙河水灌溉耕作是促进引黄灌区土壤尤其是灌淤层土壤有机碳库增加的最主要原因,灌淤土在降低大气中二氧化碳含量和缓解气候变化中发挥着重要作用。
     4.自1980年至2009年,宁夏引黄灌区表层(0~20cm)土壤有机碳密度由1.63kg·m-2增至2.19kg·m-2,平均年增幅分别为1.2%,增加显著(P<0.01);剖面(0~100cm)土壤有机碳密度平均由5.77kg·m-2增至6.05kg·m-2,平均年增幅为0.16%,增加不显著;灌区土壤有机碳含量和密度与灌溉时间之间有较强的相关性(P<0.01),灌溉耕作时间越长,土壤有机碳含量和密度越高:宁夏灌区土壤有机碳密度平均提高速率为0.056kg C ha-1a-1。
     5灌区土壤碳库组分中,慢性有机碳占的比例最大,其次是惰性有机碳,活性有机碳所占的比例不般不超过10%。灌区土壤有机碳库较稳定。
     6土壤类型是影响灌区土壤有机碳库大小的主导性因素,单位面积化肥施用量、单位面积作物产量及作物种类对灌区土壤有机碳的影响也越显重要,而灌溉耕作对宁夏引黄灌区土壤有机碳密度变化作用最突出。
Soil organic carbon stocks is the biggest of terrestrial ecosystem. It plays an important role in mediating global climate change caused by increased greenhouse gas just like CO2, et al. Meanwhile, the stocks is in a case of dynamics because it affected by natural factors or human activities. Among the factors which have effects on soil organic carbon pool changes, irrigation is considered to be one of the important measures that safeguard agriculture normal production and improve soil organic carbon pool. In the northwest region of China, irrigated agricultural has a long history, but also due to flow through the region of the river often contain large amounts of sediment, and to exert a strong influence on characters of irrigated farmland soils. Because the river sediment in the fields of continuous deposition, plus cultivated in farming land has formed an Anthrosols soil:Irrigated-silted soils, with some certain thickness of silted soil layer. Irrigated-silted soils was the most concentrated distribution, thicker and with obvious irrigation time series, in Ningxia Irrigation Zone, China.To reveal the long-term effect on soil organic carbon change and concentration with irrigation by Yellow River water, and the special mechanism of irrigation with sediment laden river water to increase soil organic carbon pool, the Ningxia Irrigation Zone was selected as a study area for the present study. Totally48sampling profiles were studied under different irrigation time series for5types of soils, in2009. Distributing5types of soil in different irrigation time sequence, determined soil organic carbon content and density in profile distribution and change characteristic, and with no irrigation farming of natural soil as control soil compared to estimate the rate of soil organic carbon sequestrated, analysis of different irrigation farming time that irrigation silted layer's soil organic carbon storage change. This study also collected in1980Second National Soil Census in107soil profiles (0-100cm) and65surface samples (0-20cm), as well as the formula fertilization by soil testing143surface samples data, through the comparative analysis of the irrigation area of Yellow River in recent30years, in Ningxia, to reveal the variation characteristics of soil organic carbon change in profile deepth and the main driving factor of the irrigated area. The main conclusions as following:
     (1) Irrigation and cultivation are the important driving forces of variation of soil organic carbon density (SOCD). Results show that the effect of irrigation and cultivation on carbon sequestration varied with the soil. The same in irrigation and cultivation duration, the five types of soils followed a decreasing order of Irrigated-silted soils> Tidal soils>Recent deposited soils> Aeolian sandy soil> Sierozem soil in SOCD. Irrigation and cultivation increased SOCD to a varying degree in these soils, which followed Aeolian sandy soil> Recent deposited soils>Irrigated-silted soils> Sierozem soil> Tidal soil. The differences among the soils in effect of irrigation and cultivation on carbon sequestration are significant in the Ningxia Irrigation Zone.
     (2) The results showed that the differences of SOC content and density were significant (P<0.05) under different durations of irrigation and soil types. The longer duration of irrigation, the greater SOC content and density were found in surface layer. The similar result was found in SOC density of100cm depth. And the deeper soil layers were affected by irrigation under longer durations of irrigation from the Yellow River.
     (3) The SOC stocks is24.13Tg in Ningxia Irrigation Zone. Compared with the non-irrigated and non-cultivated control soils with same thickness, soil organic carbon stock increased with16.83Tg. Account for87.8%of the increment (11.43Tg C) of soil organic carbon stocks stored in Irrigation silted soil layer. Significant correlations were found between the SOC content increment of the surface (0-20cm), SOC density of the profiles (0-100cm), and irrigation years (P<0.05), especially between the SOC density increment of the ISS layer and irrigation years (P<0.01). Soil organic carbon stocks was greatly influenced by Long-term irrigation with sediment laden Yellow River water, especially in the ISS layer. Irrigated-silted soils plays an important role in soil carbon sequestration in Ningxia Irrigated Zone, China.
     (4) Soil organic carbon density in surface layer increased from1.63kg·m-2to2.19kg-m-2, increased1.2%in average (P<0.01), from1980to2009. Soil organic carbon density in profile (0~100cm) increased from5.77kg-m-2to6.05kg·m-2, increased0.16%in average in year (P<0.05). Soil organic carbon content and density have strong relationship with durations of irrigation. The rate of SOC increased by0.056kg C m-2·a-1, and the increment of soil organic carbon density of Irrigated-silted soils is greater than the other four types of soil in Ningxia Irrigation Zone.
     (5)Within the three carbon pool, the percentage of slow carbon pool is the biggest, followed by passive and active carbon pool. The percentages are lower than10%for the irrigated soils in Ningxia Irrigation Zone. This indicated that the soil organic carbon pool is relatively stable in Ningxia Irrigation Zone.
     (6) Soil types is an dominant factor to soil organic carbon stocks. The amount of chemical fertilizer per unit area, yield of crops per unit area and crops types are the more important factors to increase soil organic carbon content in the irrigated area. As an important factor that SOC density increased remarkably due to irrigation from the Yellow River. And the effect is the most prominent on soil organic carbon density change.
引文
[1]Aranda V., M.J. Ayora-Canada, A. Dominguez-Vidal, et al. Effect of soil type and management (organic vs. conventional) on soil organic matter quality in olive groves in a semi-arid environment in Sierra Magina Natural Park (S Spain). Geoderma,2011,164:54-63
    [2]Arrouays D., N. Saby, C.Walter, et al. Relationships between particle size distribution and organic carbon in French arable topsoils. Soil Use and Management,2006,22(1):48-51
    [3]Arrouays D., I. Vion, and J.L. Kicin, Spatial-Analysis and Modeling of Topsoil Carbon Storage in Temperate Forest Hunic Loamy Soils of France. Soil Science, 1995,159(3):191-198
    [4]Arshad M.A., Y.K. Soon, J.A. Ripmeester. Quality of soil organic matter and C storage as influenced by cropping systems in northwestern Alberta, Canada. Nutr Cycl Agroecosyst,2011,89:71-79
    [5]Bandyopadhyay P.K., Subita Saha, P.K. Mani, et al. Effect of organic inputs on aggregate associated organic carbon concentration under long-term rice-wheat cropping system. Geoderma,2010,154:379-386
    [6]Banger K., S.S. Kukal, G. Toor, et al. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics. Plant Soil,2009,318:27-35
    [7]Barringer J.R.F., L.R. Lilburne. Developing fundamental data layers to support environm-ental modeling in New Zealand.4th International Conference on Integrating GIS and Environmental Modeling, Banff, Alberta, Canada,1-9
    [8]Batjes N.H., Organic matter and carbon dioxide. In:A Review of Soil Factors and Processes that Control Fluxes of Heat, Moisture and Greenhouse Gases, pp. 1992,97-148 (eds N.H. Batjes & E.M. Bridges). Technical Paper 23, International Soil Reference and Information Centre, Wageningen
    [9]Batjes N.H., Total carbon and nitrogen in the soils of the world. European Journal of Soil Science,1996.47(2):151-163
    [10]Bationa A.& A. Buerkert. Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems,2001, 61:131-142
    [11]Beziat Pierre, Eric Ceschia, Genard Dediu. Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meterology,2009,149:1628-1645
    [12]Ranjan Bhattacharyya, Samaresh Kundu, Anil Kumar Srivastva, et al. Long term fertilization effects on soil organic carbon pools in a sandy loam soil of the Indian sub-Himalayas. Plant Soil,2011,341:109-124
    [13]Bolin B., R. Sukumar, Global perspective In:R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath, D.J. Verardo, D.J. Dokken. Land-use, Land-use Change, and Forestry, A special Report of the IPCC. Cambridge University, Cambridge, MA,2000,23-51
    [14]Amanda C. Burdt, John M. Galbraith and J.Patrick Megonigal. Using CO2 efflux rates to indicate below-ground growing seasons by land-use treatment. Wetlands Ecology and Management,2006,14:133-145
    [15]Burgess T. M., R.Webster. Optimal interpolation and isarithmic mapping of soil properties, I The semi-variogram and punctual kriging. Journal of Soil Science, 1980,31 (2):315-331
    [16]Cai Z.C., S.W. Qin, Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Hui-Hai Plain of Chian. Goderma,2006,136:708-715
    [17]Campbell J.B. Spatial variation of sand content and pH within a single contiguous delineation of two soil mapping units. Soil Science Society of Americal Journal,1978,42(3):460-464
    [18]F.J. Caniego, R. Espejo, M.A. Martin, et al. Multifractal scaling of soil spatial variability. Ecological Modeling.2005,182:291-303
    [19]Caraine M. Joseph & Theodore M. Gelderman. Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biology & Biochemistry,2011,43:455-457
    [20]Chapin F.S. Responses of arctic tunda to experimental and observed changes in climate. Ecology,1995,76:694-711
    [21]Chen Zuengsang, Changfu Hsieh, Feeiyu Jiang, et al. Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Fcology,1997,132:229-241
    [22]Christiane Kramer, Gerd Gleixner. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biology & Biochemistry,2008,40:425-433
    [23]Chung H., K.J.Ngo, A. Plante, et al. Evidence for carbon saturation in a highly structured and organic-matter-rich soil. Soil Science Society of America Journal, 2009,74(1):130-138
    [24]Collins F. C., P.V. Bolstad. A comparison of spatial interpolation techniques in temperature estimation. Third international conference/workshop on integrating GIS and environmental modeling. http://www.ncgia.ucsb.edu/conf/SANTA FE_CD-ROM/sf-papers/Collins-fred/collins.html
    [25]Dai Fuqiang, Zhengan Su, Shuzhen Liu, et al. Temporal variation of soil organic matter content and potential determinants in Tibet, China. Catena,2011, 85:288-294
    [26]Davidson S. Cultivation and soil organic matter. Rural Research,1986, 131:13-18
    [27]Debasish Saha, S.S. Kukal, S. Sharma. Landuse impacts on SOC fractions and aggregate stability in typic ustochrpts of Northwest India. Plant Soil,2011, 339:457-470
    [28]Delibacak S., B.Okur, A.R.Ongun. Effects of treated sewage sludge levels on temporal variations of some soil properties of a Typic Xerolfluvent soil in Menemen Plain, Western Anatolia, Turkey. Environ Monit Assess,2009, 148:85-95
    [29]Denef K., C.E. Stewart, J. Brenner, et al. Does long-term center-pivot irrigation increase soil carbon stocks in semi-arid agro-ecosystems. Geoderma,2008, 145:121-129.
    [30]Deng W.G., Wu W D, Wang H L, et al. Temporal dynamics of iron-rich, tropical soil organic carbon pools after land-use change from forest to sugarcane. Soils Sediments,2009, (9):112-120
    [31]Dong Wenxu, Chunsheng Hu, Suying Chen, et al. Tillage and residue management effects on soil carbon and CO2 emission in a wheat-corn double-cropping system. Nutr Cycl Agroecosyst,2009,83:27-37
    [32]Eaton J.M., N.M. McGoff, K.A. Byrne, et al. Land cover change and soil organic carbon stocks in the Republic of Ireland 1851-2000. Climatic Change, 2008,91:317-334
    [33]Emery X. Ordinary multigaussian kriging for mapping conditional probabilities of soil properties. Geoderma,2006,132:75-88
    [34]Entry J. A., J J. Fuhrmann, R.E. Sojka, et al. Influence of irrigated agriculture on soil carbon and microbial community structure. Environmental Management, 2003,33:363-373
    [35]Erik Gruneberg, Ingo Schoning, Elisabeth K.V. Kalko, et al. Regional organic carbon stock variability:A comparison between depth increments and soil horizons. Geoderma,2011,155:426-433
    [36]Esteban G., Jobbagy & Robert B. Jackson. The vertical distribution of soil orgnaic Carbon and its relation to climate and vegetation. Belowground Processes and Global Change, Ecological Applications,2000,10 (2):423-436
    [37]Freibauer A.M., D.A. Rounsevell, P. Smith, et al. Carbon sequestration in the agricultural soils of Europe. Geoderma,2004,122(1):1-23
    [38]Gami S.K., J.G. Lauren, and J.M. Duxbury. Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma,2009,153:304-311
    [39]Gaston L.A., M.A. Locke, R.M. Zablotowicz, et al. Spatial variability of soil properties and weed populations in the Mississipi delta. Soil Science Society of American,2001,65(2):449-459
    [40]Giardina C. P., Ryan M. G, Hubbard R.M. et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Science Society of America Journal,2001,65(4):1272-1279
    [41]Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of soils,1998,27:315-334
    [42]van Groenigen Kees Jan, Astley Hastings, Dermot Forristal, et al. Soil C storage as affected by tillage and straw management:An assessment using field measurements and model predictions. Agricultue, Ecosystem and Environment, 2011,140:218-225
    [43]Gwenzi W., Gotosa J. Chakanetsa S. et al. Effects of tillage systems on soil organic carbon dynamics, structural stability and crop yields in irrigated wheat (Triticum aestivum L.)-cotton (Gossypium Hirsutum L.) rotation in semi-arid Zimbabwe. Nutr Cycle Agroecosyst,2009,83:211-221
    [44]Gwenzi W., R. munondo. Long-term impacts of pasture irrigation with treated sewage effuent on nutrient status of a sandy soil in Zimbabwe. Nutr Cycl Agroecosyst,2008,82:197-207
    [45]Hakim Boulal, Helena Gomez-Macpherson. Dynamics of soil organic carbon in an innovative irrigated permannet bed system on sloping land in southern Spain. Agriculture, Ecosystems and Environment,2010, (139):284-292
    [46]Hao X., C.Chang, C.W. Lindwall. Tillage and crop sequence effects on organic carbon and total nitrogen content in an irrigated Alberta soil. Soil & Tillage Research,2001,62:167-169
    [47]Hao Y., R. Lal, L.B. Owens, et al. Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds. Soil and Tillage Research,2002,68:133-142
    [48]Heenan D.P., K.Y. Chan, P.G. Knight. Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic Luvisol. Soil and Tillage Research,2004,76:59-68
    [49]Hengl T., G.B.M. Heuvelink, A.A. Stein. Generic framework for spatial predict-tion of soil variables bsed on regression-kringing. Geoderma,2004,120:75-93
    [50]Huang B., W.X. Sun, Y.C. Zhao, et al. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma,2007,139(3-4):336-345
    [51]Huang Shan, Yan-Ni Sun, Wen-Yi Rui, et al. Long-term effect of no-tillage on soil organic carbon fractions in a continuous maize cropping system of northeast China. Pedospthere,2010,20(3):285-292
    [52]Hungate B.A. The fate of carbon in grasslands under carbon dioxide enrichment. Nature,1997,388:576-579
    [53]Jagadamma Sindhu, Rattan Lal, Robert G Hoeft, et al. Nitrogen fertilization and cropping systems effects on soili organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil and Tillage Research,2007,95:348-356
    [54]James A., J.J. Entry, R.E.Fuhrmann, et al. Influence of irrigated agriculture on soil carbon and microbial community structure. Env. Mgt.2003,33:363-373
    [55]Jenkinson D.S., A Adams, D.E., Wild, A. Model estimates of CO2 emissions from soil in response Orchard, V.A. and Cook, F.J. Relationship between soil respiration and soil moisture. Soil Biology & Biochemistry,1983,15:447-453
    [56]Esteban G. Jobbagy, Robert B. Jackon. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications,2000, 10(2):423-436
    [57]Katerer Thomas, Martin Anders Bolinder, Olof Andren, et al. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems and Environment,2011,141:184-192
    [58]Kelliher F.M., L.M. Condron, F.J. Cook, et al. Sixty years of seasonal irrigation affects carbon storage in soils beneath pasture grazed by sheep. Agriculture, Ecosystems and Environment,2012,148:29-36
    [59]Kravchenko A.N.& G.P. Robertson. Can topographical and yield data substantially improve total soil carbon mapping by regression kriging. Agronomy Journal,99:12-17
    [60]Kyungsoo Yoo, Ronald Amundson, Arjun M. Heimsath, et al. Spatial patterns of soil organic carbon on hillslopes:Integrating geomorphic processes and the biological C cycle. Geoderma,2006,130:47-65
    [61]Lal R. No-tillage effects on soil properties under different crops in western Nigeri. Proceedings Soil Science of America,1976,40:762-768
    [62]Lal R. Carbon sequestration in dryland ecosystems. Environmental Management,2004,33(4),528-544
    [63]Leifel Jens, Seraina Bassin, Jurg Fuhrer, et al. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment,2005,105:255-266
    [64]Li Binyong, Haiping Tang, Liheng Wu. et al. Relaionships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia. Environ Earth Sci,2011, DOI 10.1007/s 12665-011-1082-0
    [65]Liu J.G, D. Wiberg, A.J.B. Zehnder, et al. Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrig Sci, 2007,26:21-33
    [66]Liu Wenjie, Yongzhong Su, Rong Yang, et al. Temporal and spatial variability of soil organic matter and total nitrogen in a typical oasis cropland ecosystem in arid region of Northwest China. Environ Earth Sci,2011, DOI 10.1007/s2665-011-1053-5
    [67]Liu D.W., Z.M Wang, B. Zhang, et al, Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agriculture, Ecosystems and Environment,2006,103:73-81
    [68]Liu Z.P., M.A. Shao, Y.Q. Wang. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric. Ecosyst. Environ.2011, DOI 10.1016/j.agee.2011.05.002
    [69]Marschner B., S.Brodowski, A. Dreves, et al. How relevant is recalcitrance for the stabilization oforganic matter in soils? Journal of Plant Nutrition and Soil Science,2008,171:91-110
    [70]Heiman Martin & Markus Reichstein. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature,2008,451:289-292
    [71]Masto R.E., P.K. Chhonkar, D. Singh, et al. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment. Envion Geol, 2009,56:1237-1243
    [72]Mishra U., R. Lal, B. Slater, et al. Predicting soil orgnaic carbon stock using profile depth distribution fuctions and Ordinary Kriging. Soil Science Society of America Journal,2009,73(2):614-621
    [73]Mishra Umakant, David A.N. Ussiri, R. Lal. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA. Soil & Tillage Research,2010,107:88-96
    [74]Mireia Llorente, Bruno Glaser, M.Belen Turrion. Storage of organic carbon and black carbon in density fractions of calcareous soils under different land uses. Geoderma,2010,159:31-38
    [75]Missfeldt F., H. Erik. The potential contribution of sinks to meeting Kyoto Protocol commitment. Environmental Science and Policy,2001,42:269-292.
    [76]Mohammadi J., M.H. Motaghian. Spatial prediction of soil aggregate stability and aggregate-associated organic carbon content at the catchment scale using Geostatistical Techniques. Pedosphere,2011,21 (3):389-399
    [77]Morgan J.A., D.R. Lecain, A.R. Mosier. Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado short-grass steppe. Global Change Biology,2001,7:451-466
    [78]Nichols J.D. Relation of organic carbon to soil properties and climate in Southern Great Plains. Soil Science Society of America Journal,1984, 48:1382-1384
    [79]Nyssen Jan, Habtamu Temesgen, Mulugeta Lemenih, et al. Spatial and temporal variation of soil organic carbon stocks in a lake retreat area of the Ethiopian Rift Valley. Geoderma,2008,146:261-268
    [80]Oyedele D.J., P. Schjonning, E. Sibbesen. Aggregation and organic matter fractions of three Nigerian soils affected by soil disturbance and incorporation of plant material. Soil & Tillage Research,1999,52(1):125-126
    [81]Parton W.J., D.S. Schmiel, C.V. Cole, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands soils. Soil Science Society of America Journal,1987,51(5):1173-1179
    [82]Paul E. A., S.J. Morris and S. Bohm. The determination of soil C pool sizes and turnover rates:Biophysical fractionation and tracers. Assessment methods for soil carbon, Issue:14. Lewis Publishers,2001:193-206
    [83]Piao S.L., J.Y. Fang, P. Ciais, et al. The carbon balance of terrestrial ecosystems in China. Nature,2009,458:1009-1014
    [84]Puttaso A., P.Vityakon, P.Saenjan, et al. Relationship between residue quality, decomposition patterns, and soil organic matter accumulation in a tropical sandy soil after 13 years. Nutr Cycl Agroecosyst,2011,89:159-174
    [85]Paustian K., W.J. Parton and J. Persson. Modeling soil organic matter in organic matter in organic-amended and nitrogen-fertilized long-term plots. Soil Science Society of America Journal,1992,56:476-488
    [86]Ebhin Masto Reginald, Pramod K. Chhonkar, Dhyan Singh, et al. Changes in soil quality indicators under long-tern sewage irrigation in a sub-tropical environment. Envion Geol,2009,56:1237-1243
    [87]Robinson T.P., G. Metternicht. Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture,2006,50:97-108
    [88]Rochester Iran J. Sequestering carbon in minimum-tilled clay soils used for irrigated cotton and grain production. Soil & Tillage Research,2011,112:1-7
    [89]Saha Debasish, S.S. Kukal, S. Sharma. Landuse impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant Soil,2011, 339:457-470
    [90]Saha D., Kukal S S, Sharma S. Land use impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant Soil,2011,339: 457-470
    [91]Schinel D.S., B.H. Braswell, E.A. Holland. Climate edaphic and biotic controls over carbon and turnover of carbon in soils. Global Biogeochemical Cycles, 1994,8:279-293
    [92]Schulp C.J.E., P.H.Verburg. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agriculture, Ecosystem and Environment,2009,133:86-97
    [93]Shi X.Z., D.S. Yu, E.D. Warner, W.X. Sun, G.W. Petersen, Z.T. Gong, and H. Lin. Cross-reference system for translating between Genetic Soil Classification of China and Soil Taxonomy. Soil Sci. So. Am. J.2006,70(1):78-83
    [94]Shi X.Z., Yu D.S, Yang G.X., et al. Cross-reference benchmarks for translating the Genetic Soil Classification of China into the Chinese Soil Taxonomy. Pedosphere,2006,16 (2):147-153
    [95]Shrestha B.M., B.k. Sitaula, B.R. Singh, et al. Soil organic carbon stocks in soil aggregates under different land use systems in Nepal. Nutrient Cycling in Agroecosystems,2004,70:201-213
    [96]Shrestha Gyami, Peter D. Stahl. Carbon accumulation and storage in semi-arid sagebrush steppe effects of long-term grazing exclusion. Agriculture, ecosystems and Environment,2008,125:173-181
    [97]Simfukwe P., P.W. Hill, B.A. Emmett. Soil classification provides a poor indicator of carbon turnover rates in soil. Soil Biology & Biochemistry, DOI 10.1016/j.soilbio.2011.04.014
    [98]Spohn Marie, Giani Luise. Impacts of Land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biology & Biochemistry,2011,43:1081-1088
    [99]Maia Stoecio M.F., Stephen M. Ogle, Carlos C. Cerri, et al. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil & Tillage Research,2010, 106:177-184
    [100]Su Y.Z., Y.L. Li, and H.L. Zhao. Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, Inner Mongolia, northern China. Biogeochemistry,2006,79:297-314
    [101]Sysweerda S.P., A.T.Corbin, D.L. Mokma,,et al. A.gricultural management and soil carbon storage in surface vs. deep layers. Soil Science Society of America Journal,2010,75(1):92-101
    [102]Solomon S., et al. (eds) Climate change 2007:The Physical Science Basis. Contribution of Working Group 1 to the fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,2007
    [103]Tenberge H.F., M. L.Stroosnijder, A.P. Burrough. Spatial variability of physical soil properties influencing the tempreture of the soil surface. Agricultural Water Management,1983,6:213-226
    [104]Tesi T., L. Langone, M.A. Goni, et al. Early diagenesis of recently deposited organic matter:A 9-yr time-series study of a flood deposit. Geochimica et Cosmochimica Acta,2012,83:19-36
    [105]Torben B.T., B. Elberling, B. Fog, et al. Temporal and Spatial trends in soil organic carbon stocks following maize cultivation in semi-arid Tanzania, East Africa. Nutr Cycle Agroecosyst,2007,79:291-302
    [106]Triantafilis J., I.Odeh, A. McBratney. Five geostatistical models to predict soil salinity from electromagnetic introduction data across irrigated cotton. Soil Science Society of America Journal,2001,65:869-878
    [107]Umakant Mishra, David A.N.Ussiri, Rattan Lal. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA. Soil & Tillage Research,2010,107:88-96
    [108]Varvel G.E., W.W. Wilhelm. No-tillage increases soil profile carbon and nitrogen under long-term rainfed cropping systems. Soil & Tillage Research, 2011,114:28-36
    [109]Vauclin M., S.R. Vieira, and G. Vachaud. The use of co-kriging with limiting field soil observations. Soil Science Society of America Journal,1983, (47):175-184
    [110]Vieira S.R., C. Escribano Villa, E. Vidal Vazquez, et al. Geostatistical analysis of soil fertility data sampled in two consecutive years in Castilla, Spain. Precision agriculture 07. Papers presented at the 6th European Conference on Precision Agriculture, Skialthos, Greece,2007,3-6
    [111]Vieira S. R., D. R.Nielsen, J. W. Biggar. Spatial variability of field:measured infiltration rate. Soil Science Society of America Journal,1981,45:1040-1048
    [112]Virto Inigo, Pierre Barre, Aurelien Burlot, et al. Carbon imput differences as the main factor expaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry, DOI 10.1007/s10533-011-9600-4
    [113]Wang D.D., X.Z. Shi, X.X. Lu, et al. Response of soil organic carbon spatial variability to the expansion of scale in the uplands of Northeast China. Geodema,2010,154:302-310
    [114]Wang D.D., X.Z. Shi, H.J. Wang, et al. Scale effect of Climate and Soil Texture on Soil organic carbon in the Uplands of Northeast China. Pedosphere,2010, 20(4):525-535
    [115]Wang Y.Q., X.C. Zhang, J.L. Zhang, et al. Spatial variability of soil organic carbon in a watershed on the Loess Plateau. Pedosphere,2009,19 (4):486-495
    [116]Wang Y.G, Y. Li, X.H. Ye, et al. Profile storage of organic/inorganic carbon in soil:From forest to desert. Science of the Total Environment,2010, 408:1925-1931
    [117]Wang Z.M., B. Zhang, K.S. Song, et.al. Spatial variability of soil organic carbonunder maize monoculture in the Song-Nen Plain, Northeast China. Pedosphere,2010,20(1):80-89
    [118]Webster R., M.A. Oliver. Optimal interpolation and isarithmic mapping of soil properties, VI Disjunctive kriging mapping the conditional probability. Journal of Soil Science,1989,40:497-512
    [119]Webster R., T.M. Burgess, Optimal interpolation and isarithmic mapping of soil properties, III Changing drift and universal kriging. Journal of Soil Science, 1980,31:505-524
    [120]Weerakoon W.M., D.M. Olszyk, D.N. Moss. Effects of nitrogen nutrition on responses of rice seedings to carbon dioxide. Agriculture, Ecosystems and Environment,1999,72:1-8
    [121]Jeffery R. Williams, Richard G. Nelson, Mark M. Glassen, et al. Carbon sequestration in soil with consideration of CO2 emissions from production inputs:an economic analysis. Environmental Management,2004,33:264-273
    [122]Xi X.H., Zhongfang Yang, Yunjin Cui, et al. A study of soil organic carbon distribution and storage in the Northeast Plain of China. Geoscience frontiers, 2011,2(2):115-123
    [123]Xia X.Q., Z.F. Yang, Y. Liao, et al. Temporal variation of soil carbon stock and its controlling factors over the last two decades on the southern Song-nen Plain, Heilongjiang Province. Geoscience Frontiers,2010,1:125-132
    [124]Xu X., Y. Zhou, H.H. Ruan, et al. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biology & Biochemistry.2010,42:1811-1815
    [125]Yu D.S., X.Z. Shi, H.J. Wang, et al. National scale analysis of soil organic carbon storage in China based on Chinese Soil Taxonomy. Pedosphere,2007, 17(1):11-18
    [126]Yang Y.S., J.F. Guo, G.S. Chen, et al. Effect of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant Soil, 2009,323:153-162
    [127]Yimer Fantaw, Stig Ledin, Abdu Abdelkadir. Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. Forest Ecology and Management,2006,232:90-99
    [128]Zhang Chi, Hanqin Tian, Guangsheng Chen, et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution,2012,164:89-101
    [129]Zhang H.B., Y.M. Luo, M.H. Wang, et al. Soil organic carbon storage and changes with reduction in agricultural activities in HongKong. Geoderma,2007, 139:412-419
    [130]Zhang M.K.& Z.L He. Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma,2004,118:167-179
    [131]Zhang W.& H. Zhang. Distribution characteristics of soil organic carbon of Alpine Meadow in the Eastern Qinghai-Tibet Plateau. Wuhan University Journal of Natural Sciences,2009,14(3):274-280
    [132]Zhang X.Y., Y.Y. Sui, X.D. Zhang, et al. Spatial variability of nutrient properties in black soil of Northeast Chnia. Pedosphere,2007,17(1):19-29
    [133]Zhang Y, Y.C. Zhao, X.Z. Shi, et al. Variation of soil organic carbon estimates in mountain regions:A case study from Southwest China. Geoderma,2008, 146:449-456
    [134]Zinn Y.L., R.Lal, and D.V.S. Resck. Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma,2005,127:168-173
    [135]安芷生.黄土黄河黄河文化.黄河水利出版社.1998:158
    [136]柴仲平,梁智,王雪梅,等.不同灌溉方式对棉田土壤物理性质的影响.新疆农业大学学报,2008,31(5):57-59
    [137]陈桂秋,黄道友,苏以荣,等.红壤丘陵区土地不同利用方式对土壤有机质的影响.农业环境科学学报,2005,24(2):256-260
    [138]邓祥征,姜群鸥,林英志,等.中国农田土壤有机碳贮量变化预测.地理研究,2010,29(1):93-101
    [139]龚元石,廖超子,李保国.农田土壤水分空间变异及分形特征比较.土壤学报,1998,35(1):10-15
    [140]郭秉晨,马玉兰,冯静,等.宁夏引黄灌区耕地土壤有机质及养分质量分数变化趋势.农业科学研究,2006,27(3):1-5
    [141]郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征.地理学报,2000,55(5):555-566
    [142]韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力.农村生态环境,2005,21(4):6-11
    [143]何婷婷,华路,张振贤,等.影响农田土壤有机碳释放的因子及固碳措施.首都师范大学学报,2007,28(1):66-72
    [144]胡乔木.中国大百科全书.中国大百科全书出版社,1992,(水利):107
    [145]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响.应用生态学报,2002,13(6):709-714
    [146]黄智刚,李保国,胡克林.丘陵红壤蔗区土壤有机质的时空变异特征.农业工程学报,2006,22(11):58-63
    [147]李长生.土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究.第四纪研究,2000,20(4):345-350
    [148]李庆逵.中国水稻土.北京:科学出版社,1992,145-161
    [149]李雪转,樊贵盛.土壤有机质含量对土壤入渗能力及参数影响的试验研究.农业工程学报,2006,22(3):188-190
    [150]李忠佩,唐永良,石华,等.不同轮作措施下瘠薄红壤中碳氮积累特征.中国农业科学,2002,35(10)1236-1242
    [151]林心雄.中国土壤有机质状况及其管理.见:沈善敏主编,中国土壤肥力.北京:中国农业出版社,1998:112-159
    [152]李子忠,龚元石.农田土壤水分和电导率空间变异及确定其采样数方法。中国农业大学学报,2000,33(5):59-66
    [153]刘付程,史学正,于东升.太湖流域典型地区土壤酸度的空间变异特征研究.安微师范大学学报(自然科学版),2006,29(5):480-483
    [154]鲁如坤.土壤农业化学分析方法.中国农业科技出版社,2004
    [155]毛伟兵,傅建国,孙玉霞,等.引黄泥沙对小开河灌区土壤理化性影响.人民黄河,2009,31(8):66-68
    [156]孟静娟,史学军,潘剑君,等.农业利用方式对土壤有机碳库大小及周转的影响研究.水土保持学报,2009,23(6):144-148
    [157]宁夏农业勘查设计院.宁夏土壤.银川:宁夏人民出版社,1990
    [158]宁夏水利厅.宁夏水利五十年.银川:宁夏人民出版社,2003
    [159]潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4),609-618
    [160]潘剑君,郝珖存,孟静娟.中国土壤有机碳分解特征研究初报.土壤,2011, 43(4):505-514
    [161]秦静,孔祥斌,姜广辉,等.北京典型边缘区25年来土壤有机质的时空变异特征.农业工程学报,2008,24(3):124-130
    [162]邵月红,潘剑君,李海鹰.农田土壤有机碳的分解动态变化研究.池州师专学报,2005,19(5):6-8
    [163]汤国安,杨听.ArcGIS地理信息系统空间分析实验教程.科学出版社,2006,263-367
    [164]唐光木,徐万里,盛建东,等.新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化.土壤学报,2010,47(2):279-285
    [165]王吉智.灌淤土——中国干旱与半干旱地区的人为土壤.干旱区资源与环境,1993,7(3,4):233-237
    [166]王吉智,马玉兰,金国柱.中国灌淤土.北京,科学出版社,1996
    [167]王娇,张玉龙,张玉玲,等.不同灌溉方式对有机肥碳矿化及土壤活性有机质含量影响.沈阳农业大学学报,2010,41(1):37-41
    [168]王绍强,朱松丽.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):528-533
    [169]于成广,杨晓波,刘明化,等.辽河流域土壤碳密度分布特征和碳储量研究.地质与资源,2011,20(4):273-277
    [170]邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究.水土保持学报,2005,19(3):230-231
    [171]史学军,陈锦盈,潘剑君,等.几种不同类型土壤有机碳库容大小及周转研究.水土保持学报,2008,22(6):123-127
    [172]孙维侠,史学正,于东升.土壤有机碳的剖面分布特征及其密度的估算方法研究[J].土壤,2003,35(3):236-241
    [173]吴强国.黄河与宁夏水利.银川:宁夏人民出版社,2007-2008
    [174]徐吉炎.土壤调查数据地统计的最佳估算研究:彰武县表层土全氮量的半方差图和块状Kriging估值.土壤学报,1983,20(4):419-430
    [175]许信旺,潘根兴,汪艳林,等.中国农田耕层土壤有机碳变化特征及控制因素。地理研究,2009,28(3):601-612
    [176]于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究.应用生态学报,2005,16(12):2279-2283
    [177]张保华,张金萍,汤庆新,等.引黄灌溉对耕层土壤肥力的影响研究.人民黄河,2008,30(10):67-68,76
    [178]张凤荣.土壤地理学.北京:中国农业出版社,2001,86-121
    [179]赵加瑞,王益权,刘军,等.灌溉水质与土壤有机质累积的关系.生态环境,2008,17(3):1240-1243
    [180]赵其国,史学正,等.土壤资源学概论.科学出版社,2007
    [181]中国大百科全书.中国大百科全书出版社,1992,(水利):107
    [182]周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报,1995,19(3):193-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700