用户名: 密码: 验证码:
土壤养分预测方法的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立高效的土壤养分预测方法,提高土壤养分预测精度得到了越来越普遍的关注。随着信息技术的发展,尤其是地统计学、遥感、专家知识等新的方法和技术手段的应用,为土壤养分预测提供了新的数据与技术支持,大大提高了土壤养分预测的效率和精度。但是,土壤养分的空间变异性特征是尺度的函数,不同养分预测方法在不同尺度的研究中可能并不是普遍适用的;不同的研究区也往往具有不同的地理环境,特别是在西南丘陵山区,由于受到新构造运动的影响,地形割裂,多形成孤立的山丘和岗地,耕地破碎、分散,其地理环境相对复杂,新兴的土壤养分预测方法能否在地理环境相对复杂的较小空间范围内取得令人满意的精度是值得进一步探讨的。同时,对于研究方法的选择,在不同方法的比较的基础上确定最适合本地区的研究方法,往往更容易取得较可靠的预测结果。但目前的研究中,不同预测方法的比较多数集中于不同空间插值技术之间的比较,遥感和专家知识用于土壤养分预测多集中于大中尺度的研究,对于这些方法在小尺度研究上的适用性仍需进一步探索。
     本文在地理环境相对复杂的三峡库区王家沟小流域采集了111个土壤样本,在对土壤样本的理化性质和实验室反射光谱数据分析和测量的基础上,对空间插值、遥感技术、专家知识等土壤养分预测方法在较小尺度范围内的应用进行了探讨,并对不同方法进行了比较研究。主要研究结果包括:
     (1)基于空间插值的土壤养分预测。空间插值技术的不同以及模型内部参数的改变,都是影响土壤养分预测精度的重要因素。其中,逆距离加权和克里克方法对于土壤全氮、全磷、碱解氮、有效磷的预测都具有相近的均方根误差,但与逆距离加权插值方法相比,克里克插值在土壤全氮、全磷、碱解氮、有效磷的预测中都取得了较高的精度。在逆距离加权插值方法的应用中,土壤全氮、全磷、碱解氮、有效磷的最好插值结果并不对应相同指数和邻域数目,且邻域数目与指数等插值参数与数据的变异系数、偏度系数之间并不具有显著规律性。变异函数模型和邻域数目是决定克里克插值精度的重要因素。土壤全氮和全磷含量数据的最优变异函数模型是球形模型,碱解氮和有效磷含量数据的最优变异函数模型是指数模型。利用最优变异模型对土壤养分进行克里克插值发现,所有养分预测的最高精度出现的邻域并不相同,但过小的邻域往往不具有很高的插值精度。邻域数目与偏度系数和变异系数之间也未发现显著的规律。因此,在对养分进行空间插值之前,往往很难通过对土壤样本数据的统计分析来预先确定空间插值方法的内部参数。
     (2)基于高光谱遥感的土壤养分预测。由于受多种物质的综合影响,土壤的反射吸收特征可能并不明显。文中对土壤样本的反射光谱进行了去包络处理,将光谱曲线归一到一个一致的光谱背景,并在此基础上对光谱特征和特征波段进行选择,用偏最小二乘回归分析建立了紫色土和水稻土土壤养分的预测模型。其中,除了紫色土的土壤全磷和有效磷预测模型以外,其他模型得到的预测值与实测值值之间的相关系数都超过了0.5,而水稻土全氮含量的预测(?)度是最高的,其精度评价指标R达到了0.796。这说明,用高光谱方法预测养分含量具有一(?)的可行性。但通过不同类型土壤养分预测的交叉验证分析发现,紫色土和水稻土土壤预测模型的通用还具有一定的局限性,这可能是由于土壤类型的不同而造成。利用所获得的WorldView2和RapidEye卫星影像对将室内高光谱反演模型将多光谱卫星影像联合用于土壤养分制图的设想进行的验证发现,只有土壤全氮含量数据与RapidEye实验室模拟光谱在红波段的反射率表现出了较高的相关性,其相关系数为-0.53,土壤全磷含量数据与WorldView2和RapidEye的实验室模拟光谱的相关系数均低于0.4。但是,遥感影像上的实时光谱与土壤养分的相关系数的绝对值均低于0.3。因此,将实验室高光谱反演模型推广到多光谱影像,获得研究区的土壤养分图是十分困难的。
     (3)基于案例推理的土壤养分预测。从1m格网大小的DEM提取高程、坡度、沿等高线曲率、沿剖面曲率、地形湿度指数、坡位指数等环境要素数据,将这些数据和实测的土地利用类型数据作为环境因子,利用案例推理方法从土壤样本中获取土壤-环境关系知识,根据样本点土壤和案例点土壤之间环境组合的相似程度对土壤养分进行预测,进而表达土壤养分在空间上的详细变化。研究结果显示,林地、园地、水田和旱地土壤全氮、全磷、碱解氮含量的预测的平均相对误差都低于25%,而土壤有效磷含量的平均相对误差均高于80%。文中所用的基于案例推理的土壤养分预测方法的精度是与样本点的变异系数存在显著的相关关系,变异系数越小,土壤养分含量预测的精度越高。
     (4)土壤养分预测方法的比较分析。分析了采样方式、采样密度、采样数目发生变化时,基于空间插值、高光谱遥感、案例推理三种土壤养分预测方法精度变化,并对这些方法用于实现土壤养分从点到面,进行土壤养分制图的潜力和效果进行了评价。其中,上述三种方法得到的土壤有轰磷含量预测的总平均相对误差都超过了80%。且在多数情况下,案例推理方法都对土壤有效磷含量的预测取得了最好的精度,而空间插值方法的预测精度是最低。对于土壤全氮、全磷、碱解氮含量的预测,高光谱方法在不同的采样方式、采样密度和采样数目下都取得了最高的预测精度,空间插值方法的精度最低,案例推理方法的精度居中。由于数据获取的现状和方法自身的局限性,基于遥感的土壤养分预测方法实现土壤养分由点到面的转换相对较为困难,而空间插值方法和基于专家知识的土壤养分预测方法则比较容易。从空间详细度的比较可以看出,基于专家知识的土壤养分预测方法得到的土壤养分分布图具有更高的详细度,尤其是在没有采样点分布的区域,也具有较为细致的纹理,这个优点是空间插值方法比拟的。
     综上所述,文中通过基于空间插值、遥感、专家知识等方法在小尺度研究范围内的应用,为土壤养分预测方法在小尺度范围内的应用提供了新的案例支持;通过对复杂地理环境条件下土壤养分预测方法的比较,选择了具有较高预测精度、较好的制图潜力和制图效果的基于专家知识的方法作为本研究区最适宜的土壤养分预测方法,为更准确评价小尺度范围内土壤养分分布现状提供了合理的依据与技术支持。
Attention is paid to set up high-prediction method of soil nutrients, as well as improve prediction precision.With the development of information technology, especially the utilization of geo-statistics, remote sensing and expert knowledge in soil nutrients prediction, some new methods produced, which improve the efficiency and precision. However, the soil nutrients spatial variability characterized by scaling function, one method may not be suitable to various scales. Additionally, geographical condition is not always same in different areas, especially for south-western hilly and mountainous areas. Affected by new tectonic movement, topology there changed to many small tiny pieces, which makes dispersed farmland and complex environment. Doubtfully, the new prediction method can obtain a high prediction precision in small spatial scope with such dispersed pixels. As to choose a researching method, it is easier to find a better one after comparison. Generally, most reported comparisons are among different spatial interpolations, little attention was paid to new prediction method and technology such as comparison among spatial interpolation, remote sensing and expert knowledge.
     Taking Wangjiagou small watershed of Three Gorges Reservoir Area as researching zone with complex geophical environment,111samples were collected. Based on the soil physicochemical properties, reflection spectrum analysis and measurement, various methods of soil nutrients prediction were applied in such small spatial scope:spatial interpolation, remote sensing and expert knowledge, comparisons were done after that. Details are as follows:
     (1) Soil nutrients prediction using spatial interpolation methods. The accuracy of interpolation methods for soil nutrients prediction is influenced greatly by interpolation methods or interpolation parameters. Discussed impacts of inverse distance weighted (IDW), Kriging and interpolation parameters on prediction accuracy. Results show that kriging and IDW methods gave similar RMSE values for soil nutrients prediction. Kriging produced better results than IDW for interpolating soil TN, TP, AN, and AP. In all uses of IDW, the most accurate estimates were yielded by difficult powers and difficult neighbourhoods. We found no significant correlation between interpolation parameters used for IDW and variation coefficients, skewness. Fitted variograms for soil TN and TP are spherical models. AN and AP in the topsoil are best represented by the exponential model.Use best variogram models to do kriging interpolation, the highest precision has various neighborhoods, but small neighborhoods cannot get a high precision. There is no correlation between neighborhoods and variation coefficients, skewness.Therefore, before doing the interpolation, it is difficult to determine the interpolation parameters by statistical analysis.
     (2) Prediction based on high-spectum remote sensing. Soil reflection and absorption is not significant because of different physical influence. Firstly, removed continuum from the reflectance spectra of soil samples, made them into a same spectrum background, then chose the characteristic wave bands, and produced the prediction models of purple soil and paddy soil, with the method of partial least squares regressive analysis. Results show that except the TP, AP model of purple soil, the others'correlation coefficients between their predicted values and measured values are over0.5, but precision of TN in paddy soil is highest, with R reaches0.796. The above indicates, it is reasonable to use hyper-spectrum method.After cross-validation of soil samples from two soil-types, the prediction model shows some constrains in the two soil, which may because the different soil types. Since hyper-spectrum data is expensive, it is hard to use the method to do soil nutrients mapping. Using WorldView2and RapidEye satellite images and high-spectum based prediction models to map soil nutrients, after that we found absolute value of correlation coefficient between TN and red band of RapidEye simulated is0.53, that between TP and simulated all bands of RapidEye, WorldView2is lower than0.4. Absolute value correlation coefficient between real-time spectra and soil nutrients is lower0.3. So that, the method has some difficulty in real utilization.
     (3) Soil nutrients prediction with case-based reasoning. Extracted elevation, slope, plan curvature, profile curvature, topographic position index and topographic wetness index from DEM with1m grid size, soil type data measured land use types data as environment factors, using case-based reasoning to predict soil nutrients based on similarity between samples and cases. Results show that, the average relative errors of TN, TP, AN are lower than25%, whereas, AP is higher than80%. In method of case-based reasoning, prediction precision and coefficients of variation are correlated dramatically:a lower coefficient of variation brings about a higher prediction precision.
     (4) Comparisons among different prediction method. Since precision is influenced by sampling method, density and number. Methods of spatial interpolation, remote sensing and expert knowledge were evaluated. Results show that, the whole average relative errors of AP are more than80%, in most cases, case-based reasoning for AP prediction obtain the fine precision, but Kriging gets the lowest one. As to TN, TP, AN, hyper-spectrum prediction has a higher precision, which follows by case-based reasoning, Kriging has the lowest. Since hyper-spectrum images and multispectral images data in the same period was not collected, we no obtained soil nutrients maps by hyper-spectrum prediction models, however, the other two methods can easily to do the mapping. Case-based reasoning can get spatial distributionof soil nutrients with more details, spatially in the areas without soil samples, which can not be reached by spatial interpolation.
     Above all, we validated soil nutrients prediction methods of spatial interpolation, remote sensing and expert knowledgein small spatial scope. By comparing the different prediction methods, case-based reasoning method that with highest precision and best mapping potential and effects is most suitable in researching area, it offers reasonable basis and technology support for assessing soil nutrients distribution in small spatial scope with complex geophical environment.
引文
[1]张世熔,孙波,赵其国,李婷,陈明明,黄丽琴.南方丘陵区不同尺度下土壤氮素含量的分布特征[J].土壤学报,2007.44(05):885-892.
    [2]白由路,金继运,等.农田土壤养分变异与施肥推荐[J].植物营养与肥料学报,2001(2): 129-133.
    [3]汪懋华.“精细农业”发展与工程技术创新[J].农业工程学报,1999.15(1): 1-8.
    [4]杨联安,田全明,于世锋,王虎.基于GIS的土壤养分图制图技术探讨[J].测绘标准化,2004.4:19-20,24.
    [5]高祥照,胡克林,郭焱,李保国,马韫韬,杜森,王运华.土壤养分与作物产量的空间变异特征与精确施肥[J].中国农业科学,2002.35(006):660-666.
    [6]李玉影,韩晓日,刘双全,李卫孝,程海民.农田土壤养分变异与大豆分区施肥技术研究[J].中国土壤与肥料,2007(4):27-29,33.
    [7]王国伟,闫丽,陈桂芬.变量施肥对改善土壤养分空间差异性的综合评价[J].农业工程学报,2009(010):82-85.
    [8]庄卫民.土壤调查与制图技术:理论、方法与应用[M].农业科技出版社,1995.
    [9]罗明,裴韬.空间软数据及其插值方法研究进展[J].地理科学进展,2009.28(5).
    [10]汤国安,杨听ArcGIS地理信息系统空间分析实验教程[M].科学出版社,2006.
    [11]Johnston, K., J.M. Ver Hoef, K. Krivoruchko,N. Lucas. Using ArcGIS geostatistical analyst[M]. Esri Redlands, California, USA,2001. Vol.380.
    [12]邬伦,刘瑜,张晶,等.地理信息系统:原理,方法和应用[M].北京:科学出版社,2001.
    [13]Bekele, A., W.H. Hudnall, J.J. Daigle, J.A. Prudente,M. Wolcott. Scale dependent variability of soil electrical conductivity by indirect measures of soil properties[J]. Journal of terramechanics,2005.42(3-4): 339-351.
    [14]Scull, P., J. Franklin, O.A. Chadwick,D. McArthur. Predictive soil mapping:a review[J]. Progress in Physical Geography,2003.27(2):171-197.
    [15]杨奇勇,杨劲松.不同尺度下耕地土壤有机质和全氮的空间变异特征[J].水土保持学报,2010(03):100-104.
    [16]Lin, H., D. Wheeler, J. Bell,L. Wilding. Assessment of soil spatial variability at multiple scales[J]. Ecological Modelling,2005.182(3-4):271-290.
    [17]雷咏雯,危常州,李俊华,等.不同尺度下土壤养分空间变异特征的研究[J].土壤,2004(4):376-381391.
    [18]施加春.浙北环太湖平原不同尺度土壤重金属污染评价与管理信息系统构建[D].浙江大学,2006.
    [19]Prasolova, N.V., Z.H. Xu, P.G. Saffigna,M.J. Dieters. Spatial-temporal variability of soil moisture, nitiogen availability indices and other chemical properties in hoop pine (Araucaria cunninghamii) planitions of subtropical Australia[J]. Forest ecology and management,2000.136(1-3):1-10.
    [20]廖桂堂,李廷轩,王永东,张锡洲,黄平.不同尺度下低山茶园土壤主要微量元素的空间变异性[J].土壤,2008.40(02):257-263.
    [21]刘庆,孙景宽,陈印平,夏江宝.不同采样尺度下土壤重金属的空间变异特征[J].土壤通报,2009(06).
    [22]王洪杰,史学正,李宪文,于东升,孙维侠,曹志洪.小流域尺度土壤养分的空间分布特征及其与土地利用的关系[J].水土保持学报,2004.18(1): 15-18.
    [23]Cambardella, C.A., T.B. Moorman, J.M. Novak, T.B. Parkin, D.L. Karlen, R.F. Turco,A.E. Konopka. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America journal, 1994,58(5):1501-1511.
    [24 J Cordova, C., S.P. Sohi, R.M. Lark, K. W.T. Goulding,J.S. Robinson. Resolving the spatial variability of soil N using fractions of soil organic matter[J]. Agriculture, ecosystems & environment,2011.
    [25]Yost, R.S.,G. Fox. Geostatistical Analysis of Soil Chemical Properties of Large Land Areas. I. Semi-variogramsl[J]. Soil Science Society of America Journal,1982.46(5):1028.
    [26]张慧文,马剑英,张自文,孙涛,吕光辉.地统计学在土壤科学中的应用[J].兰州大学学报:自然科学版,2009.45(006):14-20.
    [27]Zhang, X.Y., Y.Y. Sui, X.D. Zhang, K. Meng,S.J. Herbert. Spatial Variability of Nutrient Properties in Black Soil of Northeast China[J]. Pedosphere,2007.17(1):19-29.
    [28]Webster, R. Quantitative and numerical methods in soil classification and survey[M]. Clarendon Press Oxford,, England,1977.
    [29]Lee, C.K., T. Kaho, J. Yanai, M. Iida, M. Umeda,T. Kosaki. Field information maps using geostatistics in the paddy field[C].2000:American Society of Agricultural Engineers.
    [30]Needelman, B.A.G., W.J. Sharpley, A.N. Petersen,W. Gary. Environmental Management of Soil Phosphorus[J]. Soil Science Society of America Journal,2001.65(5):1516.
    [31]许红卫,高克异,王珂,周斌,J. S. Bailey.稻田土壤养分空间变异与合理取样数研究[J].植物营养与肥料学报,2006(1):37-43.
    [32]孙波,间国年.低丘红壤肥力的时空变异[J].土壤学报,2002(2): 190-198.
    [33]Xue, H. Li, Cao, X. Wei, Yang,Z. Lin. Predicting Grain Yield and Protein Content in Winter Wheat at Different N Supply Levels Using Canopy Reflectance Spectra[J]土壤圈:英文版,2007(5):646-653.
    [34]刘付程,史学正.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学,2003(1):77-81.
    [35]刘付程,史学正,于东升.近20年来太湖流域典型地区土壤酸度的时空变异特征[J].长江流域资源与环境,2006(6):740-744.
    [36]刘付程,史学正,于东升,潘贤章.基于地统计学和gis的太湖典型地区土壤属性制图研究——以土壤全氮制图为例[J].土壤学报,2004(1):20-27.
    [37]刘咏梅,江南.太湖流域典型地区农田土壤有机碳变化状况研究[J].土壤,2009(5):715-718.
    [38]石俊雄,秦松,熊德勇.贵州不同区域尺度植烟土壤养分特征及其养分管理初探[J].西南农业学报,2008.21(03):709-713.
    [39]苏荣瑞,金卫斌,艾天成,李猷,孙光浩,余大龙.基于Gis的湖北省江陵县土壤养分空间变异研究[J].长江大学学报:农学卷,2007(3):13-17,25.
    [40]苏伟,聂宜民,胡晓洁,张西刚.利用Kriging插值方法研究山东龙口北马镇农田土壤养分的空间变异[J].安徽农业大学学报,2004.31(001):76-81.
    [41]曹慧,臧波.太湖流域丘陵地区土壤养分的空间变异[J].土壤,2002.34(4):201-205.
    [42]徐茂.基于地统计学的江苏省环太湖地区土壤肥力质量演变特征研究[D].南京农业大学,2006.
    [43]郭旭东,傅伯杰.河北省遵化平原土壤养分的时空变异特征:变异函数与Kriging插值[J].地理学报,2000(5):555-566.
    [44]Couto, E.G., A. Stein,E. Klamt. Large area spatial variability of soil chemical properties in central Brazil[J]. Agriculture, ecosystems & environment,1997.66(2):139-152.
    [45]Mallarino, A.P. Spatial variability patterns of phosphorus and potassium in no-tilled soils for two sampling scales[J], Soil Science Society of America Journal,1996.60(5):1473-1481.
    [46]朱静.长江三角洲典型地区土壤特性时空演变特征及其影响因素研究[D].南京农业大学,2006.
    [47]Dobermann, A.,T. Oberthur. Fuzzy mapping of soil fertility--a case study on irrigated riceland in the Philippines[J]. Geoderma,1997.77(2-4):317-339.
    [48]冯娜娜.不同尺度下低山茶园土壤主要肥力因子空间变异性特征研究[D].四川农业大学,2006.
    [49]冯娜娜,李廷轩,张锡洲,王永东,廖贵堂.不同尺度下低山茶园土壤颗粒组成空间变异性特征[J].水土保持学报,2006(03).
    [50]冯娜娜,李廷轩,张锡洲,王永东,夏建国.不同尺度下低山茶园土壤有机质含量的空间变异[J].生态学报,2006.26(02):349-356.
    [51]潘明安,张锡洲,王永东,李廷轩.不同尺度下低山丘陵区茶园土壤钾素含量变异与制图[J].茶叶科学,2010.30(03):177-183.
    [52]ShilaiYI. research on nitrogen content of leaf of Jincheng orange cultivar using visible near infrared spectroscopy model[J]. Journal of Fruit Science,2010.27((1)):13-17.
    [53]Sylla, M., A. Stein, N. Van Breemen,L.O. Fresco. Spatial variability of soil salinity at different scales in tho mangrove rice agro-ecosystem in West Africa[J]. Agriculture, ecosystems & environment,1995. 54(1-2):1-15.
    [54]刘杏梅.基于GIS和地统计学的不同尺度水稻田土壤养分时空变异及其机理研究[D].浙江大学,2005.
    [55]Yemefack, M., D.G. Rossiter,R. Njomgang. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon[J]. Geoderma,2005.125(1-2):117-143.
    [56]Kravchenko, A.,D.G. Bullock. A comparative study of interpolation methods for mapping soil properties[J]. Agronomy Journal,1999.91:393-400.
    [57]Weber, D.,E. Englund. Evaluation and comparison of spatial interpolators[J]. Mathematical Geology, 1992.24(4):381-391.
    [58]Weber, D.D.,E.J. Englund. Evaluation and comparison of spatial interpolators Ⅱ[J]. Mathematical Geology,1994.26(5):589-603.
    [59]李晓燕,张树文.吉林省德惠市土壤速效钾的空间分异及不同插值方法的比较[J].水土保持学报,2004.18(004):97-100.
    [60]连纲,郭旭东,傅伯杰,虎陈霞.黄土高原县域土壤养分空间变异特征及预测——以陕西省横山县为例[J].土壤学报,2008.45(004):577-584.
    [61]石小华,杨联安,张蕾.土壤速效钾养分含量空间插值方法比较研究[J].水土保持学报,2006(2):68-72.
    [62]王秀,苗孝可,孟志军,叶涛,潘瑜春.插值方法对GIS土壤养分插值结果的影响[J].土壤通报,2005.36(006):826-830.
    [63]Gotway, C.A., R.B. Ferguson, G.W. Hergert,T.A. Peterson. Comparison of kriging and inverse-distance methods for mapping soil parameters [J]. Soil Science Society of America Journal,1996. 60(4):1237-1247.
    [64]孙义祥,吴传洲,朱克保,崔振岭.插值方法与样点数对县域土壤有效磷空间变异特征评价的影响[J].应用生态学报,2009.20(003):673-678.
    [65]王坷,许红卫,史舟,等.土壤钾素空间变异性和空间插值方法的比较研究[J].植物营养与肥料学报,2000.6(003):318-322.
    [66]Hengl, T., G.B.M. Heuvelink,A. Stein. A generic framework for spatial prediction of soil variables based on regression-kriging[J]. Geoderma,2004.120(1-2):75-93.
    [67]Pang, S., T. Li, Y. Wang, H. Yu,X. Li. Spatial Interpolation and Sample Size Optimization for Soil Copper (Cu) Investigation in Cropland Soil at County Scale Using Cokriging[J]. Agricultural Sciences in China,2009.8(11):1369-1377.
    [68]许红卫,高玉蓉,王珂,周斌,周清.基于水稻冠层光谱信息的稻田土壤速效N的Cokriging插值研究[J].农业工程学报,2007.23(003): 13-17.
    [69]张素梅,王宗明,张柏,宋开山.利用地形和遥感数据预测土壤养分空间分布[J].农业工程学报,2010(005):188-194.
    [70]Robinson, T.P.,G. Metternicht. Testing the performance of spatial interpolation techniques for mapping soil properties[J]. Computers and Electronics in Agriculture,2006.50(2):97-108.
    [71]王政权.地统计学及在生态学中的应用[M].科学出版社,1999.
    [72]Sumfleth, K.,R. Duttmann. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators[J]. Ecological Indicators,2008.8(5):485-501.
    [73]Ziadat, F.M. Analyzing digital terrain attributes to predict soil attributes for a relatively large area[J]. Soil Science Society of America Journal,2005.69(5):1590-1599.
    [74]秦建成Arc GIS支持下的样本稀疏山区空间插值模拟探讨[J].长江流域资源与环境,2009.18(005):489-494.
    [75]Bechini, L., S. Bocchi,T. Maggiore. Spatial interpolation of soil physical properties for irrigation planning. A simulation study in northern Italy[J]. European journal of agronomy,2003.19(1):1-14.
    [76]Voltz, M.,R. Webster. A comparison of kriging, cubic splines and classification for predicting soil properties from sample information[J]. European Journal of Soil Science,1990.41(3):473-490.
    [77]史舟,李艳.地统计学在土壤学中的应用[M].中国农业出版社,2006.
    [78]陈防,刘冬碧,熊桂云,等.东南地区土壤养分的空间变异性与取样策略I.土壤属性与大量元素[J].湖北农业科学,2006(4):432-435,444.
    [79]陈光,贺立源,詹向雯.耕地养分空间插值技术与合理采样密度的比较研究[J].土壤通报,2008.39(5):1007-1011.
    [80]薛正平,杨星卫,段项锁,陆平.土壤养分空间变异及合理取样数研究[J].农业工程学报,2002(4): 6-9.
    [81]陈天恩,陈立平,王彦集,郜允兵,任仲山.基于地统计的土壤养分采样布局优化[J].农业工程学报,2009(S2):49-55.
    [82]王秀,赵春江,孟志军,叶涛,马智宏,薛绪掌.精准农业土壤采样栅格划分方法的研究[J].土壤学报,2005.42(2):199-205.
    [83]任振辉,吴宝忠.精细农业中最佳土壤采样间距确定方法的研究[J].农机化研究,2006(006):82-85.
    [84]Di, H.J., B.B. Trangmar,R.A:Kemp. Use of geostatistics in designing sampling strategies for soil survey[J]. Soil Science Society of America Journal,1989.53(4):1163-1167.
    [85]姜城,杨俐苹,金继运,,张维理.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001(3):262-270.
    [86]许红卫,王珂.田间土壤采样数据的统计特征与空间变异性研究[J].浙江大学学报:农业与生(?)学版,2000.26(6):665-669.
    [81]Zheng, L., M. Li, X. An,L. Pan. Spectral feature extraction and modeling of soil total nitrogen content based on NIR spectroscopy and wavelet packet analysis[C].2010.
    [88]孙建英,李民赞,郑立华,胡永光,张喜杰.基于近红外光谱的北方潮土土壤参数实时分析[J].光谱学与光谱分析,2006.26(003):426-429.
    [89]李伟,张书慧,张倩,董朝闻,张守勤.近红外光谱法快速测定土壤碱解氮,速效磷和速效钾含量[J].农业工程学报,2007.23(001):55-59.
    [90]郑立华,李民赞,潘娈,孙建英,唐宁.基于近红外光谱技术的土壤参数BP神经网络预测[J].光谱学与光谱分析,2008.28(5): 11 60-1164.
    [91]袁石林,马天云,宋韬,等.土壤中总氮与总磷含量的近红外光谱实时检测方法[J].农业机械学报,2009.40(z1):150-153.
    [92]Lhsani, M.R., S.K. Upadhyaya, D. Slaughter, S. Shafii.M. Pelletier. A NIR technique for rapid determination of soil mineral nitrogen[J]. Precision Agriculture,1999.1(2):219-236.
    [93]Odlare, M., K. Svensson,M. Pell. Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field[J]. Geoderma,2005.126(3-4):193-202.
    [94]Gislum, R., E. Micklander,J.P. Nielsen. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics[J]. Field crops research,2004.88(2-3):269-277.
    [95]Gomez, C., R.A. Viscarra Rossel,A.B. McBratney. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy:An Australian case study[J]. Geoderma,2008.146(3-4): 403-411.
    [96]Ryu, C., M. Suguri,M. Umeda. Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing[J]. Biosystems Engineering,2009.104(4): 465-475.
    [97]Xiaobo, Z., Z. Jiewen, M.J.W. Povey,M. Holmes. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta,2010.667(1-2):14-32.
    [98]郑立华,李民赞,潘娈,孙建英,唐宁.近红外光谱小波分析在土壤参数预测中的应用[J].光谱学与光谱分析,2009(006):1549-1552.
    [99]胡永光,李萍萍,吴才聪,陈斌.基于漫反射光谱的茶园土壤硝态氮检测[J].农业工程学报,2009.S2:240-244.
    [100]潘文超,李少昆,王克如.基于棉花冠层光谱的土壤氮素监测研究[J].棉花学报,2010(001):70-76.
    [101]易时来,邓烈,何绍兰,等.三峡库区柑桔园紫色土光谱特征及其与氮素相关性研究[J].光谱学与光谱分析,2009.29(009):2494-2498.
    [102]汪善勤,舒宁,张海涛.土壤全氮田间Vis/NIR光谱测定方法研究[J].光谱学与光谱分析,2008(4):808-812.
    [103]Wang, L., Y. Zhou, Q. Lin,Y. Xu. Possibilities of reflectance spectra data for the assessment of soil potassium concentration[C].2009.
    [104]鲍一丹,何勇,方慧,Annia, Garcia,Pereira.土壤的光谱特征及氮含量的预测研究[J].光谱学与光谱分析,2007(1):62-65.
    [105]陈鹏飞,刘良云,王纪华,沈涛,陆安祥,赵春江.近红外光谱技术实时测定土壤中总氮及磷含量的初步研究[J].光谱学与光谱分析,2008.28(2):295-298.
    [106]程彬,姜琦刚,湛邵斌.利用可见光/近红外-短波红外光谱预测土壤总氮含量的研究[J].安徽农业科学,2007(10):3009-3009.
    [107]彭玉魁,卢恩双.土壤水分,有机质和总氮含量的近红外光谱分析研究[J].土壤学报,1998.35(004):553-559.
    [108]Serrano, L., J. Pe uelas,S.L. Ustin. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data::Decomposing biochemical from structural signals[J]. Remote Sensing of environment,2002.81(2-3):355-364.
    [109]徐永明.基于实验室光谱的土壤营养元素反演研究[D].北京:中国科学院研究生院(遥感应用研究所),2005.
    [110]徐永明,蔺启忠,黄秀华,沈艳,王璐.利用可见光/近红外反射光谱估算土壤总氮含量的实验研究[J].地理与地理信息科学,2005.21(001):19-22.
    [111]薛利红,卢萍,杨林章,单玉华,范晓晖,韩勇.利用水稻冠层光谱特征诊断土壤氮素营养状况[J].植物生态学报,2006.30(004):675-681.
    [112]宋晓宇,王纪华,薛绪掌,刘良云,陈立平,赵春江.利用航空成像光谱数据研究土壤供氮量及变量施肥对冬小麦长势影响[J].农业工程学报,2004.20(004):45-49.
    [113]Leon, C.T., D.R. Shaw, M.S. Cox, M.J. Abshire, B. Ward, M.L.C. Wardlaw,C. Watson. Utility of remote sensing in predicting crop and soil characteristics[J]. Precision Agriculture,2003.4(4):359-384.
    [114]赵英时.遥感应用分析原理与方法[M].科学出版社,2003.Vol.53.
    [115]Park, S., J.J. Feddema,S.L. Egbert. Impacts of hydrologic soil properties on drought detection with MODIS thermal data[J]. Remote Sensing of environment,2004.89(1):53-62.
    [116]薛利红,杨林章,李刚华.遥感技术在精确施肥管理中的应用进展[J].农业工程学报,2004(5):22-26.
    [117]童庆禧,张兵,郑兰芬,高光谱遥感——原理,技术与应用.2006,北京:高等教育出版社.
    [118]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].电子工业出版社,2006.
    [119]张良培,张立福.高光谱遥感[M].武汉大学出版社,2005.
    [120]周萍,王润生,阎柏琨,杨苏明,王青华.高光谱遥感土壤有机质信息提取研究[J].地理科学进展,2008.27(005):27-34.
    [121]卢艳丽,白由路,王磊,王贺,杨俐苹.黑土土壤中全氮含量的高光谱预测分析[J].农业上程学报,2010.26(1):256-261.
    [122]Minzan, L. Evaluating soil parameters with visible spectroscopy[J]. Transactions of The Chinese Society of Agricultural Engineering,2003.19(5):36-41.
    [123]于飞健,闵顺耕.近红外光谱法分析土壤中的有机质和氮素[J].分析试验室,2002.21(003):49-51.
    [124]张雪莲,李晓娜,武菊英,郑伟,黄倩,汤丛峰.不同类型土壤总氮的近红外光谱技术测定研究[J].光谱学与光谱分析,2010.30(4):906-910.
    [125]Kirshnan, P., J.D. Alexander, B.J. Butler,J.W. Hummel. Reflectance technique for predicting soil organic matter[J], Soil Science Society of America Journal,1980.44(6):1282-1285.
    [126]Sasao, A., S. Shibusawa, K. Sakai,M.Z. Li. Soil Parameters Estimation withNIR Spectroscopy[J]. Journal of the Japanese Society of Agricultural Machinery,2000.62(3):111-120.
    [127]Kooistra, L., R. Wehrens, R. Leuven,L.M.C. Buydens. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains[J]. Analytica Chimica Acta, 2001.446(1-2):97-105.
    [128]Moron, A.,D. Cozzolino. Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay[J]. Journal of near infrared spectroscopy,2002.10(3): 215-221.
    [129]Sudduth, K.A.,J.W. Hummel. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer[J]. Transactions of the ASAE,1993.36(6):1571-1582.
    [130]Sudduth, K.A.,J.W. Hummel. Portable, near-infrared spectrophotometer for rapid soil analysis[J]. TRANSACTIONS-AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS,1993.36:185-185.
    [131]Stenberg, B., A. Jonsson,T. B rjesson. Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter[J]. Plant and soil, 2005.269(1):251-258.
    [132]Stevens, A., B. Van Wesemael, H. Bartholomeus, D. Rosillon, B. Tychon,E. Ben-Dor. Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils[J]. Geoderma, 2008.144(1-2):395-404.
    [133]Yu, F.J., M. Shun-geng, J. Xiao-tang,Z. Fu-suo. Determination the content of nitrogen and organic substance in dry soil by using near infrared diffusion reflectance spectroscopy [J]. Chinese Journal of Analysis Laboratory,2002.21(3):49-51.
    [134]He, Y., M. Huang, A. Garcia, A. Hernandez,H. Song. Prediction of soil macronutrients content using near-infrared spectroscopy[J]. Computers and Electronics in Agriculture,2007.58(2):144-153.
    [135]He, Y., H. Song, A.G. Pereira,A.H. Gomez. A new approach to predict N, P, K and OM content in a loamy mixed soil by using near infrared reflectance spectroscopy[J]. Advances in Intelligent Computing, 2005:859-867.
    [136]Barth s, B.G., D. Brunet, E. Hien, F. Enjalric, S. Conche, G.T. Freschet, R. d'Annunzio,J. Toucet-Louri. Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples[J]. Soil Biology and Biochemistry,2008.40(6): 1533-1537.
    [137]黄应丰,刘腾辉.土壤光谱反射特性与土壤属性的关系——以南方主要土壤为例[J].土壤通报,1989.20(4): 158-160.
    [138]刘伟东.高光谱遥感土壤信息提取与挖掘研究[D].中国科学院研究生院(遥感应用研究所),2002.
    [139]Muller, E.,H. Decamps. Modeling soil moisture-reflectance[J]. Remote Sensing of environment, 2001.76(2):173-180.
    [140]Yanli, L., B. Youlu, W. Lei, W. He,Y. Liping. Determination for total nitrogen content in black soil using hyperspectral data [J]. Transactions of The Chinese Society of Agricultural Engineering,2010.26: 256-261.
    [141]Malley, D.F., L. Yesmin, D. Wray,S. Edwards. Application of near-infrared spectroscopy in analysis of soil mineral nutrients[J]. Communications in soil science and plant analysis,1999.30(7):999-1012.
    [142]Ray, S.S., J.P. Singh, G. Das,S. Panigrahy. Use of high resolution remote sensing data for generating site-specific soil management plan[J]. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, 2004.35(B7):127-132.
    [143]曾志远.卫星图象密度-辐射量算与土壤资源探测[J].资源科学,1981.4:72-78.
    [144]曾志远.土壤肥力的卫星遥感探测[J].土壤,1987(02):73-78.
    [145]沙晋明.利用土壤黑度值实现土壤肥力遥感监测的机理[J].山西农业大学学报:自然科学版,1996.16(004):372-376.
    [146]Borengasser, M., W.S. Hungate,R.L. Watkins. Hyperspectral remote sensing:principles and applications[M]. CRC,2007.
    [147]祝锦霞,许红卫,周斌,高玉蓉.基于SPOT5影像的稻田土壤养分的Co—kriging插值研究[J].土壤通报,2008.39(006):1321-1325.
    [148]Goetz, A.F.H.,B-Curtiss. Hyperspectral imaging of the Earth:Remote analytical chemistry in an uncontrolled environment[J]. Field Analytical Chemistry & Technology,1996.1(2):67-76.
    [149]Galv o, L.S., M.A. Pizarro,J.C.N. Epiphanio. Variations in Reflectance of Tropical Soils:: Spectral-Chemical Composition Relationships from AVIRIS data[J]. Remote Sensing of environment, 2001.75(2):245-255.
    [150]Hong, S.Y., K.A. Sudduth, N.R. Kitchen, S.T. Drummond, H.L. Palm,W.J. Wiebold. Estimating within-field variations in soil properties from airborne hyperspectral images[C].2002.
    [151]朱阿兴.精细数字土壤普查模型与方法[M].科学出版社,2008.
    [152]Skidmore, A.K., P.J. Ryan, W. Dawes, D. Short,E. O'loughlin. Use of an expert system to map forest soils from a geographical information system[J]. International Journal of Geographical Information Science,1991.5(4):431-445. [153] Skidmore, A.K., F. Watford, P. Luckananurug,P. Ryan. An operational GIS expert system for mapping forest soils[J]. Photogrammetric Engineering and Remote Sensing,1996.62(5):501-511.
    [154]Cook, S.E., R.J. Corner, G. Grealish, P.E. Gessler,C.J. Chartres. A rule-based system to map soil properties[J]. Soil Sci. Soc. Am. J,1996.60:1893-1900.
    [155]赵量.基于模糊集理论的土壤—景观定量关系提取及制图应用[D].南京农业大学,2007.
    [156]Zhu, A., F. Qi, A. Moore,J.E. Burt. Prediction of soil properties using fuzzy membership values[J]. Geoderma,2006.158(3-4):199-206.
    [157]Zhu, A.X.,L.E. Band. A knowledge-based approach to data integration for soil mapping[J]. Canadian Journal of Remote Sensing,1994.20(4):408-418.
    [158]檀满枝,陈杰.模糊c-均值算法在区域土壤预测制图中的应用[J].土壤学报,2009(004):571-577.
    [159]檀满枝,陈杰.模糊逻辑在土壤连续分类和制图表达中的应用及展望[J].土壤学报,2009(1):136-143.
    [160]檀满枝,陈杰,徐方明,郑海龙,张学雷.基于模糊集理论的土壤重金属污染空间预测[J].土壤学报,2006.43(003):389-396.
    [161]Zhu, A.X., L. Band, R. Vertessy,B. Dutton. Derivation of soil properties using a soil land inference model (SoLIM)[J]. Soil Sci. Soc. Am. J,1997.61(2):523-533.
    [162]Qi, F.,A.X. Zhu. Knowledge discovery from soil maps using inductive learning[J]. International Journal of Geographical Information Science,2003.17(8):771-795.
    [163]Shi, X., A.X. Zhu, J.E. Burt, F. Qi,D. Simonson. A case-based reasoning approach to fuzzy soil mapping[J].2004.
    [164]Zhu, A.X., B. Hudson, J. Burt, K. Lubich,D. Simonson. Soil mapping using GIS, expert knowledge, and fuzzy logic[J]. Soil Science Society of America journal,2001.65(5):1463-1472.
    [165]张庆利.美国基于GIS,专家系统和模糊推断的土壤制图方法[J].水土保持科技情报,2002(002): 1-5.
    [166]朱阿兴,李宝林,杨琳,裴韬,秦承志,张甘霖,蔡强国,周成虎.基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J].土壤学报,2005.42(05):844-851.
    [167]秦承志,卢岩君,邱维理,朱阿兴,张灵燕,杨琳.模糊坡位信息在精细土壤属性空间推测中的应用[J].地理研究,2010.29(9): 1706-1712.
    [168]杨琳,S. Fahmy, S. Hann,朱阿兴,秦承志,徐志刚.基于土壤-环境关系的更新传统土壤图研究[J].土壤学报,2010.47(06):1039-1049.
    [169]杨琳,朱阿兴,李宝林,秦承志,裴韬,刘宝元,李润奎,蔡强国.应用模糊c均值聚类获取土壤制图所需土壤-环境关系知识的方法研究[J].土壤学报,2007.44(005):784-791.
    [170]杨琳,朱阿兴,秦承志,李宝林,裴韬.一种基于样点代表性等级的土壤采样设计方法[J].土壤学报,2011.48(05):938-946.
    [171]杨琳,朱阿兴,秦承志,李宝林,裴韬,刘宝元.运用模糊隶属度进行土壤属性制图的研究——以黑龙江鹤山农场研究区为例[J].土壤学报,2009.46(01): 9-15.
    [172]杨琳,朱阿兴,秦承志,李宝林,裴韬,邱维理,徐志刚.基于典型点的目的性采样设计方法及其在土壤制图中的应用[J].地理科学进展,2010.29(03):279-286.
    [173]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000.
    [174]杨剑虹,王成林,代亨林.土壤农化分析与环境监测[M].中国大地出版社,2008.
    [175]Stein, M.L. Interpolation of Spatial Data:some theory for kriging[M]. Springer Verlag,1999.
    [176]郭丽俊,李毅,李敏,任鑫,朱德兰.盐渍化农田土壤斥水性与理化性质的空间变异性[J].土壤学报,2011.48(2):277-285.
    [177]GB/T4482-2001,数据的统计处理和解释正态性检验[S].
    [178]盛骤,谢式千,潘承毅.概率论与数理统计[M].高等教育出版社,1989.
    [179]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1995.
    [180]MinzanLI. Spectrum analysis technique and its application[J]. Beijing:SciencePress,2006: 112-162.
    [181]Brunet, D., M. Bernoux.B.G. Barthes. Comparison between predictions of C andN contents in tropical soils using a Vis-NIR spectrometer including a fibre-optic probe versus a NIR spectrometer including a sample transport module[J]. Biosystems Engineering,2008.100(3):448-452.
    [182]Zhuang, y. Shun, Xu, j. Meng, Hu,y. Zheng. Determination of forest soil organic nitrogen determination using technique of X-ray absorption near-edge structure[J].林业研究:英文版,2006(3):189-192.
    [183]Ladoni, M., H.A. Bahrami, S.K. Alavipanah,A.A. Norouzi. Estimating soil organic carbon from soil reflectance:a review[J]. Precision Agriculture,2010.11(1):82-99.
    [184]Chang, D.H.,S. Islam. Estimation of soil physical properties using remote sensing and artificial neural network[J]. Remote Sensing of environment,2000.74(3):534-544.
    [185]Sinfield, J.V., D. Fagerman,O. Colic. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils[J]. Computers and Electronics in Agriculture,2010.70(1):1-18.
    [186]王璐,蔺启忠,贾东,石火生,黄秀华.多光谱数据定量反演土壤营养元素含量可行性分析[J].环境科学,2007.28(008):1822-1828.
    [187]朱尔一,杨芃原.化学计量学技术及应用[M].科学出版社,2001.
    [188]李民赞.光谱分析技术及其应用[M].科学出版社,2006.
    [189]吴可杰.统计学原理[M].南京大学出版社,1986.
    [190]朱晓青.统计学原理[M].国防工业出版社,1994.
    [191]吴豪翔,王人潮.土壤光谱特征及其定量分析在土壤分类上的应用研究[J].土壤学报,1991.28(2): 177-185.
    [192]陈晓玲,龚威,李平湘.遥感数字影像处理导论[M].北京:机械工业出版社,2006.
    [193]孙家抦,遥感原理与应用.2003,武汉:武汉大学出版社.
    [194]Plaza, A., J.A. Benediktsson, J.W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba,A. Gualtieri. Recent advances in techniques for hyperspectral image processing[J]. Remote sensing of environment,2009.113:S110-S122.
    [195]董冬.基于案例推理的医学图像智能诊断系统研究[D].哈尔滨理工大学,2009.
    [196]Kolodner, J.L. Case-Based Reasoning[M]. Morgan Kaufmann,1993.
    [197]任海涛.基于案例的推理及其在农业专家系统中的应用[D].山西大学,2004.
    [198]McSweeney, K., B.K. Slater, R.D. Hammer, J.C. Bell, P.E. Gessler, G.W. Petersen, R. Amundson, J. Harden,M. Singer. Towards a new framework for modeling the soil-landscape continuum[J]. Factors of soil formation:a fiftieth anniversary retrospective.,1994:127-145.
    [199]李天文,刘学军,陈正江,汤国安,李军锋.规则格网DEM坡度坡向算法的比较分析[J].干旱区地理,2004.27(003):398-404.
    [200]李志林,朱庆.数字高程模型[M].武汉大学出版社,2001.Vo1.7.
    [201]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].科学出版社,2005.
    [202]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [203]秦承志,杨琳,朱阿兴,李宝林,裴韬,周成虎.平缓地区地形湿度指数的计算方法[J].地理科学进展,2006.25(006):87-93.
    [204]Ambroise, B., K. Beven,J. Freer. Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity[J]. Water Resources Research,1996.32(7):2135-2145.
    [205]Beven, K. Runoff production and flood frequency in catchments of order n:an alternative approach[J]. Scale Problems in Hydrology:Runoff Generation and Basin Response, D. Reidel Publishing Co., Dordrecht Holland.1986. p 107-131,7 fig,5 tab,27 ref.,1986.
    [206]Weiss, A. Topographic position and landforms analysis[C].2001.
    [207]CH/T.9008.2-2010[J].基础地理信息数字成果1:500、1:1000、1:2000数字高程模型.
    [208]赵瑞芬,张一弓,张强,程滨,张建杰.不同土地利用方式对土壤养分状况的影响[J].中国农学通报,2011.27(14):262-266.
    [209]王君,沙丽清.滇西北藏区不同土地利用方式对土壤养分的影响[J].东北林业大学学报,2007.35(10):45-47.
    [210]孟庆华,杨林章.三峡库区不同土地利用方式的养分流失研究[J].生态学报,2000.20(6):1028-1033.
    [211]Remm, K. Case-based predictions for species and habitat mapping[J]. Ecological Modelling,2004. 177(3):259-281.
    [212]唐雪飞.基于案例推理的高光谱图像分类研究[D].哈尔滨工业大学,2010.
    [213]裴艳香.基于案例推理的卫星故障诊断技术的应用研究[D].哈尔滨工业大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700