用户名: 密码: 验证码:
利用~(137)Cs示踪技术研究密云水库周边地区土壤侵蚀与土壤肥力变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密云水库是北京重要的水源供应地,水库水质直接受到周边地区土壤侵蚀的影响。本文运用~(137)Cs核素示踪技术,研究密云水库周边地区及白河上游地区不同景观生态与土地利用模式下的土壤中~(137)Cs含量以及土壤养分元素的变化规律与趋势;探查与调研密云水库周边土地利用状况和社会经济发展状况;测定不同土地利用模式下的土壤~(137)Cs等核素以及土壤养分元素的含量;分析不同景观生态与土地利用模式下的土壤侵蚀模数变化规律;分析土壤侵蚀与土壤中的养分元素流失状况及相互之间的量变关系;建立~(137)Cs等核素与各肥力因子之间的数学模型,以核素示踪技术为基础的土壤肥力预报预测系统。
     密云水库周边地区主要由山地(中山、低山)、丘陵、平原、水域四大地貌单元组成,各级地貌类型特征明显,层次分明。通过野外调查与采样,根据不同的景观生态与土地利用模式及地貌形态,确定29个采样区。在每个采样区中,对山地斜坡采用从山顶到山脚大致直线布设采样点,共100多个采样点。采样方式是根据布设好的采样点,在各个采样点先挖土壤刨面,以10cm为间距采集剖面样品。然后在剖面周围1米半径的圆内均匀布设的多个点上采集表层土样,混合均匀为表层样品。样品测定了~(137)Cs等核素以及土壤中的肥力因子,最后进行分析。
     分析结果表明:
     (1)无论是坡地还是平地,不论是农田、林地,由于人类的活动造成了土壤颗粒的迁移与翻转,结果都明显增加了土壤侵蚀与养分流失的剧烈程度。
     (2)~(137)Cs在土壤剖面中随深度的增加而呈下降趋势,在非耕作土和未扰动的土壤主要分布在土壤剖面的上部,并富集在土壤表层之间。
     (3)根据对密云水库周边地区与白河上游土壤~(137)Cs的监测结果,土壤表层~(137)Cs分布规律基本符合地形地貌的变化规律:在山地斜坡从坡顶到坡底土壤侵蚀逐步增强;坡度越大,基本上土壤侵蚀现象越剧烈;土壤表层中山坡上~(137)Cs含量低于坡中、坡下,但是如果山顶具有缓坡或山角下具有陡坡则~(137)Cs含量变化
    
    规律相反。
     (4)根据密云水库周边地区土壤‘弋S监测数据计算出的土壤侵蚀模数,用
    水利部的标准衡量,该地区基本属于轻度侵蚀和中度侵蚀,但是有部分地区侵蚀
    情况非常严重,达到了剧烈侵蚀的程度。
     (5)不同土地利用方式对土壤养分分布有巨大影响。有机质含量分布变化
    规律:灌丛>林地>果园>农田;全氮含量:灌丛>农田>果园)林地;水解氮含量:
    灌丛>林地>农田>果园;全磷含量:农田>林地>灌丛>果园;速效磷含量:农田>
    林地>灌丛>果园。水库周边土壤氮素、磷素含量均高于上游地区。不合理的人为
    活动严重的增强了土壤侵蚀与养分流失。并且对于林地与灌丛而言,土壤有机质
    与氮素含量分布规律基本上与土壤‘:打Cs等核素分布规律相吻合。
     (6)通过土壤‘飞S、艺10Pb含量与有机质、氮、磷等养分含量之间关系的图
    形,可以看出它们之间呈正相关,土壤侵蚀模数与土壤中养分元素基本上呈负相
    关变化趋势,机械组成的变化不太明显。用三次曲线(y为土壤养分元素含量、x
    为‘盯CS或2‘OPb含量)进行数学模拟,描述两者之间的变化趋势。表明由于土壤
    母质、植被类型、土地利用方式以及地表地貌类型对土壤侵蚀的影响,全流域模
    拟出来的方程相关系数较小,可行度偏低,而对于地域范围较小、景观较为单一
    的采样区域所模拟出来的方程的相关系数较好,可信度较高。通过数学模型在监
    测土壤’3℃S等核素含量变化的基础上,可以直接预报预测土壤养分元素含量的
    变化,简化了土壤侵蚀和养分监测程序与分析过程。
One of the important water-resource in Beijing is Miyun reservoir, where water quality is influenced directly by the soil erosion of its neighborhood. This thesis applied 137Cs tracer technique to study the contents of 137Cs and the trend of soil nutriment change under different landscape ecosystem and land using models in Miyun reservoir neighborhood and the upper reaches region. It also investigated conditions of land using and social economic development of Miyun reservoir neighborhood, mensurated the content of soil nutriment and nuclear elements such as 137Cs, analyzed the rules and trends of modulus soil erosion under different landscape ecosystem and land using models, analyzed the soil nutrient losing conditions and quantitative change relations between soil erosion and soil nutrient losing, and established mathematic model between nuclear elements and soil fertility ingredients, set up forecast system.
    Miyun reservoir region is mainly constituted by four types of physiognomy units including mountainous country (inside mountain, low mountain), mound, plain and water areas. The characteristic of all levels physiognomy type is obvious, the structure is clear. According to field investigation, different landscape ecosystem and land using models and physiognomy shapes, the 29 sampling districts were ascertained. There were 100 sampling spots in mountainous region from summit of hill to the foot of a hill. The sampling method is to dig the soil section plane in each sampling spots, 10 cm is the space between two collect the section sample. Then collected surface layer soil on the circle inside that the section circumference 1 s, and mixed it uniformly as the surface layer sample. The contents of 137Cs,other nuclear elements and fertility factors were mensurated and analyzed.
    The conclusions of analysis are as follows.
    (1) Because of the activity of mankind that do to the transference and retroflexion of grains of soil, the intensity of soil erosion and nutrient losing has been enhanced, whether it is in the flat, farmland or woodland.
    (2) With the depth's increase, the content of 137Cs takes on decrease trend in the soil section. 137Cs mainly distribute in the upside of uncultivated and undisturbed soil, and get together in the interspaces of surface layer.
    (3) According to the conclusion which draw from the soil test of the soil in Miyun reservoir neighborhood and the upper reaches region of Baihe River, the distribution of 137Cs in the surface soils accords with the change of topography and physiognomy. The contents of l37Cs on the top of hillside were lower than it in the middle and low hillside, but the distribution of 137Cs contents was contrary on a flat slope in the mountaintop or on a sharp slope in the lowland.
    (4) Comparing the soil erosion modulus calculated by the 137Cs content in Miyun reservoir neighborhood with the standard of Ministry of Water Conservancy of China, it was proved that this region mainly belongs to the slight and middling degree of erosion, but some regions' erosion conditions were serious, even reached the severe degree of erosion.
    
    
    
    (5) Different land using models affected the distribution of the nutrient in soil greatly. The content of organic matter from bush, woodland, and orchard to farmland takes the trend of decrease. Just as the regulation of organic matter, the content of total N is from bush, farmland, orchard to woodland, the content of hydrolyzed N is from bush, woodland, farmland to orchard, the content of total P is from farmland, woodland, bush to orchard, and the content of available P is from farmland, woodland, bush to orchard. The contents of N and P in the reservoir neighborhood are higher than in the upper reaches region. Irrational humanity activities increased the soil erosion degree and losses of soil nutrient seriously. For the woodland and bush, the distribution of the content of organic matter and N is in accord with tracer such as 137Cs.
    (6) The diagram manifests that it is in direct correlation between the content of l37Cs, 210Pb and soil
引文
1 Hugh Hammond Bennett. Soil Conservation. New York 1938. (论文类)
    2 Norman Hudson. Soil Conservation. 1995第三版.(专著类)
    3 国外对土壤侵蚀与水土保持的解释.中科院水利部水土保持研究所.水土保持学报2000(3).(期刊类)
    4 R.B.Lester.全球耕地土壤资源的侵蚀状况.地理译报 1987第三期.(期刊类)
    5 张学俭.中国水土流失与水十保持.水利部水土保持报告会 2002.1.4.(论文类)
    6 张桃林,王兴.土壤退化研究的进展与趋向.中国科学院南京土壤研究所 地理资源学报 2001.(1) (期刊类)
    7 GEO-2000. 荒漠化. GEO-2000 Chapter Two the State of the Environment-Regional Synthesis-Land. 2001 (论文类)
    8 国家科委全国重大自然灾害综合研究组.中国重大自然灾害及减灾对策(总论).科学出版社.1994.(专著类)
    9 景可,李凤新.泥沙灾害类型及成因机制分析.中国科学地理研究所.科学出版社1999.(论文类)
    10 王库.植物根系对土壤抗侵蚀能力的影响.土壤与环境.2001.10(3).(期刊类)
    11 吴彦,刘世金.植物根系对土壤抗侵蚀能力的影响.应用于微生物学报.1997.2(3).(期刊类)
    12 景可.黄土高原侵蚀分区探讨.山地研究.1983年第三期.(期刊类)
    13 李海鸥.我国土地沙化与防治对策.环境保护.2002.2.(期刊类)
    14 郭跃.传统农业与现代土壤侵蚀.重庆师范学报自然科学版.1995.9.(期刊类)
    15 张宗祜.黄土高原区域环境地质问题及治理.北京:科学出版社,1996.(专著类)
    16 张登荣,赵元洪,徐鹏炜.水土流失遥感方法与土地资源评价.北京:原子能出版社,1996.1~15.(专著类)
    17 卜兆基,孙金庄,周伏建,等.水土流失定量遥感方法及其应用研究.土壤学报,1997,34(3):235~245.(专著类)
    18 周佩华,田均良,刘普灵,等.黄土高原土壤侵蚀与稀土元素示踪研究.水土保持研究,1997,4(2):2~9.(期刊类)
    19 杨武德,王兆骞,眭国平,等.红壤坡地土壤侵蚀定位土芯Eu示踪法研究.土壤侵蚀与水土保持通报,1998,4(1):61~65.(期刊类)
    20 程致远,梁卓成,林瑞芳,等.核试验释放核素~(239,240)Pu在湖泊沉积物中的分布.见:中国矿物岩石地球化学学会.全国第四届矿物岩石地球化学讨论会摘要汇编.北京:地震出版社,1991.421~422.(论文类)
    21 白占国,万国江.贵州碳酸岩区域的侵蚀速率及环境效应研究.土壤侵蚀与水土保持通报,1998,4(1):1~7.(期刊类)
    22 陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理.北京:科学出版社,1988.(专著类)
    23 MenzJ R.G. TransPort of 90Sr in runoff, Science(Washington).1960(1): 499~500
    24 Rltchie J.C, McHenry J. R. Appllcation of radioactive fallout 137Cs for measuring soil erosion and sediment accumulation rates and Patterns. A Review, J. Environ. Qual.1990.19: 215~233
    25 冯明义,文安邦.中国土壤侵蚀的~(137)Cs法研究进展.水土保持学报,2002.Vol.16(2)
    26 Ritchie J C, Spraberry J A, McHenry J R. Estimating soil erosion from the redistribution of 137Cs [J].Soil SciSoc AmProc, 1974,38(1):137~139
    27 Simpson H J, Olsen C R., Trivet R M, and Williams S C. Man made radionuclides and
    
    sedimentation in the Hudson river estuary. Science, 1976,194:1979~1982
    28 McCallan M E, et. al. Redistribution of ~(137)Cs by erosion and deposition on an Australia soin. Australia J Soil Res, 1980,18
    29 Browo K B, Cutshall N H and Kling G F. Agricultural erosion indicated by ~(137)Cs. Sci Soc Am J 1981,45:1184~1190
    30 Lowrance R, Mclntyre S. and Lance C. Erosion and depositlion in a field forest system estimated using 137Cs activity. J Soil and Water Conservation, 1988, 2; 195~198
    31 Wallbrink P J, Olley J M. and Murry A S. Measuring soil movement using ~(137)Cs. implications of reference site variability. ISAH, 1994:p,1~9
    32 张信宝,李少龙,王成华等.黄土高原小流域泥沙来源的~(137)Cs法研究.科学通报,1989,3:210~213
    33 汪阳春,张信宝,李少龙等.黄土峁坡侵蚀的~(137)Cs法研究.水土保持通报,1991,11(3):34~37
    34 刘志,Basher L R,Mattews K U.~(137)Cs法评价不同土地经营管理条件下的土壤面蚀.环境与生态论丛,.1993:196~203
    35 庄作权.利用放射化学及地球化学方法追踪德基水库集水区之泥沙来源.水土保持研究,1995,2(3):2~7
    36 唐翔宇,杨浩,曹慧.~(137)Cs法估算南方红壤地区土壤侵蚀作用的初步研究.水土保持学报,2001,15(3)
    37 杨浩,杜明远,赵其国等.基于137Cs地表富集作用的土壤侵蚀速率的定量模型.[J].水土保持学报,1999,5(3):42-48.
    38 Brown R B, Kling G F, Cutshall N H. Agricultural erosion indicated by 137Cs redistribution Estimating rates of erosion rates. [J] Soil Sci Soc Am J, 1981,45(6):1191~1197.
    39 Lowrance R, McIntyre S, Lance C. Erosion and deposition in a friend/forest system estimated using Caesium-137 activity. [J] J Soil Water Conserv, 1988,43(2):195~199.
    40 Kachanoski R G. Estimating soil loss from changes in soil cesium-137. [J] Can J Soil Sci, 1993,73(4):629~632.
    41 Kachanoski R G, de Jong E. Predicting the temporal relationship between soil Caesium-137 and erosionrate. [J] JEn-viron Qual, 1984,13(2):301~304
    42 Elliott G L, Campbell B L, Loughran R J. Correlation of erosion measurements and soil Caesium-137 content. [J] ApplRadiat Isotopes, 1990,41(8):713~717
    43 石辉,刘普灵,田均良.核示踪技术在土壤侵蚀中的应用.水土保持学报,1997,Vol.3(17)
    44 宋炜等.核素示踪技术在土壤侵蚀研究中的应用.水土保持学报,2002,Vol.1(9)
    45 杨明义,田均良,石辉等.核分析技术在土壤侵蚀研究中的应用.水土保持学报,1997,Vol.4(2)
    46 冯明义,文安邦.中国土壤侵蚀的~(137)Cs法研究进展.水土保持学报,2002,Vol.16(2)
    47 郑永春,王世杰.~(137)Cs的地球化学及其侵蚀示踪意义.水土保持学报,2002,Vol.16 No.2
    48 唐翔宇,杨浩,赵其国等.~(137)Cs失踪技术在土壤侵蚀估算中的应用研究进展.地球科学进展,2000,Vol.15 No.5
    49 Walling D E, He Q. Improvement models for estimating soil erosion rates from Caesium-137 measurements. [J] JEnvironQual,1999,28(2):611~622
    50 Zhang X, Higgitt D L, Walling D E.A preliminary assessment of the potential for using Caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. [J] Hydrol SciJ, 1990,35:267~276
    51 密云县人民政府:密云县生态示范区建设总体规划,2002.4
    52 张信宝,李少龙,王成华等.黄土高原小流域泥沙来源的~(137)Cs法研究.科学通报,1989,3:210~213.
    53 曹慧,杨浩,唐翔宇等.~(137)Cs技术对长江三角洲丘陵区小流域土壤侵蚀初步估算.水土保持学报,2001,15(1):13-15
    54 唐翔宇,杨浩,曹慧.~(137)Cs法估算南方红壤地区土壤侵蚀作用的初步研究.水土保持学报,2001,15(3)
    55 杨浩,杜明远,赵其国等.基于~(137)Cs地表富集作用的土壤侵蚀速率的定量模型.水土保持学报,1999,5(3):42-48
    
    
    56 张燕,张洪,彭补拙等.不同土地利用方式下农地土壤侵蚀与养分流失.水土保持通报,2003,23(1):23-27
    57 Lowance R, Mclntyre S, Lance C. Erosion and deposition in a field/forest system estimated using Casium-137 activity. J. Soil Land and Water Conservation, 1988,43(2):195~198.
    58 中华人民共和国水利部.土壤侵蚀分类分级标准[M].北京:中国水利水电出版社,1997.9-10.
    59 Sack H, Varadachari C, Ghosh K.,Changes in carbon, nitrogen and phosphorus levers due to deforestation and cultivation: A case study in Simlipal National Park, India[J].Plant and Soil, 1998,19(8):137~14
    60 LalR. Monitoringsoilerosion'simpactoncropproductivity[A].In:Lal. R. (Ed.).SoilErosionRes earchMethods[M].SoilandWaterConservationSociety, Ankeny, IA, USA, 1988.187-200.
    61 Morgan,RPC.SoildegradationandsoilerosionintheloamybeltofnorthernEurope[A].In:G.Chisci andR.P.C.Morgan(Eds.),SoilErosionintheEuropeanCommunity:Impact~fchangingAgriculture[M].A.A. Balkema, Rot-terdam, 1986.165-172.
    62 康玲玲,王云璋,吴卿,等.暴雨强度对坡地上壤养分流失影响的试验研究[M].黄土高原土壤侵蚀与旱地农业,丙安:陕西科学技术出版社,1999.
    63 朱显谟.黄土高原水蚀的主要类型及其有关因素(三)[J].水土保持通报,1982,2(1):25-30.
    64 史学正,邓正海.土壤可蚀性研究现状与展望[J].中国水土保持,1993(5):25-29.
    65 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社.1978年1月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700