用户名: 密码: 验证码:
辽河稠油污水处理技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽河油田以开采稠油为主,稠油污水油水密度差小、乳化严重,污水处理非常困难且耗资巨大,是油田生产急需解决的主要问题之一。本文对辽河油田稠油污水回用于热采锅炉的处理技术进行了研究,经过室内实验、现场小试、中试及工程应用实验,证明处理后水质达到设计指标要求,能够回用于热采锅炉。充分利用了稠油污水的水源和水温,回收热能,防止对水体污染,实现污水资源化。所研究的稠油污水处理技术具有推广应用价值。
     除油系统是整个稠油污水处理流程中的基础和关键。而除油效果的好坏取决于高效净水化学药剂,通过室内实验,筛选出了适用于辽河欢四联、杜84块及兴一联污水处理的破乳剂TJ-1和絮凝剂P-3,确定了最佳投药量。
     在辽河油田欢四联进行了稠油污水处理现场小试,强化了调节池的除油效果,再通过斜板隔油池和气浮池进一步除油和除悬浮物,最后用高效生物反应器降低污水COD。小试实验表明:高效生物反应器内生物膜量大,对于稠油污水COD的去除起到重要的作用;浮选剂TF-1可起到良好的水质调节作用,当浮选剂浓度为12.5-15mg/L时,油的去除率可达到98%以上,对悬浮物及COD的去除率也可超过96%,水质清澈;破乳剂的投加量为75-100mg/L,絮凝剂的投加量为2-4mg/L,GT值控制在104-105范围内,经过斜板隔油和气浮处理后,水质清亮透明,油含量为1-2mg/L左右,悬浮物为2mg/L左右;气浮池和高效生物反应器出水COD比较稳定,气浮池出水COD基本上在200-300mg/L之间,平均值为261mg/L,而生物出水COD均低于100mg/L,平均为77.6mg/L,达到了国家排放标准,形成了一项适用于稠油污水COD处理的新工艺。
     对欢四联稠油污水深度处理进行了中试实验,形成了完备的稠油污水深度处理工艺技术,实现了污水回用和排放。前段除油系统中试,确定了最佳运行参数,形成了先除油后除悬浮物技术和高效气浮选技术,研究表明:破乳剂TJ-1和絮凝剂P-3的最佳投药量分别为50-65mg/L和0.5-1.0mg/L时,油、悬浮物和COD的平均去除率可分别达到96.8%、89.6%和93.3%;一般来水含油量每增加100mg/L,破乳剂TJ-1的投加量要相应增加10mg/L,才能达到相同的处理效果;在TJ-1和P-3两者之间,对稠油污水处理效果影响最大的是TJ-1;高效气浮分离器的回流比控制在60%左右最好,产生的溶气水为牛奶状,气泡直径非常细小;浮选剂TF-1的最佳投药量为10-15mg/L时,高效气浮分离器对油、悬浮物和COD的去除率可分别达到97.7%、83.7%和37.1%,其出水中油、悬浮物和COD含量分别为0.65mg/L,32.0mg/L和302.6mg/L,满足后段生物处理系统和软化系统的进水要求。
     软化系统中试,研究了对硬度、二氧化硅、总铁以及油和悬浮物的去除,确定了主要设备的运行技术参数,形成了一套化学除硅技术、精细过滤技术及弱酸阳离子软化技术。研究表明:石灰和MgCl2投加量的最佳范围分别是300-600mg/L和200mg/L,最佳的pH范围为8.5-9.5;NaOH软化也可有效的去除硬度和二氧化硅,与石灰软化相近,随着NaOH投加量的增加并不会导致混凝沉降罐出水硬度的上升,NaOH软化产生的污泥量仅为石灰软化的1/5,石灰软化产生的污泥量占总处理水量的5%-7%;双滤料过滤器对气浮出水及混凝沉降出水过滤实验表明,处理气浮出水滤料过滤周期为24h,处理混凝沉降出水滤料过滤周期可达32h;气浮出水采用石灰软化、镁剂除硅以及强酸钠离子交换树脂的处理后,可达到进热采锅炉的水质指标。
     本文研究的稠油污水处理技术在辽河油田欢喜岭采油厂进行了工程应用,处理后污水水质达到设计指标,能够回用于热采注汽锅炉。
Liaohe Oilfield is mainly in the production of high-viscosity oil. The treatment of high-viscosity oil wastewater, one main problem to be resolved in oil production, is difficult and costly, due to characteristics of wastewater, such as small density difference between water and oil, and severe emulsification. In this paper, a lot of research on the technology of wastewater reuse in thermal recovery boiler was done from laboratory experiment to small-scale, pilot-scale and engineering tests. Results showed that the treated water can be reused in thermal recovery boiler because its quality has reached design requirements of thermal recovery boiler. This technology can make good use of source and temperature of the high-viscosity oil wastewater, recover energy, prevent the pollution to water bodies, and eventually realize the reclamation of wastewater. Consequently, this new technology has high application value.
     Oil-removal system is basic and key in the whole treatment process of high-viscosity oil wastewater. Oil-removal effect depends on efficient water-purification chemicals. Through laboratory experiments, demulsifying agent TJ-1 and flocculants P-3, which are efficient in wastewater treatment of Huansilian, Du 84, Xingyilian of Liaohe Oil Field, were successfully developed. Moreover, their dosages were optimized.
     Small-scale tests were carried out at Huansilian, Liaohe Oil Field. The oil-removal effect of regulation tank was strengthened, after the inclined-plane oil separation and floatation pretreatment to further remove oil and suspended matter, wastewater was treated by the efficient bioreactor to reduce COD. The results indicated that:A lot of biological film in efficient bioreactor plays an important role in the removal of COD in high-viscosity oil wastewater. Floatation agent TF-1 serves as a good regulator of influent quality. When the dosage of TF-1 was 12.5~15 mg/L, the removal rate of oil was above 98%, and that of suspended matter and COD were both above 96%. After the treatment, the water appeared clear and transparent. When the dosages of demulsifying agent and flocculants were 75~100mg/L and 2~4mg/L respectively, the value of GT was in the range of 104~105. After the treatment of inclined-plane oil separation and floatation, the water became clear and transparent; the content of oil was 1~2 mg/L, and that of suspended matter was about 2mg/L. The COD in treated water from floatation pool and efficient bioreactor was relatively stable. Besides, the COD in treated water from floatation pool was basically in the range of 200~300mg/L, and its average value was 261mg/L, while the COD in treated water from efficient bioreactor was less than 100mg/L, and its average value was 77.6mg/L. Both of them had met the national emission standards. And this COD treatment process is a new one in wastewater treatment of high-viscosity oil.
     During pilot-scale tests at Huansilian in advanced treatment of high-viscosity oil wastewater, a complete series of process technology gradually took shape, reaching the recovery and discharge standards. The optimum running parameters were fixed during preceding pilot-scale tests in oil-removal system, forming suspended-matter removal technology and efficient flotation technology after oil-removal. The results showed that when the optimal dosages of demulsifying agent TJ-1 and flocculants P-3 were 50~65mg/L and 0.5~1.0mg/L separately, the average removal rates of oil, suspended matter and COD reached 96.8%,89.6% and 93.3% respectively. In general, when the content of oil in source water increases by 100mg/L, in order to reach the same effect, the dosage of demulsifying agent TJ-1 must increase correspondingly by 10mg/L. Compared with P-3, TJ-1 has greater impact on the treatment effect. The most preferable reflux ratio of efficient flotation separator was 60% approximately; the generated gas-soluble water was milky liquid, and the diameter of bubble was very small. When the dosage of flotation agent TF-1 was the optimal value 10-15mg/L, the removal rates of oil, suspended matter and COD reached 97.7%,83.7% and 37.1% separately in efficient flotation separator. Besides, the oil, suspended matter contents and COD in its treated water were 0.65mg/L,32.0mg/L and 302.6mg/L respectively. The results had met the requirements of supplying water for late biological treatment system and softening system.
     The removal of hardness, silica, total iron, oil and suspended matter was studied in pilot-scale tests of softening system. The running technical parameters of major equipments were fixed in the tests, forming a set of silica-removal, fine filtration, weak-acidic cation softening technologies. The results indicated that the optimum dosages of lime and magnesium chloride were 300~600mg/L and 200mg/L respectively; the best pH range was 8.5~9.5. The sodium hydroxide softening removed hardness and silica effectively, having similar effects with lime softening. Besides, dosage increase of sodium hydroxide didn't lead to hardness increase of effluent water from coagulation tank. What's more, sludge in sodium hydroxide softening treatment was only one-fifth of that which accounted for 5%-7% of total wastewater in lime softening treatment. Effluent water from floatation pool and coagulation tank was filtrated respectively in dual-media filter, and the results showed that the filtration cycle of water from floatation was 24h, while that of water from coagulation was 32h. After the treatment by lime softening, silica removal with magnesium compound and the strong-acid sodium ion exchange resin, the effluent water from floatation pool had come up to standards of water supply to thermal recovery boiler.
     This technology of wastewater treatment has been in engineering application at Hanxiling Oil Plant of Liaohe Oil Field. The quality of treated wastewater has met the recovery standards of thermal recovery boiler.
引文
[1]Chang In-Song,Chung Chang-Mo,Han Seung-Ho. Treatment of oily wastew-ater by ultrafiltration and ozone[J]. Desalination,2001,133(2):225-232.
    [2]王连生,古建国,王文忠,等.稠油采油污水回用于热采锅炉用水的研究[J].城市环境与城市生态,2002,15(3):59-61.
    [3]折永红,郝小斌.油田污水处理发展的新趋势探讨[J].现代商贸工业,2008,11(5):383-384.
    [4]Verma Shuchi, Bhargava Renu, Pruth Vikas. Oily sludge degradation by bact-eria from Ankleshwar[J]. International Biodeterioration and Biodegradation, 2006,57(4):207-213.
    [5]唐丽,郑志刚.稠油污水处理系统改造与絮凝剂筛选试验研究[J].承德石油高等专科学校学报,2007,9(3):4-7.
    [6]于洪敏,左景栾,任韶然.油田采油污水回注处理技术及工艺探讨[J].腐蚀与防护,2008,29(12):776-779.
    [7]侯傲.油田污水回注处理现状与展望[J].工业用水与废水,2007,38(3):9-12.
    [8]游革新,刘改山,周铁栓,等.一种降低污水腐蚀性的油田污水处理技术[J].油田化学,2006,23(3):227-230.
    [9]曾玉彬,杨昌柱,濮文虹.稠油污水处理高效净水剂的研制与应用[J].石油与天然气化工,2005,34(6):525-528.
    [10]田启武,刘昌显,李俊成,等.移动式小区块污水处理装置的应用及效果评价[J].石油机械,2005,33(8):60-62.
    [11]付兆辉.浅海污水处理及回注工艺技术应用研究[J].中国海洋平台,2006,21(6):49-50.
    [12]孙治谦,王振波,吴存仙.油水重力分离过程油滴浮升规律的实验研究[J].过程工程学报,2009,9(1):23-37.
    [13]Meon Walter,Rommel Wolfgang,Blass Eckhart. Plate Separators for Dispe-rsed Liquid-Liquid Systems:Hydrodynamic Coalescence Model[J]. Chemical Engineering Science,1993,48(1):159-168.
    [14]Rommel Wolfgang,Blass Eckhart,Meon Walter. Plate Separators for Dispe-rsed Liquid-Liquid Systems:Multiphase Flow,Droplet Coalescence,Separ-ation Performance and Design[J]. Chemical Engineering Science,1992, 47(3):555-564.
    [15]陈文征,张贵才,尹海峰.波纹板聚结油水分离技术研究进展[J].石油矿场机械,2007,36(5):27-29.
    [16]Arnold, Kenneth E. Design Concepts for offshore produced-water Treating and DisPosal systems[J]. Petroleum Teehnology,1983,35(2):276-283.
    [17]Suzuki T.,Tambo N.,Ozawa G. A new sewage treatment system with flu-idized pellet bed separator[J]. Water Science and Technology,1993,27(11):185-192.
    [18]臧维良,王岩.带翼斜板设备处理石油污水的研究[J].石油化工环境保护,1997,6(2):12-15.
    [19]Hjelmas T.A.,Bakke S.,Hilde T.,et al. Produced water Reinjection:Experiences From Performance Measurements on Ula in the North Sea[C]. International Conference on Health,Safety and Environment in Oil and Gas Expl-oration and Production,1996,(1):903-913.
    [20]Hussain A.,Rochford D.B.Enhancing produced water quality in Kuwait Oil Company[C]. Annual Technical Conference and Exhibition,1997,(1): 471-480.
    [21]Mostefa N.M., Tir M.Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions [J]. Des-alination,2004,161 (2):115-121.
    [22]Lin S.,Lan W.Treatment of waste oil/water emulsion by ultrafiltration and ion exchange [J]. Water Research,1998,32 (9):2680-2688.
    [23]Chigusa K.,Hasegawa T.,Yamamoto N.,et al. Treatment of wastewater f-rom oil manufacturing plant by yeasts [J]. Water Science and Technology,1996, 34(11):51-58.
    [24]郑雯君.粗粒化与船用油水分离器[J].交通环保,1984,3(1):3-6.
    [25]张召基,夏世斌,吴建峰.新型陶瓷滤料处理含油废水的粗粒化试验研究[J].武汉理工大学学报,2007,29(5):58-61.
    [26]Mendoncaa M.B.,Cammarotab M.C.,Freire B.D.D.C.,et al. A New Procedure for Ttreatment of Oily Slurry Using Geotextile Filters[J]. Hazardous Materials, 2004,110(5):113-118.
    [27]Vityaz P.A.,Shelekhina V.M.,Prokhorov O.A.,et al. Development of the Porous Substrates of Ceramic Membrane Filters[J]. Engineering Physics and Thermophysics,2004,77(4):797-802.
    [28]杨骥,许德才,贾金平.聚丙烯、聚乙烯苯和丁苯橡胶粗粒化法处理模拟含油废水[J].环境化学,2006,25(6):752-756.
    [29]Hitoshi Ito,HiroshiHayashi,HiroshiSasaki. Rapid Separation of Oil Particles from Low-Concentrated O/W Emulsions in the Presence of Anionic Surfactants Using Fibrous Slag[J]. Colloid and Interface Science,2002,254(5):214-221.
    [30]孙海泉.蛇纹石粗粒化法处理油田含油污水[J].油田地面工程,1985,4(5):9-14.
    [31]张继武,张强,朱友益,等.浮选技术净化含油污水的现状及展望[J].过滤与分离,2003,26(1):8-11.
    [32]韩玉生.气浮法净化油田污水[J].注水及水处理,1992,1(5):114-118.
    [33]李克非,孙志民,白雪原.气浮与沉淀填料装置在新型气浮沉淀池中的应用[J].中国给水排水,2009,25(2):35-37.
    [34]王广丰,熊永超,孟凡英.原水流态对气浮净水固液分离效率的影响[J].辽宁工程技术大学学报(自然科学版),2008,27(2):269-271.
    [35]张宝田.浮选技术在含油污水处理中的应用研究[J].注水及水处理,1992,1(5):110-113.
    [36]张登庆,宫敬,严大凡.电气浮含油污水处理工艺研究与应用[J].油气田地面工程,2004,23(2):7-8.
    [37]张登庆,宫敬,严大凡.电气浮含油污水处理工艺室内静态试验研究[J].油气田地面工程,2004,23(1):11-12.
    [38]韩洪军.含油废水电解气浮的理论和试验[J].环境工程,1993,11(6):7-13.
    [39]任连锁.电解-浮选法处理含油污水的研究[J].净水技术,2005,24(1):19-11.
    [40]王永广,杨剑锋.电气浮-接触氧化法处理油田含油污水的研究[J].工业用水与废水,2004,35(5):58-60.
    [41]侯士兵,玄雪梅,贾金平等.不溶性阳极电解气浮法处理含油废水的试验研究[J].工业用水与废水,2004,35(2):44-47.
    [42]王波,陈家庆,梁存珍.含油废水气浮旋流组合处理技术浅析[J].工业水处理,2008,28(4):87-92.
    [43]付海晔,王淑梅.气浮法含油污水处理技术简介[J].华北石油设计,2001,5(4):1-3.
    [44]Seureau J.J., et al. A Three-Phase Separator for the Removal of Oil and Solid FromProduced water [J]. Annual Technical Conference and Exhibition,1994, 9(5):25-28.
    [45]Casaday. Advances in flotation unit design for produced water treatment [J]. Production Operations Symposium,1993,2(5):581-590.
    [46]刘晓敏,刘银梅,蒋明虎.影响动态水力旋流器脱油性能的综合因素[J].化工机械,2006,33(2):122-126.
    [47]黄圣鹏,邱正阳,邓松圣.油水分离旋流技术研究进展[J].重庆科技学院学报(自然科学版),2008,10(5):16-18.
    [48]Brayshaw, Michael D.. Numerical model for the inviscid flow of a fluid in a hydrocyclone to demonstrate the effects of changes in the vorticity functio-n of the flow field on particle classification [J]. Mineral Processing,1990, 29(12):51-75.
    [49]Wolfenberger, Erick. Produced water treatment with vortoil(R) hydrocyclones in high pressure gas production[C]. Annual Southwestern Petroleum Short Course,1992,3(2):466-475.
    [50]Flanigan, David A., Stolhand, et al. Use of low-shear pumps and hydrocyclones for improved performance in the cleanup of low-pressure water. SPE Production Engineering,1993,7(3):295-300.
    [51]Lohne. Separation of solids from produced water using hydrocyclone technology. Chemical Engineering Research and Design,1994, 72(A2):169-175.
    [52]Strode S.M.,Wolfenberger E.E.Hydrocyclone separation:A preferred means of water separation and handling in oilfield production[C]. the Permian Basin Oil and Gas Recovery Conference,1944,3(2):47-455.
    [53]Colman D.A., Thew M.T., Corney D.R., et al. Hydrocyclones for oil/water separation[J]. BHRA Fluid Eng,1981,6(5):143-165.
    [54]Marsden P.G., Colman D. A., Thew M.T.Microcomputer control of a system of hydrocyclones [J]. BHRA Fluid Eng,1983,3(5):77-88.
    [55]Dabir B., Petty C.A.Flow visualization of coherent structures in a 3 doubl-e prime-hydrocyclone with a 2:1 contraction in the vortex finder [J]. Hemisphere Publ Corp,1985,1(5):434-443.
    [56]Hargreaves J.H.,Silvester R.S. Computational fluid dynamics applied to the analysis of deoiling hydrocyclone performance [J]. Chemical Engineering Res-earch and Design,1990,68(4):365-383.
    [57]Cockshutt C.D., Fode Gerry. Condensate cleans up oily produced water[J]. Oil and Gas Journal.1991,89(47):76-78.
    [58]Mahanta D., Rahman A.Effluent treatment with ionene polymers. Ⅰ. Pilol-plant and field trials [J]. Research and Industry,1992,37(4):211.
    [59]Durham D.K. Advances in water clarifier chemistry for treatment of produced water on gulf of Mexico and north sea offshore [J]. Facilities,1993, 7(4):615-622.
    [60]Rush, Thomas E.. Low molecular weight amines and amine quaternaries for the removal of soluble organics in oil field produced water [P]. United States, 5354477,1994.
    [61]Frankiewicz, Theodore C., Tussaneyakul. Upgrading production facilities on the Funan platform to remove hydrocarbons and heavy metals from produced water. Annual Offshore Technology Conference,1997,1(4):299-310.
    [62]曲久辉,林谡,田宝珍.高铁氧化去除饮用水中邻氯苯酚的研究[J].环境科学学报,2001,21(6):701-704.
    [63]李绵贵,张万忠,祖荣.阳离子季铵盐聚电解质的开发应用[J].油气田地面工程,2001,20(2):36-37.
    [64]曾玉彬,黄保军,王益军.无机高分子复合絮凝剂的研究进展及应用[J].江苏化工,2008,36(1):5-10.
    [65]贾耀勤,舒勇,刚学爱.胜利桩西油田水处理流程的改进及水处理剂的研制[J].油气田地面工程,1999,18(2):34-37.
    [66]高宝玉,魏锦程,王燕.聚合铁复合絮凝剂处理地表水的性能研究[J].中国给水排水,2006,22(7):57-61.
    [67]马红竹,王博,张宁生.含油污水综合治理新方法[J].石油与天然气化工,1999,28(3):228-230.
    [68]刘盛兵.电化学方法在脱除废水COD中的应用[J].石油与天然气化工,2002,31(4):218-221.
    [69]邵青,林蓓.新型高效脱色絮凝剂系列产品的开发及应用试验[J].工业水处理,2002,22(9):25-26.
    [70]尹先清,郑琼,李玫.大港南部油田回注污水结垢性与配伍性研究[J].工业水处理,2008,28(10):24-26.
    [71]高宝玉.油田含油污水净化处理[J].环境工程,1998,12(3):12-15.
    [72]周洪洋,侯影飞,李春虎.吸附剂在含油废水处理中的应用研究进展[J].工业水处理,2009,29(2):1-5.
    [73]Ol' shanskii V.O.Sorbent for removing crude oil and petroleum products from water and ground surface and prepration from brown coal[J]. Fuel and Energy Abstracts,2004,31(7):251.
    [74]Cambiella A., Ortea E., Rios G, et al. Treatment of oil-in-water emulsion-s: Performance of a sawdust bed filter[J]. Hazardous Materials,2006,131 (1/2/3):195-199.
    [75]Kumagai S., Noguchi Y, Kurimoto Y., et al. Oil adsorbent produced by the carbonization of rice husks[J]. Waste Management,2007,27(4):554-561.
    [76]Cao A., Wang Q., Chen T.V., et al. Synthesis regeneration and application of sorption resins[J]. Transactions of Tianjin University,1999,5(1):88-92.
    [77]Toyoda M. Aizawa J. Inagaki M. Sorption and recovery of heavy oil using exfoliated graphite[J]. Desalination,1998,115(2):199-201.
    [78]UGda Silva U.G.,de F.,Melo M.A.,da Silva A.F.,et al. Adsorption of crude oil on anhydrous and hydrophobized vermiculite[J]. Colloid and Interf-ace Science, 2003,260(2):302-304.
    [79]Ayotamuno M.J, Kogbara R.B, Ogaji S.O.T, et al. Petroleum contaminated ground-water:Remediation using activated carbon [J]. Applied Energy,2006, 83(11):1258-1264.
    [80]陈国华.水体油污染治理[M].北京:化学工业出版社,2002:62-81.
    [81]刘茉娥.膜分离技术[M].北京:化学工业出版社,1998:20-21.
    [82]李明义.油田采出水处理技术实践与发展.石油规划与设计.2003,14(1):19-24.
    [83]Santos. Ultra-filtration of water generated in oil and gas [J]. Water Environment Research,1997,69(6):1120-1127.
    [84]李发永,李阳初.含油污水的超滤法处理[J].水处理技术,1995,21(3):145-146.
    [85]吕晓龙.中空超滤法处理油田污水的现场试验[J].水处理技术,1996,22(4):123-125.
    [86]尹赐予,张洪良.超滤法处理油田含油污水的试验研究[J].石油机械,2003,31(8):1-4.
    [87]吉鸿安.高钠废水代盐再生树脂的研究[J].甘肃冶金,2008,30(1):6-8.
    [88]李风华.弱酸H-Na离子交换系统在蒸汽锅炉水处理中的应用[J].工业锅炉,2007,(4):25-27.
    [89]李学志,张英才.离子交换器再生水回收及利用[J].工业用水与废水,2006,37(4):47-50.
    [90]康乐.稠油污水深度处理所需离子交换树脂的影响因素研究[J].新疆石油科技,2005,15(1):41-43.
    [91]谢祖芳,谭华颖,朱万仁.石灰-纯碱软化/混凝预处理刁江河水[J].环境科学与技术,2007,30(6):72-75.
    [92]廖志红,魏兴民.水的石灰软化处理及排渣再利用技术[J].工业用水与废水,2006,37(6):64-67.
    [93]Garbutt C.F.Innovative Treating Processes Allow Steamflooding with Poor Quality Oilfield Water. Annual Technical Conference and Exhibition,1997, (4): 491-499.
    [94]尹连庆,关新玉.石灰软化法处理循环冷却水系统排污水[J].工业用水与废水,2005,36(4):32-35.
    [95][法]德格雷蒙公司.水处理手册[M].北京:中国建筑工业出版社,1990,6(4):106-107.
    [96]Ho D.W. Morgan B.T. Effects of steam quality on cyclic steam stimulation at Cold Lake, Alberta. Proc Int Arct Technol Conf.1991,2(4):75-82.
    [97]冯庆伟,温涛,温建萍.油田热采注汽系统软化污水结垢原因[J].石油化工腐蚀与防护,2004,21(4):45-47.
    [98]Khatib, ZI,贾庆,等.油田蒸汽锅炉中二氧化硅含量对垢沉积和管壁损耗的影响[J].国外油田工程,2002,18(3):41-44.
    [99]马晓雁,庞维海,李青松.稠油废水混凝法除硅工艺研究[J].给水排水,2008,34(11):183-186.
    [100]Matson. J.V.Industrial waste water reuse by selective silica ermoval over activated alumina [P]. U.S.,4276180, and 1981.
    [101]Hussain Aard Rochford D.B.Enhancing produced water quality in Kuwait Oil Company[C]. Annual Technical Conference,1997,2(8):5-8.
    [102]Environment Canada, WTC, Burlington, Ontario. Activated alumina adsorption of silica and dissolved organics from produced water[C].the Fall 1988 Technical Meeting of the Canadan Heavy Oil Association,Calgary, Albert, 1988,2(3):10-25.
    [103]赵振兴,韩桂华,李芮丽.稠油污水回用锅炉化学除硅技术的研究[J].工业水处理,2004,14(8):28-31.
    [104]孙绳昆.稠油采出水深度处理除硅工艺技术[J].石油规划设计,2005,16(5):27-29.
    [105][美]M.帕拉茨.热力采油[M].北京:石油工业出版社,1989,12(5):28-31.
    [106]王北福,于水利,魏泽刚.超滤和电渗析联合处理含聚废水的试验研究[J].给水排水,2006,32(5):45-48.
    [107]Yeon K.H.,Song J.H.,Shim J.,et al. Integrating electrochemical processes with electrodialysis reversal and electroxidation to minimize COD and TN at wastewater treatment facilities of power plants[J]. Desalination,2007,202(5): 400-410.
    [108]李树生,吴宗生.滩田饱和卤水机械式蒸汽再压缩蒸发工艺研究[J].盐业与化工,2009,38(1):18-20.
    [109]涂丛慧,王晓琳.电渗析法去除水体中无机盐的研究进展[J].水处理技术,2009,35(2):14-18.
    [110]Steve Holt. The role of freeze concentration in waste water disposal [J]. Filtration and Separation,1999,36(10):34-35.
    [111]王树立,李贝贝,武雪红.真空膜蒸馏法处理含甲醛废水试验研究[J].水处理技术,2009,35(4):82-86.
    [112]胡成亮,冯权莉,宁平.厌氧生物处理的动力学综述[J].化工科技,2008,16(5):68-71.
    [113]Borja, Martin A., Duran M.M., et al. Kinetie study of anaerobic digestion of brewery waste water [J]. Proeess Bioehemistry,1994,29(5):645-650.
    [114]LeslieGrady C.P., Henry C废水生物处理理论与应用[M].北京:中国建筑工业出版社,1989,3(5):268.
    [115]House CH.Combining constructed wetlands and aquatic and soil filter for reclamation and reuse of water [J]. Ecol Eng,1999,12(l):27-38.
    [116]Brix H.. Use of constructed wetland in water pollution control:Historical development present status and future perspectives [J]. Wat Sci Tech,1994, 30(8):209-223.
    [117]Drizo A, Frost C.A., Grace J.Physico-chemical screening of phosphateremoving substrates for use in constructed wetland systems [J]. Wat Res,1999,33(7):3595-3602.
    [118]GAO Zheng Min. Land Treatment Technology Design Guide-Book for Municipal Wastewater. Beijing:China Standard Press. (In Chinese),1991,2(25): 129-134.
    [119]Vymazal J.B.Horizontal subsurface flow and hybrid constructed wetlands systems for wastewater treatment[J]. Ecological Engineering,2005,25(5): 478-490.
    [120]Sun Tie Hang, Zhou Si Yi. Land Treatment Technology Guide-Book for Municipal Wastewater[J]. China Environmental Science Press,1997.
    [121]Hans, Brix. Use of constructed wetland in water pollution control:historical development, present status, and future perspectives [J]. Wat. Sci. Tech.,1994, 30(8):209-223.
    [122]Knight R.L.The Use of Treatment Wetlands for Petroleum Industry Effluents[J]. Environmental Science and Technology,1999,33(7):973-980.
    [123]Madian E.S.. Treating of produced water for surface discharge at the Arun gas condensate field.SPE Paper 28946, Presented at the SPE International Symposium on Oilfield Chemistry, San Antonio Texas,USA[M].1995, 14-17.
    [124]Lawrence A.W.Regional assessment of produced water treatment and disposal practices and research needs[C]. Exlploration&Production Environmental Conference.Houston TX,1995:27-29.
    [125]籍国东,孙铁珩,常士俊,等.人工潜流湿地处理稠油采出水的实验研究[J].环境科学学报,2001,21(5):619-621.
    [126]籍国东,孙铁珩,常士俊,等.辽河油田超稠油废水潜流湿地处理系统研究[J].中国环境科学,2001,21(1):85-88.
    [127]籍国东,孙铁珩,常士俊,等.自由表面流人工湿地处理超稠油废水[J].环境科学,22(4):95-99.
    [126]Guodong Ji, Tieheng Sun, Qixing Zhou, Sijun Chang, Peijun Li. Constructed subsurface flow wetland for treating heavy oil produced water of the Liaohe oil[J]. China Ecological Engineering,2002,18(4):489-495.
    [127]籍国东,倪晋仁.人工湿地废水生态处理系统的作用机制[J].环境污染治理技术与设备,2004,5(6):71-75.
    [128]李志东,李娜,魏莉.新型内循环生物流化床处理油脂废水的试验研究[J].中国给水排水,2007,23(19):56-61.
    [129]Faure P.,Vilmin F.,Michels R., et al. Application of thermodesorption and pyrolysis-GC-AED to the analysis of river sediments and sewage sludges for environment alpurpose[J].Anal Appl Pyrolysis,2002,62(2):297-318.
    [130]Nunez-Regueira L.,Rodriguez-Anon J.,Proupin-Castineiras J.,et al. Energetic evaluation of biomass originating from forestwaste by bomb calorimetry[J].Thermochim Acta,2001,66(1):281-292.
    [131]李安婕,刘红,王文燕.生物活性炭流化床净化采油废水的效能及特性[J].环境科学,2006,27(5):918-923.
    [132]Steven I Safferman, Paul L.B.. Operating strategies for aerobic fluidized bed reactors[J]. Hazardous Materials,1997,54(1):241-253.
    [133]Lazarova V., Manem J.Advances in biofilm aerobic reactors ensuring effective biofilm activity control [J]. Water Science Technology,1994,29(1): 319-327.
    [134]Isaacs, S. Henze, M. Kummel, M. Adaptive algorithm for external carbon addition to an alternating activated sludge process for nutrient removal from waste water [J]. Chemical Engineering Science,1995,50(4):617-629.
    [135]Dyal, Shyam (Petrotrin), Nijhawan, Arun, Ramnath Kelvin. Environmental management strategies for an enhanced oil recovery project Trinidad [J]. Proceedings-SPE Annual Technical Conference and Exhibition,1995, (1): 485-489.
    [136]Dutta S., Hoffmann Erhard. Hahn H.H. Study of rotating biological contactor performance in wastewater treatment using multi-culture biofilm model [J]. Water Science and Technology,2007,55(8-9):345-353.
    [137]Mishra Vedprakash S., Mahajani Vijaykumar V., Joshi Jyeshtharaj B. Wet air oxidation [J]. Source:Industrial and Engineering Chemistry Research,1995, 34(1):2-48.
    [138]阴和平,于姗姗,李秀珍.高浓度、难生物降解废水催化湿式空气氧化研究概况[J].甘肃石油和化工,2009,1(7):1-10.
    [139]Rice R.G., Robson C.M.Biological Activated Carbon:Enhanced Aerobic Biological Activity in GAC Systems [M]. Ann.Arbor.Science,Ann Arbor,1982, 13 (3):43-45.
    [140]潘红磊.辽河油田采油污水处理技术研究[D].中国地质大学,2002,24(9):133-147.
    [141]刘坤,王磊,何群彪.稠油污水的有机组成及可生化性研究[J].工业用水与废水,2003,34(2):35-37.
    [142]萨依绕,李慧敏,张燕萍等.新疆油田含油污泥处理技术研究与应用[J].油气田环境保护,2009,19(2):11-13.
    [143]蔡钊荣.油田含油污水处理及回用技术[D].西南石油大学,2006,4(1):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700