用户名: 密码: 验证码:
基于吲哚的阴离子受体的设计合成、结合性质及其自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用吲哚单体设计合成了一系列阴离子中性受体,考察了基于吲哚的阴离子受体在溶液中的阴离子结合性质,并应用于一些特定阴离子的选择性识别传感,实现了对氟离子和醋酸根离子的目测识别。同时以阴离子为配位中心,构建了阴离子主导的阴离子配位聚合物。本论文研究工作的主要内容与创新点表现在以下几个方面:
     (1)设计合成了一种基于吲哚咔唑和喹喔啉结构的阴离子受体,并应用于阴离子的比色荧光识别。这类基于吲哚的阴离子受体具有平面刚性结构和较大的π芳香体系,因此表现出丰富的光谱特征。受体在乙腈溶液中对醋酸根离子有很强的结合能力和较高的选择性,并在醋酸根离子的作用下发生荧光淬灭。在二甲基亚砜溶剂中,受体对氟离子和醋酸根离子有很好的吸收光谱响应,产生明显的吸收峰红移现象,这些光谱变化伴随着显著的溶液颜色变化,因此这类受体可以用于氟离子和醋酸根离子的目测识别。同时,不同的颜色变化也为我们提供了一种定性区分氟离子和醋酸根离子的方法。受体与醋酸根离子的复合物晶体结构表明,受体的吲哚咔唑结合位点可以和醋酸根离子形成两个相互匹配的氢键作用,从而牢固的地结合在一起。因此,该类受体无论在溶液中还是在固态下都可为Y形状的羧酸根离子提供了一种有效的识别模式。
     (2)以上述平面刚性的阴离子受体为结构单元构建了一系列阴离子复合物。这些阴离子包括球形的氟离子和溴离子、Y形的醋酸根离子和苯甲酸根离子、平面三角形的硝酸根离子、正四面体形的硫酸氢根离子和磷酸二氢离子和八面体形的六氟硅酸根离子。深入系统地研究了固态中阴离子的大小、碱性和几何形状对阴离子结合能力、配位模式和组装结构的影响。在阴离子的主导下,通过氢键、π一π堆积和芳香环C-H氢键作用,形成了多种结构各异的阴离子聚集体,如5:6的阴离子复合物、阴离子二聚体和离子链、阳离子通道和三明治状夹心结构。这些结构有助于构建阴离子主导的自组装超分子体系,在阴离子配位化学的研究中具有重要意义。
     (3)设计合成了一系列基于吲哚的含有两个结合位点的阴离子受体结构单元,构建了阴离子主导的阴离子配位聚合物。两个相距较远的阴离子结合位点(双吲哚和吲哚咔唑)通过较大的平面刚性分子连接起来,从而大大降低了阴离子结合过程中的静电相互干扰,保证了受体与阴离子结合的氢键强度、拓扑结构和空间维度。结构单元自身可以通过与溶剂分子的氢键作用或者π-π堆积作用,自组装形成一维带状结构或分子二聚体。这类阴离子受体在溶液中按照1:2化学计量比对氟离子、磷酸二氢根离子和醋酸根离子有很强的结合能力,并可作为一种有效的比色传感器用于二甲基亚砜溶液中氟阴离子目测识别。固态结构研究表明,正是由于阴离子受体结构单元独特的空间结构,它们可以与正四面体形状的磷酸二氢阴离子以以一定化学计量比结合,在固态中自组装形成一系列多维网状阴离子配位聚合物。这些多维网状结构中含有独特的磷酸二氢根二聚体和离子链,它们扮演类似于阳离子配位聚合物中金属离子的角色,主导了固态中多维网状结构的自组装超分子体系。但是,没有直接的证据表明溶液中也存在这些超分子聚集体。
In this dissertation a series of well-designed anion receptors based on indole were prepared, their anion binding properties in solution and anion-directed metal-free multidimensional coordination polymer in solid state were investigated. The design, preparation, anion binding properties and anion-directed self-assembly of such anion recetpors were studied in detail, which are summarized as follows:
     A new series of indolocarbazole-quinoxalines (DIPZs) were prepared and characterized for effective fluoride and acetate anions sensing. The new indole-based system had a highly flat rigid structure with largeπsystem, and exhibited high binding affinity and sensitivity for acetate and fluoride anions. Receptors gave abundant and unique spectral feature in dimethyl sulfoxide (DMSO). Both fluoride and acetate anions caused a bathochromic shift of the absorption peaks of receptor nitro-substituted DIPZ in DMSO, whereas only fluoride anion resulted in a remarkable shift of the absorption peak of receptor DIPZ in DMSO. Both receptors could also operate as efficient colorimetric sensors for naked-eye detecting of fluoride and acetate anions, and their combined use also offered a simple way for naked-eye distinguishing of these two anions. Notably, the DIPZ system offered novel and excellent receptors for Y-shaped anion both in solution and in crystalline solid through the formation of two hydrogen bonds.
     The easy-to-make anion receptor DIPZ was employed as a versatile building block for constructing anion complexes with spherical fluoride and bromide, Y-shaped acetate and benzoate, trigonal nitrate, tetrahedral hydrogen sulfate and dihydrogen phosphate, and octahedral hexafluorosilicate anions. A systematical solid-state study was performed to investigate the influence of the size, basicity and geometry of anionic substrates on anion-binding affinities and modes, even the assembling structures in the solid state. The combination of conventional hydrogen bonding (N-H hydrogen bonding) and other weak interactions (aryl C-H aryl hydrogen bonding andπ-πstacking interaction) led to the formation of a series of anion-assisted supramolecular architectures with specific aggregates, such as 5:6 binding structure, anionic dimer and chain, cationic channel and sandwich-like structure, which have attracted extensive interests in supramolecular chemistry.
     Strategies for exploring anionic templates to direct the sophisticated supramolecular assembly have attracted various attentions. Herein, a series of new anion receptors containing two indole-based binding sites bridged by linking spacer pyrazino[2.3-g]quinoxaline were rationally designed and prepared from precursors 2,3-diindol-3'yl quinoxaline and DIPZ. X-ray analysis showed self-connected network and dimeric packing via hydrogen bonding andπ-πstacking interaction in the solid state in the structures. All the three receptors exhibited a series of prominent absorption bands from the expandedπsystem. The novel indole-based expanded receptors were found to strongly and selectively bind F-, AcO- and H2PO4- among the tested anions (F-,Cl-,Br-, AcO-,H2PO4-, HSO4-,NO3-, and ClO4-) and operated as efficient colorimetric sensors for naked-eye detecting of fluoride anion in DMSO solution. These tailored building blocks captured two anions located at far-spaced binding sites, adopting non-interfering anion-binding processes to guarantee the anion-binding affinity, topology and dimensionality. Solid studies elucidated that the neutral receptors interacted with tetrahedral dihydrogen phosphate anion in proper proportions and designed topologies, leading to the formation of a series of multidimensional networks by self-assembly in the solid state. The observation represented the well-characterized phosphate-directed assembly of multidimensional metal-free coordination polymers in the solid state, where the formed phosphate aggregates including dimer encapsulated in indole-mediated hydrogen-bonded pocket and infinite chain behaved as anionic templates to direct the self-assembly. However, no evidences proved such phosphate-directed infinite coordination polymers in solution.
引文
[1]Suksai, C.; Tuntulani, T. Chromogenic anion sensors. Chem. Soc. Rev.2003,32, 192-202.
    [2]Cametti, M.; Rissanen, K. Recognition and sensing of fluoride anion. Chem. Commun.2009,2809-2829.
    [3]He, J. J.; Quiocho, F. A. A noconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor. Science 1991,251,1479-1481.
    [4]Jalava, P. I.; Salonen, R. O.; Pennanen, A. S.; Happo, M. S.; Penttinen, P.; Halinen, A. I.; Sillanpaa, M.; Hillamo, R.; Hirvonen, M. R. Effects of solubility of urban air fine and coarse particles on cytotoxic and inflammatory responses in RAW 264.7 macrophage cell line. Toxicol. Appl. Pharm.2008,229,146-160.
    [5]Saenger, W. Principles of Nucleic Acid Structure. Springer-Verlag:New York, 1988.
    [6]Schmidtchen, F. P.; Berger, M. Artificial Organic Host Molecules for Anions. Chem. Rev.1997,97,1609-1646.
    [7]Beer, P. D.; Gale, P. A. Anion recognition and sensing:The state of the art and future perspectives. Angew. Chem. Int. Ed.2001,40,486-516.
    [8]Martinez-Manez, R.; Sancenon, F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev.2003,103,4419-4476.
    [9]Banchi, A.; Browman-James, K.; Garcia-Espana. E. Supramolecular Chemistry of Anions. WILEY-VCH, New York,1997.
    [10]Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion Receptor Chemistry. The Royal Society of Chemistry, Cambridge, U.K.,2006.
    [11]Park, C. H.; Simmons, H. E. Macrobicyclic amines. Ⅲ. Encapsulation of halide ions by in,in-1,(k+2)-diazabicyclo[k.l.m.]alkane ammonium ions. J. Am. Chem. Soc.1968,90,2431-2432.
    [12]Bowman-James, K. Alfred Werner revisited:The coordination chemistry of anions. Acc. Chem. Res.2005,38,671-678.
    [13]许胜,刘斌,田禾.阴离子荧光化学传感器新进展.化学进展.2006,18,687-697.
    [14]O'Neil, E. J.; Smith, B. D. Anion recognition using dimetallic coordination complexes. Coord. Chem. Rev.2006,250,3068-3080.
    [15]Cho, D. G.; Sessler, J. L. Modern reaction-based indicator systems. Chem. Soc. Rev.2009,38,1647-1662.
    [16]Best, M. D.; Tobey, S. L.; Anslyn, E. V. Abiotic guanidinium containing receptors for anionic species. Coord. Chem. Rev.2003,240,3-15.
    [17]Llinares, J. M.; Powell, D.; Bowman-James, K. Ammonium based anion receptors. Coord. Chem. Rev.2003,240,57-75.
    [18]Bondy, C. R.; Loeb, S. J. Amide based receptors for anions. Coord. Chem. Rev. 2003,240,77-99.
    [19]Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev.2006,250,3094-3117.
    [20]Gale, P. A.; Anzenbacher, P., Jr.; Sessler, J. L. Calixpyrroles Ⅱ. Coord. Chem. Rev.2001,222,57-102.
    [21]Sessler, J. L.; Davis, J. M. Sapphyrins:Versatile anion binding agents. Acc. Chem. Res.2001,34,989-997.
    [22]Sessler, J. L.; Camiolo, S.; Gale, P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev.2003,240,17-55.
    [23]Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402,276-279.
    [24]Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002,295,469-472.
    [25]Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300,1127-1129.
    [26]Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000,404,982-986.
    [27]Kang, S.O.; Begum, R. A.; Bowman-James, K. Amide-based ligands for anion coordination. Angew. Chem. Int. Ed.2006,45,7882-7894.
    [28]Kang, S. O.; Hossain, M. A.; Bowman-James, K. Influence of dimensionality and charge on anion binding in amide-based macrocyclic receptors. Coord. Chem. Rev.2006,250,3038-3052.
    [29]Lankshear, M. D.; Beer, P. D. Interweaving anion templation. Acc. Chem. Res. 2007,40,657-668.
    [30]Lankshear, M. D.; Beer, P. D. Strategic anion templation. Coord. Chem. Rev. 2006,250,3142-3160.
    [31]Mullen, K. M.; Beer, P. D. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. Chem. Soc. Rev.2009,38,1701-1713.
    [32]Vickers, M. S.; Beer, P. D. Anion templated assembly of mechanically interlocked structures. Chem. Soc. Rev.2007,36,211-225.
    [33]Hosseini, M. W. Molecular tectonics:From simple tectons to complex molecular networks. Acc. Chem. Res.2005,38,313-323.
    [34]Hosseini, M. W. Molecular tectonics:from molecular recognition of anions to molecular networks. Coord. Chem. Rev.2003,240,157-166.
    [35]Custelcean, R.; Jiang, D. E.; Hay, B. P.; Luo, W. S.; Gu, B. H. Hydrogen-bonded helices for anion binding and separation. Crystal Growth & Design 2008,8, 1909-1915.
    [36]Custelcean, R.; Remy, P.; Bonnesen, P. V.; Jiang, D. E.; Moyer, B. A. Sulfate ecognition by persistent crystalline capsules with rigidified hydrogen-bonding cavities. Angew. Chem. Int. Ed.2008,47,1866-1870.
    [37]Gale, P. A. Synthetic indole, carbazole, biindole and indolocarbazole-based receptors:applications in anion complexation and sensing. Chem. Commun.2008, 4525-4540.
    [38]Verschueren, K. H. G.; Seljee, F.; Rozeboom, H. J.; Kalk, K. H.; Dijkstra, B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 1993,363,693-698.
    [39]Kubik, S. Amino acid containing anion receptors. Chem. Soc. Rev.2009,38, 585-605.
    [40]Curiel, D.; Cowley, A.; Beer, P. D. Indolocarbazoles:a new family of anion sensors. Chem. Commun.2005,236-238.
    [41]Ju, J.; Park, M.; Suk, J.-m.; Lah, M. S.; Jeong, K.-S. An anion receptor with NH and OH groups for hydrogen bonds. Chem. Commun.2008,3546-3548.
    [42]Chae, M. K.; Lee, J. I.; Kim, N.-K.; Jeong, K.-S. An ion pair receptor showing remarkable enhancement of anion-binding strengths in the presence of alkali metal cations. Tetrahedron Lett.2007,48,6624-6627.
    [43]Chang, K. J.; Chae, M. K.; Lee, C.; Lee, J. Y.; Jeong, K.-S. Biindolyl-based molecular clefts that bind anions by hydrogen-bonding interactions. Tetrahedron Lett.2006,47,6385-6388.
    [44]Bates, G. W.; Triyanti; Light, M. E.; Albrecht, M.; Gale, P. A.2,7-functionalized indoles as receptors for anions. J. Org. Chem.2007,72,8921-8927.
    [45]Makuc, D.; Lenarcic, M.; Bates, G. W.; Gale, P. A.; Plavec, J. Anion-induced conformational changes in 2,7-disubstituted indole-based receptors. Org. Biomol. Chem.2009,7,3505-3511.
    [46]Pfeffer, F. M.; Lim, K. F.; Sedgwick, K. J. Indole as a scaffold for anion recognition. Org. Biomol. Chem.2007,5,1795-1799.
    [47]Shiraishi, Y.; Maehara, H.; Sugii, T.; Wang, D. P.; Hirai, T. A BODIPY-indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Lett.2009,50,4293-4296.
    [48]Makuc, D.; Triyanti; Albrecht, M.; Plavec, J.; Rissanen, K.;Valkonen, A.; Schalley, C. A. The Halide Binding Behavior of 2-Carbamoyl-7-ureido-1H-indoles:Conformational Aspects. Eur. J. Org. Chem.2009,2009,4854-4866.
    [49]Bates, G. W.; Gale, P. A.; Light, M. E. Isophthalamides and 2,6-dicarboxamidopyridines with pendant indole groups:a'twisted' binding mode for selective fluoride recognition. Chem. Commun.2007,2121-2123.
    [50]Caltagirone, C.; Gale, P. A.; Hiscock, J. R.; Brooks, S. J.; Hursthouse, M. B.; Light, M. E.1,3-Diindolylureas:high affinity dihydrogen phosphate receptors. Chem. Commun.2008,3007-3009.
    [51]Caltagirone, C.; Mulas, A.; Isaia, F.; Lippolis, V.; Gale, P. A.; Light, M. E. Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chem. Commun.2009,6279-6281.
    [52]Dydio, P.; Zielinski, T.; Jurczak, J. Anion receptors based on 7,7'-diamido-2,2 '-diindolylmethane. Chem. Commun.2009,4560-4562.
    [53]Caltagirone, C.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E.; Gale, P. A. 1,3-Diindolylureas and 1,3-Diindolythioureas:Anion Complexation studies in Solution and the Solid State. Chem. Eur. J.2008,14,10236-10243.
    [54]Sessler, J. L.; Cho, D. G.; Lynch, V. Diindolylquinoxalines:Effective indole-based receptors for phosphate anion. J. Am. Chem. Soc.2006,128, 16518-16519.
    [55]Hiscock, J. R.; Caltagirone, C.; Light, M. E.; Hursthouse, M. B.; Gale, P. A. Fluorescent carbazolylurea anion receptors. Org. Biomol. Chem.2009,7, 1781-1783.
    [56]Shiraishi, Y.; Maehara, H.; Hirai, T. Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Org. Biomole. Chem. 2009,7,2072-2076.
    [57]He, X. M.; Hu, S. Z.; Liu, K.; Guo, Y.; Xu, J.; Shao, S. J. Oxidized bis(indolyl)methane:A simple and efficient chromogenic-sensing molecule based on the proton transfer signaling mode. Org. Lett.2006,8,333-336.
    [58]Caltagirone, C.; Gale, P. A.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E.; Tizzard, G. J.2-Amidoindole-based anion receptors. Supramol. Chem.2009,21, 125-130.
    [59]Zielinski, T.; Dydio, P.; Jurczak, J. Synthesis, structure and the binding properties of the amide-based anion receptors derived from 1H-indole-7-amine. Tetrahedron 2008,64,568-574.
    [60]Caltagirone, C.; Mulas, A.; Isaia, F.; Lippolis, V.; Gale, P. A.; Light, M. E. Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chem. Commun.2009,6279-6281
    [61]Dydio, P.; Zielinski, T.; Jurczak, J.7,7'-Diureido-2,2'-diindolylmethanes:Anion Receptors Effective in a Highly Competitive Solvent, Methanol. Org. Lett.2010, 12,1076-1078.
    [62]Yu, J. O.; Browning, C. S.; Farrar, D. H. Tris-2-(3-methylindolyl) phosphine as an anion receptor. Chem. Commun.2008,1020-1022.
    [63]Nishiki, M.;Oi, W.; Ito, K. Anion binding properties of indolylmethanes. J. Incl. Phenom. Macro.2008,61,61-69.
    [64]Chang, K. J.; Moon, D.; Lah, M. S.; Jeong, K.-S. Indole-based macrocycles as a class of receptors for anions. Angew. Chem. Int. Ed.2005,44,7926-7929.
    [65]Kim, N.-K.; Chang, K. J.; Moon, D.; Lah, M. S.; Jeong, K.-S. Two distinct anion-binding modes and their relative stabilities. Chem. Commun.2007, 3401-3403.
    [66]Sessler, J. L.; Maeda, H.; Mizuno, T.; Lynch, V. M.; Furuta, H. Quinoxaline-oligopyrroles:Improved pyrrole-based anion receptors. Chem. Commun.2002,862-863.
    [67]Anzenbacher, P., Jr., Try, A. C.; Miyaji, H.; Jursikova, K.; Lynch, V. M.; Marquez, M.; Sessler, J. L. Fluorinated calix 4 pyrrole and dipyrrolylquinoxaline: Neutral anion receptors with augmented affinities and enhanced selectivities. J. Am. Chem. Soc.2000,122,10268-10272.
    [68]Sessler, J. L.; Maeda, H.; Mizuno, T.; Lynch, V. M.; Furuta, H. Quinoxaline-bridged porphyrinoids. J. Am. Chem. Soc.2002,124,13474-13479.
    [69]Kim, J.I.; Juwarker, H.; Liu, X.; Lah, M. S.; Jeong, K.-S. Selective sulfate binding induces helical folding of an indolocarbazole oligomer in solution and solid state. Chem. Commun.2010,46,764-766.
    [70]Kim, U.-I.; Suk, J.-m.; Naidu, V. R.; Jeong, K.-S. Folding and Anion-Binding Properties of Fluorescent Oligoindole Foldamers. Chem. Eur. J.2008,14, 11406-11414.
    [71]Chang, K. J.; Kang, B. N.; Lee, M. H.; Jeong, K.-S. Oligoindole-based foldamers with a helical conformation induced by chloride. J. Am. Chem. Soc.2005,127, 12214-12215.
    [72]Suk, J.-m.; Jeong, K.-S. Indolocarbazole-based foldamers capable of binding halides in water. J. Am. Chem. Soc.2008,130,11868-11869.
    [73]Naidu, V. R.; Kim, M. C.; Suk, J.-m.; Kim, H. J.; Lee, M.; Sim, E.; Jeong, K.-S. Biased Helical Folding of Chiral Oligoindole Foldamers. Org. Lett.2008,10, 5373-5376.
    [74]Davis, J. J.; Orlowski, G. A.; Rahman, H.; Beer, P. D. Mechanically interlocked and switchable molecules at surfaces. Chem. Commun.2010,46,54-63.
    [75]Li, Y. T.; Mullen, K. M.; Claridge, T. D. W.; Costa, P. J.; Felix, V.; Beer, P. D. Sulfate anion templated synthesis of a triply interlocked capsule. Chem. Commun. 2009,7134-7136.
    [76]Brown, A.; Mullen, K. M.; Ryu, J.; Chmielewski, M. J.; Santos, S. M.; Felix, V.; Thompson, A. L.; Warren, J. E.; Pascu, S. I.; Beer, P. D. Interlocked Host Anion Recognition by an Indolocarbazole-Containing 2 Rotaxane.J.Am. Chem. Soc. 2009,131,4937-4952.
    [77]Chmielewski, M. J.; Zhao, L. Y.; Brown, A.; Curiel, D.; Sambrook, M. R.; Thompson, A. L.; Santos, S. M.; Felix, V.; Davis, J. J.; Beer, P. D. Sulfate anion templation of a neutral pseudorotaxane assembly using an indolocarbazole threading component. Chem. Commun.2008,3154-3156.
    [78]Mullen, K. M.; Davis, J. J.; Beer, P. D. Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures. New J. Chem.2009,33,769-776.
    [79]Zhao, L. Y.; Mullen, K. M.; Chmielewski, M. J.; Brown, A.; Bampos, N.; Beer, P. D.; Davis, J. J. Anion templated assembly of an indolocarbazole containing pseudorotaxane on beads and silica nanoparticles. New J. Chem.2009,33, 760-768.
    [80]Gimeno, N.; Vilar, R. Anions as templates in coordination and supramolecular chemistry. Coord. Chem. Rev.2006,250,3161-3189.
    [1]Beer, P. D.; Gale. P. A. Anion recognition and sensing:The state of the art and future perspectives. Angew. Chem. Int. Ed.2001,40,486-516.
    [2]Schmidtchen, F. P.; Berger, M. Artificial Organic Host Molecules for Anions. Chem. Rev.1991,97,1609-1646.
    [3]Amendola. V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. What anions do to N-H-containing receptors. Acc. Chem. Res.2006,39.343-353.
    [4]Bowman-James. K. Alfred Werner revisited:The Coordation chemistry of anions. Acc. Chem. Res.2005,38,671-678.
    [5]Sessler, J. L.; Davis. J. M. Sapphyrins:Versatile anion binding agents. Acc. Chem. Res.2001,34,989-997.
    [6]Kang. S. O.;Begum, R. A.; Bowman-James, K. Amide-based ligands for anion Coordation. Angew. Chem. Int. Ed.2006.45,7882-7894.
    [7]Gale. P. A.:Anzenbacher, P., Jr.;Sessler. J. L. Calixpyrroles Ⅱ. Coord. Chem. Rev. 2001.222.57-102.
    [8]Gunnlaugsson. T.:Glynn. M.;Tocci, G. M.;Kruger. P. E.; Pfeffer. F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev.2006,250,3094-3117.
    [9]Llinares, J. M.; Powell D.; Bowman-James, K. Ammonium based anion receptors. Coord. Chem. Rev.2003.240,57-75.
    [10]Sessler, J. L.; Camiolo, S.; Gale, P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev.2003,240,17-55.
    [11]Singh,N. J.; Jun, E. J.; Chellappan, K.; Thangadurai, D.; Chandran, R. P.; Hwang, I.-C.; Yoon, J.; Kim, K. S. Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. Org. Lett.2007,9,485-488.
    [12]Cui, Y.; Mo, H.-J.; Chen, J.-C.;Niu, Y.-L.; Zhong, Y.-R.; Zheng, K.-C.; Ye, B.-H. Anion-selective interaction and colorimeter by an optical metalloreceptor based on Ruthenium(II) 2,2'-biimidazole:Hydrogen bonding and proton transfer. Inorg. Chem.2007,46,6427-6436.
    [13]Descalzo, A. B.; Rurack, K.; Weisshoff, H.; Martinez-Manez, R.; Marcos. M. D.; Amoros, P.; Hoffmann. K.; Soto, J. Rational design of a chromo-and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates. J. Am. Chem. Soc.2005,127,184-200.
    [14]Boiocchi, M.; Del Boca, L.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli. M.; Monzani, E. Nature of urea-fluoride interaction:Incipient and definitive proton transfer. J. Am. Chem. Soc.2004,126,16507-16514.
    [15]Fitzmaurice, R. J.; Kyne. G. M.; Douheret, D.; Kilburn, J. D. Synthetic receptors for carboxylic acids and carboxylates.J. Chem. Soc. Perkin Trans.1.2002, 841-864.
    [16]Prohens, R.; Rotger, M. C.; Pina, M. N.; Deya, P. M.; Morey, J.; Ballester. P.; Costa, A. Thermodynamic characterization of the squaramide-carboxylate interaction in squaramide receptors. Tetrahedron Lett.2001,42,4933-4936.
    [17]Prohens, R.; Tomas, S.; Morey, J.; Deya, P. M.; Ballester, P.; Costa, A. Squaramido-based receptors:Molecular recognition of carboxylate anions in highly competitive media. Tetrahedron Lett.1998,39,1063-1066.
    [18]Fan, E.; Van Arman, S. A.;Kincaid, S.; Hamilton. A. D. Molecular recognition: hydrogen-bonding receptors that function in highly competitive solvents. J. Am. Chem. Soc.1993.115,369-370.
    [19]Smith. P. J.; Reddington, M. V.; Wilcox, C. S. Ion pair binding by a urea in chloroform solution. Tetrahedron Lett.1992,33,6085-6088.
    [20]Gale. P. A. Synthetic indole. carbazole, biindole and indolocarbazole-based receptors:applications in anion complexation and sensing. Chem. Commun.2008, 4525-4540.
    [21]Curiel, D.; Cowley, A.; Beer, P. D. Indolocarbazoles:a new family of anion sensors. Chem. Commun.2005,236-238.
    [22]Sessler, J. L.; Cho, D. G.; Lynch, V. Diindolylquinoxalines:Effective indole-based receptors for phosphate anion. J. Am. Chem. Soc.2006,128, 16518-16519.
    [23]Connors, K. A. Binding Constants, John Wiley and Sons:New York,1987.
    [24]Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Gottingen, Gottingen (Germany),1997.
    [25]Sheldrick. G. M. SHELXL-97. Program for X-ray Crystal Structure Refinement, University of Gottingen, Gottingen (Germany),1997.
    [26]Krayushkin, M. M.; Yarovenko. V. N.; Sedishev. I. P.; Zavarzin, I. V.; Vorontsova, L. G.; Starikova, Z. A. Synthesis and structure of 5-indolyl-6-thienyl-1,2,4-triazines. Russ. J. Org. Chem.2005,41,875-883.
    [27]Gilbert,E. J.:Ziller. J. W.; Van Vranken,D. L. Cyclizations of unsymmetrical bis-1,2-(3-indolyl)ethanes:Synthesis of (-)-tjipanazole F1. Tetrahedron 1997,53, 16553-16564.
    [28]Bergman, J.; Koch, E.; Pelcman, B.2.2'-Biindolyl revisited. Synthesis and reactions. Tetrahedron 1995,51.5631-5642.
    [1]Mullen, K. M.; Beer, P. D. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. Chem. Soc. Rev.2009,38, 1701-1713.
    [2]Vilar, R. Anion recognition and templation in coordination chemistry. Eur. J. Inorg. Chem.2008,357-367.
    [3]Vickers, M. S.; Beer, P. D. Anion templated assembly of mechanically interlocked structures. Chem. Soc. Rev.2007,36,211-225.
    [4]Lankshear, M. D.; Beer, P. D. Interweaving anion templation. Acc. Chem. Res. 2007,40,657-668.
    [5]Lankshear, M. D.; Beer, P. D. Strategic anion templation. Coord. Chem. Rev. 2006,250,3142-3160.
    [6]Gimeno, N.; Vilar, R. Anions as templates in coordination and supramolecular chemistry. Coord. Chem. Rev.2006,250,3161-3189.
    [7]Custelcean, R.; Remy, P. Selective Crystallization of Urea-Functionalized Capsules with Tunable Anion-Binding Cavities. Crystal Growth & Design 2009,9,1985-1989.
    [8]Custelcean, R.; Bosano, J.; Bonnesen, P. V.; Kertesz, V.; Hay, B. P. Computer-Aided Design of a Sulfate-Encapsulating Receptor. Angew. Chem. Int. Ed.2009,48,4025-4029.
    [9]Arunachalam, M.; Ghosh, P. Recognition and complexation of hydrated fluoride anion:F-2(H2O)(6)(2-) templated formation of a dimeric capsule of a tripodal amide. Chem. Commun.2009,5389-5391.
    [10]Zhu, S. S.; Staats, H.; Brandhorst, K.; Grunenberg, J.; Gruppi, F.; Dalcanale, E.; Luetzen, A.; Rissanen, K.; Schalley, C. A. Anion binding to resorcinarene-based cavitands:The importance of C-H center dot center dot center dot anion interactions. Angew. Chem. Int. Ed.2008,47,788-792.
    [11]Uzarevic, K.; Dilovic, I.; Matkovic-Calogovic, D.; Sisak, D.; Cindric, M. Anion-directed self-assembly of flexible ligands into anion-specific and highly symmetrical organic solids. Angewandte Chemie-International Edition 2008,47,7022-7025.
    [12]Turner, D. R.; Paterson, M. J.; Steed, J. W. Conformational control by 'zipping-up' an anion-binding unimolecular capsule. Chem. Commun.2008, 1395-1397.
    [13]Custelcean, R.; Remy, P.; Bonnesen, P. V.; Jiang, D. E.; Moyer, B. A. Sulfate recognition by persistent crystalline capsules with rigidified hydrogen-bonding cavities. Angew. Chem. Int. Ed.2008,47,1866-1870.
    [14]Jose, D. A.; Kumar, D. K.; Ganguly, B.; Das, A. Rugby-ball-shaped sulfate-water-sulfate adduct encapsulated in a neutral molecular receptor capsule. Inorg. Chem.2007,46,5817-5819.
    [15]Kang, S. O.; Hossain, M. A.; Powell, D.; Bowman-James, K. Encapsulated sulfates:insight to binding propensities. Chem. Commun.2005,328-330.
    [16]Caltagirone, C.; Gale, P. A.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E. Tizzard, G. J.2-Amidoindole-based anion receptors. Supramol. Chem.2009, 21,125-130.
    [17]Ju, J.; Park, M.; Suk, J.-m.; Lah, M. S.; Jeong, K.-S. An anion receptor with NH and OH groups for hydrogen bonds. Chem. Commun.2008,3546-3548.
    [18]Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P., Jr. Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew. Chem. Int. Ed.2007,46,7849-7852.
    [19]Lakshminarayanan, P. S.; Ravikumar, I.; Suresh, E.; Ghosh, P. Trapped inorganic phosphate dimer. Chem. Commun.2007,5214-5216.
    [20]Yin, Z. M.; Zhang, Y. H.; He, J. Q.; Cheng, J.-P. A new tripodal anion receptor with selective binding for H2PO4- and F-ions. Tetrahedron 2006,62, 765-770.
    [21]Sessler, J. L.; Cho, D. G.; Lynch, V. Diindolylquinoxalines:Effective indole-based receptors for phosphate anion. J. Am. Chem. Soc.2006,128, 16518-16519.
    [22]Kang, S. O.; Powell, D.; Bowman-James, K. Anion binding motifs:Topicity and charge in amidocryptands. J. Am. Chem. Soc.2005,127,13478-13479.
    [23]Amendola, V.; Boiocchi, M.; Esteban-Gomez, D.; Fabbrizzi, L.; Monzani, E. Chiral receptors for phosphate ions. Org. Biomol. Chem.2005,3,2632-2639.
    [24]Mullen, K. M.; Mercurio, J.; Serpell, C. J.; Beer, P. D. Exploiting the 1,2,3-Triazolium Motif in Anion-Templated Formation of a Bromide-Selective Rotaxane Host Assembly. Angew. Chem. Int. Ed.2009,48, 4781-4784.
    [25]Brown, A.; Mullen, K. M.; Ryu, J.; Chmielewski, M. J.; Santos, S. M.; Felix, V.; Thompson, A. L.; Warren, J. E.; Pascu, S. I.; Beer, P. D. Interlocked Host Anion Recognition by an Indolocarbazole-Containing 2 Rotaxane. J. Am. Chem. Soc.2009,131,4937-4952.
    [26]Custelcean, R.; Jiang, D.-e.; Hay, B. P.; Luo, W. S.; Gu, B. H. Hydrogen-bonded helices for anion binding and separation. Crystal Growth & Design 2008,8,1909-1915.
    [27]Beer, P. D.; Gale, P. A. Anion recognition and sensing:The state of the art and future perspectives. Angew. Chem. Int. Ed.2001,40,486-516.
    [28]Caltagirone, C.; Gale, P. A. Anion receptor chemistry:highlights from 2007. Chem. Soc. Rev.2009,38,520-563.
    [29]Suk, J.-m.; Chae, M. K.; Kim, N.-K.; Kim, U.-I.; Jeong, K.-S. Indole-based macrocycles and oligomers binding anions. Pure Appl. Chem.2008,80, 599-608.
    [30]Gale, P. A. Synthetic indole, carbazole, biindole and indolocarbazole-based receptors:applications in anion complexation and sensing. Chem. Commun. 2008,4525-4540.
    [31]Zhao, L. Y.; Mullen, K. M.; Chmielewski, M. J.; Brown, A.; Bampos, N.; Beer, P. D.; Davis, J. J. Anion templated assembly of an indolocarbazole containing pseudorotaxane on beads and silica nanoparticles. New J. Chem. 2009,33,760-768.
    [32]Zhao, L. Y.; Davis, J. J.; Mullen, K. M.; Chmielewski, M. J.; Jacobs, R. M. J.; Brown, A.; Beer, P. D. Anion Templated Formation of Pseudorotaxane and Rotaxane Monolayers on Gold from Neutral Components. Langmuir.2009,25, 2935-2940.
    [33]Chmielewski, M. J.; Zhao, L. Y.; Brown, A.; Curiel, D.; Sambrook, M. R.; Thompson, A. L.; Santos, S. M.; Felix, V.; Davis, J. J.; Beer, P. D. Sulfate anion templation of a neutral pseudorotaxane assembly using an indolocarbazole threading component. Chem. Commun.2008,3154-3156.
    [34]Curiel, D.; Cowley, A.; Beer, P. D. Indolocarbazoles:anew family of anion sensors. Chem. Commun.2005,236-238.
    [35]Hay, B. P.; Firman, T. K.; Moyer, B. A. Structural design criteria for anion hosts:Strategies for achieving anion shape recognition through the complementary placement of urea donor groups. J. Am. Chem. Soc.2005,127, 1810-1819.
    [36]Hay, B. P.; Gutowski, M.; Dixon, D. A.; Garza, J.; Vargas, R.; Moyer, B. A. Structural criteria for the rational design of selective ligands:Convergent hydrogen bonding sites for the nitrate anion. J. Am. Chem. Soc.2004,126, 7925-7934.
    [37]Custelcean, R.; Moyer, B. A.; Hay, B. P. A coordinatively saturated sulfate encapsulated in a metal-organic framework functionalized with urea hydrogen-bonding groups. Chem. Commun.2005,5971-5973.
    [38]Coles, S. J.; Frey, J. G.; Gale, P. A.; Hursthouse, M. B.; Light, M. E.; Navakhun, K.; Thomas, G. L. Anion-directed assembly:the first fluoride-directed double helix. Chem. Commun.2003,568-569.
    [1]Nielsen, K. A.; Sarova, G. H.; Martin-Gomis, L.; Fernandez-Lazaro, F.; Stein, P. C.; Sanguinet, L.; Levillain, E.; Sessler, J. L.; Guldi, D. M.; Sastre-Santos, A. Jeppesen, J. O. Chloride anion controlled molecular "Switching". Binding of 2,5,7-trinitro-9-dicyanomethylenefluorene-C-60 by tetrathiafulvalene calix 4 pyrrole and photophysical generation of two different charge-separated states. J. Am. Chem. Soc.2008,130,460-462.
    [2]Juwarker, H.; Lenhardt, J. M.; Pham, D. M.; Craig, S. L.1,2.3-triazole CH center dot center dot center dot Cl- contacts guide anion binding and concomitant folding in 1,4-diaryl triazole oligomers. Angew. Chem. Int. Ed.2008,47. 3740-3743.
    [3]Furuta. H.; Nanami. H.; Morimoto, T.; Ogawa, T.; Kral, V.; Sessler, J. L.; Lynch, V. Halide anion mediated dimerization of a meso-unsubstituted N-confused porphyrin. Chem. Asian.J.2008.3,592-599.
    [4]Maeda. H.; Kusunose, Y. Dipyrrolyldiketone difluoroboron complexes:Novel anion sensors with C-H center dot center dot center dot X-interactions. Chem. Eur.J.2005.11.5661-5666.
    [5]Hossain, A.; Morehouse. P.:Powell, D.; Bowman-James, K. Tritopic (cascade) and ditopic complexes of halides with an azacryptand. Inorg. Chem.2005,44, 2143-2149.
    [6]Coles, S. J.; Frey, J. G.; Gale, P. A.; Hursthouse. M. B.; Light, M. E.; Navakhun, K.; Thomas. G. L. Anion-directed assembly:the first fluoride-directed double helix. Chem. Commun.2003,568-569.
    [7]Hossain, M. A.; Llinares, J. M.; Mason, S.; Morehouse, P.; Powell, D.; Bowman-James, K. Parallels in cation and anion coordination:A new class of cascade complexes. Angew. Chem. Int. Ed.2002,41,2335-2338.
    [8]Beer. P. D.;Gale, P. A. Anion recognition and sensing:The state of the art and future perspectives. Angew. Chem. Int. Ed.2001,40.486-516.
    [9]Uzarevic, K.; Dilovic, I.; Matkovic-Calogovic, D.; Sisak, D.; Cindric, M. Anion-directed self-assembly of flexible ligands into anion-specific and highly symmetrical organic solids. Angew. Chem. Int. Ed.2008,47,7022-7025.
    [10]Kang. S. O.; Day, V. W.; Bowman-James, K. Cyclophane capsule motifs with side pockets. Org. Lett.2008,10,2677-2680.
    [11]Dechambenoit, P.; Ferlay, S.; Kyritsakas, N.; Hosseini, M. W. Molecular Tectonics:Control of Reversible Water Release in Porous Charge-Assisted H-Bonded Networks.J. Am. Chem. Soc.2008.130,17106-17113.
    [12]Custelcean. R.; Jiang. D. E.; Hay, B. P.; Luo. W. S.; Gu. B. H. Hydrogen-bonded helices for anion binding and separation. Cryst. Growth Des,2008,8,1909-1915.
    [13]Hosseini. M. W. Molecular tectonics:From simple tectons to complex molecular networks. Acc. Chem. Res.2005.38,313-323.
    [14]Hossain. A.:Liljegren. J. A.;Powell. D.:Bowman-James. K. Anion binding with a tripodal amine. Inorg. Chem.2004,43.3751-3755.
    [15]Hosseini. M. W. Molecular tectonics:from molecular recognition of anions to molecular networks. Coord. Chem. Rev.2003.240.157-166.
    [16]Keegan, J.; Kruger, P. E.; Nieuwenhuyzen, M.; O'Brien, J.; Martin, N. Anion directed assembly of a dinuclear double helicate. Chem. Commun.2001, 2192-2193.
    [17]Gerasimchuk,O. A.; Mason, S.; Llinares, J. M.; Song, M. P.; Alcock, N. W.; Bowman-James, K. Binding of phosphate with a simple hexaaza polyammonium macrocycle. Inorg. Chem,2000.39,1371-1375.
    [18]Custelcean, R.; Remy, P. Selective Crystallization of Urea-Functionalized Capsules with Tunable Anion-Binding Cavities. Cryst. Growth Des.2009,9, 1985-1989.
    [19]Custelcean, R.; Bosano, J.; Bonnesen, P. V.; Kertesz, V.; Hay, B. P. Computer-Aided Design of a Sulfate-Encapsulating Receptor. Angew. Chem. Int. Ed.2009,48,4025-4029.
    [20]Custelcean, R.; Remy, P.; Bonnesen. P. V.;Jiang, D. E.; Moyer, B. A. Sulfate recognition by persistent crystalline capsules with rigidified hydrogen-bonding cavities. Angew. Chem. Int. Ed.2008,47,1866-1870.
    [21]Custelcean, R. Crystal engineering with urea and thiourea hydrogen-bonding groups. Chem. Commun.2008,295-307.
    [22]Vilar, R. Anion recognition and templation in coordination chemistry. Eur. J. Inorg. Chem.2008,357-367.
    [23]Lankshear, M. D.; Beer, P. D. Strategic anion templation. coord. Chem. Rev. 2006,250,3142-3160.
    [24]Gimeno. N.; Vilar, R. Anions as templates in coordination and supramolecular chemistry. Coord. Chem. Rev.2006,250,3161-3189.
    [25]Caltagirone, C.; Gale, P. A. Anion receptor chemistry:highlights from 2007. Chem. Soc. Rev.2009,38,520-563.
    [26]Suk, J.-m.; Chae, M. K.; Kim, N.-K.; Kim, U.-I.; Jeong, K.-S. Indole-based macrocycles and oligomers binding anions. Pure Appl. Chem.2008,80,599-608.
    [27]Gale, P. A. Synthetic indole, carbazole, biindole and indolocarbazole-based receptors:applications in anion complexation and sensing. Chem. Commun.2008, 4525-4540.
    [28]Zhao. L. Y.; Mullen, K. M.;Chmielewski. M. J.; Brown, A.; Bampos, N.; Beer, P. D.; Davis, J. J. Anion templated assembly of an indolocarbazole containing pseudorotaxane on beads and silica nanoparticles. New J. Chem.2009,33, 760-768.
    [29]Zhao, L. Y.; Davis, J. J.;Mullen, K. M.; Chmielewski, M. J.; Jacobs, R. M. J.; Brown, A.; Beer. P. D. Anion Templated Formation of Pseudorotaxane and Rotaxane Monolayers on Gold from Neutral Components. Langmuir.2009.25. 2935-2940.
    [30]Mullen, K. M.; Beer. P. D. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. Chem. Soc. Rev.2009,38,1701-1713.
    [31]Brown, A.; Mullen, K. M.; Ryu, J.; Chmielewski, M. J.; Santos, S. M.; Felix, V.; Thompson, A. L.; Warren. J. E.; Pascu, S. I.; Beer, P. D. Interlocked Host Anion Recognition by an Indolocarbazole-Containing 2 Rotaxane. J. Am. Chem. Soc. 2009,131,4937-4952.
    [32]Chmielewski,M. J.; Zhao, L. Y.; Brown, A.:Curiel, D.; Sambrook, M. R.; Thompson, A. L.; Santos. S. M.; Felix, V.; Davis, J. J.; Beer, P. D. Sulfate anion templation of a neutral pseudorotaxane assembly using an indolocarbazole threading component. Chem. Commun.2008,3154-3156.
    [33]Juwarker, H.; Suk, J.-m.;Jeong, K.-S. Foldamers with helical cavities for binding complementary guests. Chem. Soc. Rev.2009,38,3316-3325.
    [34]Ju, J.; Park, M.; Suk, J.-m.:Lah, M. S.; Jeong, K.-S. An anion receptor with NH and OH groups for hydrogen bonds. Chem. Commun.2008,3546-3548.
    [35]Sessler. J. L.; Cho, D. G.; Lynch. V. Diindolylquinoxalines:Effective indole-based receptors for phosphate anion.J. Am. Chem. Soc.2006,128. 16518-16519.
    [36]de Tacconi. N. R.; Lezna. R. O.; Chitakunye. R.; MacDonnell. F. M. Electroreduction of the ruthenium complex (bpy)(2)Ru(tatpp) Cl-2 in water: Insights on the mechanism of multielectron reduction and protonation of the tatpp acceptor ligand as a function of pH. Inorg. Chem.2008,47,8847-8858.
    [37]de Tacconi, N. R.; Lezna, R.O.; Konduri, R.; Ongeri, F.; Rajeshwar, K.; MacDonnell, F. M. Influence of pH on the photochemical and electrochemical reduction of the dinuclear ruthenium complex, (phen)(2)Ru(tatpp)Ru(phen)(2) Cl-4,in water:Proton-coupled sequential and concerted multi-electron reduction. Chem. Eur. J.2005,11,4327-4339.
    [38]Chiorboli, C.; Fracasso, S.; Ravaglia, M.; Scandola, F.; Campagna, S.; Wouters. K. L.; Konduri. R.; MacDonnell, F. M. Primary photoinduced processes in bimetallic dyads with extended aromatic bridges. Tetraazatetrapyridopentacene complexes of ruthenium(Ⅱ) and osmium(Ⅱ). Inorg. Chem.2005,44,8368-8378.
    [39]Konduri. R.; de Tacconi, N. R.; Rajeshwar, K.; MacDonnell, F. M. Multielectron photoreduction of a bridged ruthenium dimer, (phen)(2)Ru(tatpp)Ru(phen)(2) PF6 (4):Aqueous reactivity and chemical and spectroelectrochemical identification of the photoproducts. J. Am. Chem. Soc.2004,126,11621-11629.
    [40]Konduri, R.; Ye, H. W.; MacDonnell, F. M.; Serroni, S.; Campagna, S. Rajeshwar, K. Ruthenium photocatalysts capable of reversibly storing up to four electrons in a single acceptor ligand:A step closer to artificial photosynthesis. Angew. Chem. Int. Ed.2002,41,3185-3187.
    [41]Bu, X.-H.; Liu, H.; Du, M.; Wong, K. M.-C.; Yam. V. W.-W.; Shionoya, M. Novel boxlike dinuclear or chain polymeric silver(Ⅰ) complexes with polypyridyl bridging ligands:Syntheses, crystal structures, and spectroscopic and electrochemical properties. Inorg. Chem.2001,40,4143-4149.
    [42]Curiel, D.; Cowley. A.;Beer, P. D. Indolocarbazoles:a new family of anion sensors. Chem. Commun.2005.236-238.
    [43]Shang, X.-F.; Lin, H.; Lin, H.-K. The synthesis and recognition properties of colorimetric fluoride receptors bearing sulfonamide. J. Fluo. Chem.2007,128, 530-534.
    [44]Kleineweischede, A.; Mattay, J. Synthesis of amino- and bis(bromomethyl)-substitued bi-and tetradentate N-heteroaromatic ligands: Building blocks for pyrazino-functionalized fullerene dyads. Eur. J. Org. Chem. 2006.947-957.
    [45]Kato, T.;Masu, H.; Takayanagi, H.; Kaji, E.; Katagiri, K.; Tominaga, M.; Azumaya, I. Four different types of hydrogen bonds observed in 1.2-bis(N-benzenesulfonylamino)benzenes due to conformational properties of the sulfonamide moiety. Tetrahedron 2006,62,8458-8462.
    [46]Mizuno, T.; Wei, W.-H.; Eller, L. R.; Sessler, J. L. Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites:Efficient fluoride anion receptors. J. Am. Chem. Soc.2002,124,1134-1135.
    [47]Darabi. H. R.:Mohandessi, S.; Aghapoor. K.; Mohsenzadeh, F. A recyclable and highly effective sulfamic acid/MeOH catalytic system for the synthesis of quinoxalines at room temperature. Catal. Comm.2007,8,389-392.
    [48]Anzenbacher. P., Jr.; Try, A. C.; Miyaji, H.; Jursikova, K.; Lynch, V. M.; Marquez. M.:Sessler, J. L. Fluorinated calix 4 pyrrole and dipyrrolylquinoxaline: Neutral anion receptors with augmented affinities and enhanced selectivities. J. Am. Chem. Soc.2000,122,10268-10272.
    [49]Caltagirone. C.; Bates, G. W.; Gale. P. A.; Light, M. E. Anion binding vs. sulfonamide deprotonation in functionalised ureas. Chem. Commun.2008,61-63.
    [50]Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. Anion sensing using colorimetric amidourea based receptors incorporated into a 1,3-disubstituted calix 4 arene. Tetrahedron Lett.2006,47,9333-9338.
    [51]Kang. S. O.; Begum, R. A.:Bowman-James. K. Amide-based ligands for anion coordination. Angew. Chem. Int. Ed.2006,45,7882-7894.
    [52]Evans, L. S.:Gale, P. A.; Light, M. E.:Quesada, R. Anion binding vs. deprotonation in colorimetric pyrrolylamidothiourea based anion sensors. Chem. Commun.2006,965-967.
    [53]Arnendola, V.; Bonizzoni. M.; Esteban-Gomez. D.; Fabbrizzi, L.; Licchelli, M.; Sancenon, F.; Taglietti. A. Some guidelines for the design of anion receptors. Coord. Chem. Rev.2006.250,1451-1470.
    [54]Gomez, D. E.;Fabbrizzi. L.;Licchelli. M.:Monzani. E. Urea vs. thiourea in anion recognition. Org. Biomol. Chem.2005.3,1495-1500.
    [55]SPECFIT/32 Spectra Software Associates.
    [56]Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Calculation of equilibrium constants from multiwavelength spectroscopic data--Ⅳ:Model-free least-squares refinement by use of evolving factor analysis. Talanta 1986,33. 943-951.
    [57]Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbiihler. A. D. Calculation of equilibrium constants from multiwavelength spectroscopic data--Ⅰ:Mathematical considerations. Talanta 1985,32,95-101.
    [58]Lakshminarayanan, P. S.; Ravikumar, I.; Suresh, E.; Ghosh. P. Trapped inorganic phosphate dimer. Chem. Commun.2007,5214-5216.
    [59]Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P., Jr. Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew. Chem. Int. Ed. 2007,46,7849-7852.
    [60]Yin, Z. M.; Zhang, Y. H.; He, J. Q.; Cheng, J.-P. A new tripodal anion receptor with selective binding for H2PO4- and F-ions. Tetrahedron 2006,62,765-770.
    [61]Amendola, V.; Boiocchi, M.; Esteban-Gomez, D.; Fabbrizzi. L.; Monzani. E. Chiral receptors for phosphate ions. Org. Biomol. Chem.2005,3,2632-2639.
    [62]Guinier, A.; Fournet, G. Small-Angle X-ray Scattering, John Wily and Sons, New York,1955.
    [63]Arunachalam, M.; Ghosh, P. Formation of a nitrate zipped dimeric capsule and un-zipping by chloride doping. Chem. Commun.2009,3184-3186.
    [64]Wu, B.; Liang, J. J.; Yang, J.; Jia, C. D.; Yang, X. J.; Zhang, H. R.; Tang, N.; Janiak, C. Sulfate ion encapsulation in caged supramolecular structures assembled by second-sphere coordination. Chem. Commun.2008,1762-1764.
    [65]Kang, S. O.; Hossain, M. A.; Powell, D.; Bowman-James, K. Encapsulated sulfates:insight to binding propensities. Chem. Commun.2005,328-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700