用户名: 密码: 验证码:
OPG对破骨细胞活性的影响及其信号转导机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨保护素(osteoprotegerin, OPG)是肿瘤坏死因子受体超家族成员,它最主要的生物学作用是抑制体内破骨细胞(osteoclast, OC)的分化、活化,并促进其发生凋亡。临床试验及动物实验表明,重组OPG蛋白和OPG基因治疗等技术手段,对防治人及动物的骨营养不良性疾病具有一定的应用价值。但是关于OPG对OC的调控机制仍不完全清楚,对于OPG相关药物的开发及其普遍运用仍存在诸多困难。本文以原代分离鸭胚OC及诱导获取OC模型为研究对象,在体外培养过程中添加不同浓度OPG,通过形态学鉴定、细胞活性检测、实时荧光定量PCR (QRT-PCR)、蛋白免疫印迹(Western blot)等技术手段,研究OPG对OC分化、活性及凋亡中形态、功能、相关基因及关键信号蛋白的影响。本研究以期为OPG调控OC活性的机理提供理论依据。研究内容如下:
     1.OPG对破骨细胞分化、活化及凋亡的影响
     为了研究OPG对体外培养鸭胚OC分化、活化与凋亡的影响,收集23日龄鸭胚骨髓细胞,体外培养过程中分组加入不同浓度OPG进行处理(A组:无因子;B组:30ng/mL OPG; C组:100ng/mLOPG)。通过抗酒石酸酸性磷酸酶染色(tartrate-resistant acid phosphatase, TRAP),骨吸收陷窝分析,OC骨架(TRITC标记的鬼笔环肽,TRITC-conjugated phalloidin)及胞核(Hoechst33258)染色技术,检钡TRAP阳性细胞、OC的骨吸收活性以及OC凋亡状态。结果显示,三个实验组中TRAP阳性细胞数、OC的骨吸收活性均在OPG处理7d后达到最高水平。与对照组相比,OPG处理组OC数目及OC的骨吸收活性显著减弱(P<0.05),每个时间段骨吸收陷窝净增长面积与OC数目变化趋势一致。OPG能够抑制OC内纤维状肌动蛋白环(Filamentous-actin rings, F-actin rings)的形成,并且能够促进成熟OC内F-actin环的崩解。此外,OPG能够诱导成熟OC发生凋亡,OC的形态及核发生改变。表明OPG能够抑制OC细胞前体分化,促进成熟OC发生凋亡
     2.OPG抑制破骨细胞分化成熟的机理
     为了研究OPG抑制OC分化、活化的分子生物学机理,在无血清培养条件下,采用M-CSF+RANKL联合诱导RAW264.7细胞分化为OC。在培养过程中加入不同浓度OPG(0、10、20、50、100ng/mL)进行处理。通过TRAP染色,OC内F-actin环染色,骨吸收陷窝分析等技术,研究OPG对OC的分化及活化的影响。此外,通过QRT-PCR技术检测OPG对OC相关基因TRAP、RANK、MMP-9、CA Ⅱ、Cathepsin K表达量的影响。结果显示,在无血清培养条件下,M-CSF+RANKL能够诱导OC的分化与活化,并能够促进OC分化及活化中TRAP、RANK、MMP-9、CAⅡ、Cathepsin K基因的表达,而OC的分化与活化受到OPG的抑制。
     3.OPG抑制破骨细胞分化成熟的MAPK信号转导机制
     为了研究OPG抑制OC分化中的MAPK信号转导机制,采用M-CSF+RANKL诱导RAW264.7细胞分化形成OC,在体外培养不同时间,各组分别添加相应浓度的OPG。各时间点培养结束后收集细胞,提取总蛋白,通过Western blot法检测MAPK信号通路中关键信号蛋白的变化。结果发现,M-CSF+RANKL诱导RAW264.7细胞分化形成OC过程中p38-MAPK、JNK-MAPK、ERK-MAPK三种蛋白的磷酸化水平均上升,在诱导处理15min后p38-MAPK磷酸化水平达最大值,诱导处理30min后JNK-MAPK、ERK-MAPK磷酸化水平达最大值。不同浓度OPG均能够抑制p38-MAPK、JNK-MAPK、ERK-MAPK三种蛋白的磷酸化水平,且随OPG浓度的增加抑制作用更加明显。表明MAPK信号通路参与调控OC的分化与活化过程,且参与调控OPG抑制OC的分化与活化。
     4.OPG抑制破骨细胞分化成熟的Ca2+信号转导机制
     为了研究OPG抑制OC分化中的Ca2+信号转导机制,采用M-CSF+RANKL诱导RAW264.7细胞分化形成OC,在体外培养不同时间,各组分别添加相应浓度的OPG。培养结束后收集细胞,通过流式细胞术检测OC胞内[Ca2+]i,通过Western blot法检测钙/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)的磷酸化水平。结果发现,M-CSF+RANKL诱导RAW264.7细胞分化形成OC过程中OC胞内[ca2+]i极显著升高(P<0.01),CaMKIⅠ激酶磷酸化水平上升,而OPG能够降低OC胞内[Ca2+]i,并下调CaMKIⅠ激酶的磷酸化水平。表明Ca2+信号通路参与调控OC的分化与活化过程,且参与调控OPG抑制OC的分化与活化。
Osteoprotegerin (OPG) which belongs to the tumor necrosis factor (TNF) receptor superfamily. OPG is well known to negatively regulate osteoclast (OC) maturation and activation and promote the development of apoptosis of OC. Clinical trials and animal experiments indicated that it was practicable to prevent and cure human and animal bone disease by the recombinant OPG and OPG gene therapy technology. However, the mechanisms of OPG inhibitory effects to the differentiation, activation and survival of osteoclasts have not been well elucidated. There are many difficulties in drug development related OPG. Isolated primary OC and induced OC were employed in this study, different concentrations of OPG were added to the cells culture in vitro. Morphological observation, bone resorption activity assay, QRT-PCR, and Western blot were all performed to determine the morphological changes, functions, OC releated genes expression, and key signaling proteins change of OC, which were treated by OPG. The aim of this study was to determine the mechanism involved in influence of osteoprotegerin (OPG) on the OC. A series of tests were carried out:
     1. Influence of osteoprotegerin on differentiation, activation and apoptosis of osteoclasts in vitro
     The aim of this study was to determine the influence of osteoprotegerin (OPG) on the differentiation, activation and apoptosis of duck embryo osteoclasts cultured in vitro. Bone marrow cells were harvested from23-day-old duck embryos and cultured in the presence of different concentrations of OPG (group A:no added factors, group B:30ng/mL OPG and group C:100ng/mL OPG). Tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, and co-staining with TRITC-conjugated phalloidin and Hoechst33258were all performed to determine the number of TRAP-positive cells, bone resorption activity and the level of apoptosis, respectively. The number of TRAP-positive cells and the net expansion of pit formations area peaked on the7th day of culture in all3groups. The number of osteoclasts and the total volume of pit formations in OPG-treated groups were significantly lower when compared to group A (P<0.05). At each time point, the net expansion of pit formations area correlated with the number of TRAP-positive cells. OPG inhibited the de novo formation of F-actin rings and promoted the disruption of existing F-actin rings in mature osteoclasts. In addition, OPG induced apoptosis in mature osteoclasts, as demonstrated by morphological changes in the nuclei. In osteoclast precursors, OPG inhibited differentiation and down regulated the formation of F-actin rings. In mature osteoclasts, OPG suppressed activation and enhanced the development of apoptosis, observed as a decrease in the number of TRAP-positive cells, the disruption of F-actin rings and morphological changes of the nuclei.
     2. Mechanism involved in osteoprotegerin (OPG) affect differentiation and activation of osteoclast
     The aim of this study was to determine the molecular mechanism involved in osteoprotegerin (OPG) affect differentiation and activation of osteoclast in serum-free conditions. RAW264.7cells were incubated with M-CSF+RANKL in serum-free medium for osteoclastogenesis. In the cultivation of the cells,0,10,20,50, and100ng/mL OPG were added to various groups. Osteoclast differentiation and activation were estimated via TRAP staining study, F-actin rings analysis, and bone resorption assay. Furthermore, expression levels of osteoclast related genes, such as TRAP, RANK, MMP-9, CA Ⅱ, and Cathepsin K which were influenced by OPG, were examined using real-time PCR with RAW264.7cells. In summary, these findings suggested that M-CSF+RANKL could promote the differentiation and activation of osteoclast, enhance the expression of TRAP, RANK, MMP-9, CA II, and Cathepsin K mRNA in osteoclast, whereas OPG inhibited them in serum-free conditions.
     3. Influences of osteoprotegerin on the differentiation, maturation of osteoclast and the involved MAPK signalling pathway
     The aim of this study was to determine the MAPK signalling pathway involved in osteoprotegerin (OPG) affect differentiation and maturation of osteoclast. RAW264.7cells were incubated with M-CSF+RANKL for osteoclastogenesis. In the cultivation of the cells,0,10,20,50, and100ng/mL OPG were added to various groups at defined time points. Cells were collected and total protein were isolated, key signaling proteins involved in the MAPK signalling pathway were monitored via Western blot. Results displayed that phosphorylation of p38-MAPK, JNK-MAPK, ERK-MAPK all were enhanced in M-CSF+RANKL-induced RAW264.7cells. The phosphorylation of p38-MAPK maximized after OPG treated for15min, and the phosphorylation of JNK-MAPK, ERK-MAPK maximized after OPG treated for30min. In addition, various concentrations of OPG could suppress the phosphorylation of all the three proteins in a concentration-dependent manner. The results demonstrated that the MAPK signalling pathway involved in the differentiation and activation of osteoclast, as well as in osteoprotegerin (OPG) affect the differentiation and activation of osteoclast.
     4. Influences of osteoprotegerin on the differentiation, maturation of osteoclast and the involved Ca2+signalling pathway
     The aim of this study was to determine the Ca2+signalling pathway involved in osteoprotegerin (OPG) affect differentiation and maturation of osteoclast. RAW264.7cells were incubated with M-CSF+RANKL for osteoclastogenesis. In the cultivation of the cells,0,10,20,50, and100ng/mL OPG were added to various groups. Cells were collected at the end of cultivation, the concentrations of [Ca2+]i were determined by flow cytometry, and the phosphorylation of CaMKII was monitored via Western blot. Results displayed that the concentrations of [Ca2+]j were raised significantly (P<0.01), and phosphorylation of CaMKII were enhanced in M-CSF+RANKL-induced RAW264.7cells. However, the concentrations of [Ca2+]i and the phosphorylation of CaMKII were decreased by OPG. The results demonstrated that the Ca2+signalling pathway involved in the differentiation and activation of osteoclast, as well as in OPG affect the differentiation and activation of osteoclast.
引文
[1]邓红文,刘耀中.骨生物学前沿[M].北京:高等教育出版社,2006:5-24.
    [2]王洪复.骨细胞图谱与骨细胞体外培养技术[M].上海:上海科学技术出版社;2001.
    [3]邵水金主编.实用躯体解剖学[M].上海:上海科学技术文献出版社,2006,1:4-5.
    [4]赵定麟主编.现代骨病学[M].北京:科学出版社,2004:21-23.
    [5]付应霄,顾建红,刘宗平等.2种方法诱导形成的破骨细胞特性比较[J].中国兽医学报,2013,33(1):94-97.
    [6]夏维波.骨重建在维持骨强度中的意义[J].中华医学杂志,2006,86(6):363-365.
    [7]Nakamura I, Takahashi N, Jimi E et al. Regulation of osteoclast function[J]. Modern Rheumatology, 2012,22(2):167-177.
    [8]Li B, Chau L, Fung J et al. Bisphosphonates, specific inhibitors of osteoclast function and a class of drugs for osteoporosis therapy[J]. Journal of Cellular Biochemistry,2011,112(5):1229-1242.
    [9]刘晓青,崔燎.防治骨质疏松症的药物研究进展[J].中国骨质疏松杂志,2009,15(002):153-157.
    [10]Kim M H, Shim K S, Kim S H. Inhibitory effect of cantharidin on osteoclast differentiation and bone resorption[J]. Archives of Pharmacal Research,2010,33(3):457-462.
    [11]Choi H J, Park Y R, Nepal M et al. Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW264.7 cells via JNK and NF-kB signaling pathways[J]. European Journal of Pharmacology,2010, 636(1):28-35.
    [12]Simonet W, Lacey D, Dunstan C et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density[J]. Cell,1997,89(2):309-319.
    [13]杨银凤主编.家畜解剖学与组织胚胎学(第四版)[J].北京:中国农业出版社,2011,1:12-13.
    [14]王海杰.人体系统解剖学[M].上海:复旦大学出版社;2008.
    [15]张善庆.骨的形态与机能[J].生物学教学,1959,8:23-24.
    [16]Sommerfeldt D, Rubin C. Biology of bone and how it orchestrates the form and function of the skeleton[J]. European Spine Journal,2001,10(2):S86-S95.
    [17]陈槐卿主编.细胞生物力学与临床应用[M].郑州:郑州大学出版社,2012,1(301-303.
    [18]杨德鸿,金大地,陈建庭等.共育体系中成骨细胞和破骨细胞生物学特性观察[J].中华骨科杂志,2001,21:676-680.
    [19]Knothe Tate M L, Adamson J R, Tami A E et al. The osteocyte[J]. The International Journal of Biochemistry & Cell Biology,2004,36(1):1-8.
    [20]Baud C A. Submicroscopic Structure and Functional Aspects of the Osteocyte*[J]. Clinical Orthopaedics and Related Research,1968,56:227-236.
    [21]Dudley H R, Spiro D. The fine structure of bone cells[J]. The Journal of Biophysical and Biochemical Cytology,1961,11(3):627-649.
    [22]Palumbo C. A three-dimensional ultrastructural study of osteoid-osteocytes in the tibia of chick embryos[J]. Cell and Tissue Research,1986,246(1):125-131.
    [23]Kong Y-Y, Yoshida H, Sarosi I et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis[J]. Nature,1999,397(6717):315-323.
    [24]O'Brien C A, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis[J]. Bone,2012.
    [25]Brunkow M E, Gardner J C, Van Ness J et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein[J]. The American Journal of Human Genetics,2001,68(3):577-589.
    [26]Balemans W, Ebeling M, Patel N et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST)[J]. Human Molecular Genetics,2001,10(5):537-543.
    [27]Balemans W, Patel N, Ebeling M et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease[J]. Journal of Medical Genetics,2002,39(2):91-97.
    [28]Staehling-Hampton K, Proll S, Paeper B W et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population[J]. American Journal of Medical Genetics,2002,110(2):144-152.
    [29]van Bezooijen R L, Roelen B A, Visser A et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist[J]. The Journal of Experimental Medicine,2004, 199(6):805-814.
    [30]Nakashima T, Hayashi M, Fukunaga T et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J]. Nature Medicine,2011,17(10):1231-1234.
    [31]Xiong J, Onal M, Jilka R L et al. Matrix-embedded cells control osteoclast formation[J]. Nature Medicine,2011,17(10):1235-1241.
    [32]Ueno Y, Shinki T, Nagai Y et al. In vivo administration of 1,25-dihydroxyvitamin D3 suppresses the expression of RANKL mRNA in bone of thyroparathyroidectomized rats constantly infused with PTH[J]. Journal of Cellular Biochemistry,2003,90(2):267-277.
    [33]Miao D, Li J, Xue Y et al. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice[J]. Endocrinology,2004,145(8):3554-3562.
    [34]Yasuda H, Shima N, Nakagawa N et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL[J]. Proceedings of the National Academy of Sciences,1998,95(7):3597-3602.
    [35]Lee S-K, Lorenzo J A. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures:correlation with osteoclast-like cell formation[J]. Endocrinology,1999,140(8):3552-3561.
    [36]Fu Q, Jilka R L, Manolagas S C et al. Parathyroid hormone stimulates receptor activator of NFkB ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein[J]. Journal of Biological Chemistry,2002,277(50):48868-48875.
    [37]Saini V, Barry K, Fulzele K et al. PTH/PTHrP (PPR) Receptor signaling in osteocytes regulate bone development in temporal manner[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2011,26, S16.
    [38]Tu X, Edwards R, Olivos N et al. Conditional deletion of the parathyroid hormone (PTH) receptor 1 from osteocytes results in decreased bone resorption and a progressive increase in cancellous bone mass[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2011,26, S16.
    [39]Mackie E. Osteoblasts:novel roles in orchestration of skeletal architecture[J]. The International Journal of Biochemistry & Cell Biology,2003,35(9):1301-1305.
    [40]刘晓丹,李春风,谷大海等.成骨细胞的研究进展[J].中国畜牧兽医,2011,38(7):53-57.
    [41]陆裕朴,胥少汀,葛宝丰等.实用骨科学第1版[M].北京:人民军医出版杜,1991,755:7-31.
    [42]Aronow M A G L C, Owen T A. Factors that promote progressive development of the osteoblast phenotype in cultured fatal calvaria cells[J]. Journal of Cellular Physiology,1990,143:213-221.
    [43]刘忠厚.骨矿与临床[M].北京:中国科学技术出版社;2006.
    [44]刘文佳,王晓庚,周洪等.体外大鼠成骨细胞对破骨细胞形成的影响[J].西安交通大学学报(医学版),2008,29(3):281-284.
    [45]Kim T, Ha H, Kim N et al. ATP6v0d2 deficiency increases bone mass, but does not influence ovariectomy-induced bone loss[J]. Biochemical and Biophysical Research Communications,2010, 403(1):73-78.
    [46]Riihonen R, Supuran C T, Parkkila S et al. Membrane-bound carbonic anhydrases in osteoclasts[J]. Bone,2007,40(4):1021-1031.
    [47]Teitelbaum S L, Tondravi M M, Ross F P. Osteoclasts, macrophages, and the molecular mechanisms of bone resorption[J]. Journal of Leukocyte Biology,1997,61(4):381-388.
    [48]Kusano K, Miyaura C, Inada M et al. Regulation of matrix metalloproteinases (MMP-2,-3,-9, and-13) by interleukin-1 and interleukin-6 in mouse calvaria:association of MMP induction with bone resorption[J]. Endocrinology,1998,139(3):1338-1345.
    [49]童安莉,陈璐璐,丁桂芝.成骨细胞骨形成机制研究进展[J].中国骨质疏松杂志,1999,5(3):60-64.
    [50]Nanci A, Zalzal S, Gotoh Y et al. Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures[J]. Microscopy Research and Technique,1996, 33(2):214-231.
    [51]刘波,于世凤.关于破骨细胞来源的几种学说[J].中国骨质疏松杂志,2004,10(1):112-115.
    [52]Chambers T, Magnus C. Calcitonin alters behaviour of isolated osteoclasts[J]. The Journal of Pathology,1982,136(1):27-39.
    [53]田雪飞.破骨细胞的来源[J].国外医学口腔医学分册,2002,29(6):354-356.
    [54]Jansen I D, Vermeer J A, Bloemen V et al. Osteoclast fusion and fission[J]. Calcified Tissue International,2012,90(6):515-522.
    [55]马克昌,朱太咏.破骨细胞的细胞生理学[J].中医正骨,1998,10(1):52-54.
    [56]Walker D G. Osteopetrosis cured by temporary parabiosis[J]. Science,1973,180(4088):875.
    [57]Udagawa N, Takahashi N, Jimi E et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor:receptor activator of NF-kappa B ligand[J]. Bone,1999,25(5):517.
    [58]Takahashi N, Akatsu T, Udagawa N et al. Osteoblastic cells are involved in osteoclast formation[J]. Endocrinology,1988,123(5):2600-2602.
    [59]Boyce B F, Xing L. Biology of RANK, RANKL, and osteoprotegerin[J]. Arthritis research & therapy, 2007,9 Suppl 1:S1.
    [60]Nakagawa N, Kinosaki M, Yamaguchi K et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis[J]. Biochemical and Biophysical Research Communications,1998,253(2):395-400.
    [61]Gu J H, Liu J D, Shen Y et al. Effects of RANKL, osteoprotegerin, calcium and phosphorus on survival and activation of Muscovy duck osteoclasts in vitro[J]. Vet J,2009,181(3):321-325.
    [62]Roodman G D. Cell biology of the osteoclast[J]. Experimental hematology,1999,27(8):1229-1241.
    [63]David J P, Rincon M, Neff L et al. Carbonic anhydrase Ⅱ is an AP-1 target gene in osteoclasts[J]. Journal of Cellular Physiology,2001,188(1):89-97.
    [64]McMahon C, Will A, Hu P et al. Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase Ⅱ deficiency syndrome[J]. Blood,2001,97(7):1947-1950.
    [65]王文军,李建军,李小春等.Ⅱ型碳酸酐酶阻断剂对体外破骨细胞的抑制作用[J].中国骨伤,2003,16(7):409-411.
    [66]张本斯,王凡.破骨细胞的生物学新观[J].四川解剖学杂志,2002,10(1):30-37.
    [67]刘继中,胡蕴玉.破骨细胞骨吸收机制的研究进展[J].中国矫形外科杂志,2002,9(4):401-402.
    [68]Ying-Xiao Fu, Jian-Hong Gu, Zong-Ping Liu. Osteoprotegerin influences the bone resorption activity of osteoclasts[J]. International Journal of Molecular Medicine,2013,31:1411-1417.
    [69]Okada Y, Naka K, Kawamura K et al. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase= gelatinase B) in osteoclasts:implications for bone resorption[J]. Laboratory Investigation,1995,72(3):311-322.
    [70]Jimi E, Akiyama S, Tsurukai T et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function[J]. The Journal of Immunology,1999, 163(1):434-442.
    [71]Janckila A J, Simons R M, Yam L T. Alternative immunoassay for tartrate-resistant acid phosphatase isoform 5b using the fluorogenic substrate naphthol ASBI-phosphate and heparin[J]. Clinica Chimica Acta,2004,347(1):157-167.
    [72]Kanehisa J, Heersche J N. Osteoclastic bone resorption:in vitro analysis of the rate of resorption and migration of individual osteoclasts[J]. Bone,1988,9(2):73-79.
    [73]Teitelbaum S L. Bone resorption by osteoclasts[J]. Science,2000,289(5484):1504-1508.
    [74]尚可,李玉坤.破骨细胞分化中的信号传导及细胞因子调节[J].河北医药,2006,28(4):319-321.
    [75]Udagawa N, Takahashi N, Akatsu T et al. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells[J]. Endocrinology,1989,125(4):1805-1813.
    [76]Matsumoto H, Tamura M, Denhardt D et al. Establishment and characterization of bone marrow stromal cell lines that support osteoclastogenesis[J]. Endocrinology,1995,136(9):4084-4091.
    [77]Kodama H, Nose M, Niida S et al. Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells[J]. The Journal of Experimental Medicine,1991, 173(5):1291-1294.
    [78]Stanley E R, Berg K L, Einstein D B et al. Biology and action of colony-stimulating factor-1[J]. Molecular Reproduction and Development,1997,46(1):4-10.
    [79]Marks Jr S, Seifert M, McGuire J. Congenitally osteopetrotic (op/op) mice are not cured by transplants of spleen or bone marrow cells from normal littermates[J]. Metabolic Bone Disease and Related Research,1984,5(4):183-186.
    [80]Felix R, Cecchini M G. Hofstetter W et al. Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1990,5(7):781-789.
    [81]Yoshida H, Hayashi S-I, Kunisada T et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene[J]. Nature,1990,345:442-444.
    [82]Kodama H, Yamasaki A, Nose M et al. Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor[J]. The Journal of experimental medicine,1991,173(1):269-272.
    [83]Felix R, Cecchini M G, Fleisch H. Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse[J]. Endocrinology,1990,127(5):2592-2594.
    [84]Wiktor-Jedrzejczak W, Urbanowska E, Aukerman S et al. Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor[J]. Experimental Hematology,1991,19(10):1049.
    [85]Nishino I, Amizuka N, Ozawa H. Histochemical examination of osteoblastic activity in op/op mice with or without injection of recombinant M-CSF[J]. Journal of Bone and Mineral Metabolism,2001, 19(5):267-276.
    [86]Suda T, Udagawa N, Nakamura I et al. Modulation of osteoclast differentiation by local factors[J]. Bone,1995,17(2):S87-S91.
    [87]Tsurukai T, Udagawa N, Matsuzaki K et al. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis[J]. Journal of Bone and Mineral Metabolism, 2000,18(4):177-184.
    [88]Fuller K, Owens J M, Jagger C J et al. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoc lasts [J]. The Journal of Experimental Medicine,1993,178(5): 1733-1744.
    [89]Jimi E, Shuto T, Koga T. Macrophage colony-stimulating factor and interleukin-1 alpha maintain the survival of osteoclast-like cells[J]. Endocrinology,1995,136(2):808-811.
    [90]Insogna K L, Sahni M, Grey A B et al. Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts[J]. The Journal of Clinical Investigation,1997,100(10):2476-2485.
    [91]Courtneidge S A, Dhand R, Pilat D et al. Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor[J]. The EMBO Journal,1993,12(3):943.
    [92]Dey A, She H, Kim L et al. Colony-stimulating factor-1 receptor utilizes multiple signaling pathways to induce cyclin D2 expression[J]. Molecular Biology of The Cell,2000,11(11):3835-3848.
    [93]Nakamura I, Lipfert L, Rodan G A et al. Convergence of αvβ3 Integrin-And Macrophage Colony Stimulating Factor-Mediated Signals on Phospholipase Cy in Prefusion Osteoclasts[J]. The Journal of Cell Biology,2001,152(2):361-374.
    [94]Tanaka S, Nakamura I, Inoue J et al. Signal transduction pathways regulating osteoclast differentiation and function[J]. Journal of Bone and Mineral Metabolism,2003,21(3):123-133.
    [95]Duong L T, Rodan G A. Regulation of osteoclast formation and function[J]. Reviews in Endocrine & Metabolic Disorders,2001,2(1):95-104.
    [96]Blavier L, Delaisse J M. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones[J]. Journal of Cell Science,1995,108 (Pt 12):3649-3659.
    [97]McHugh K P, Hodivala-Dilke K, Zheng M-H et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts[J]. Journal of Clinical Investigation,2000,105(4):433-440.
    [98]Vaananen H K, Horton M. The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure[J]. Journal of Cell Science,1995,108(8):2729-2732.
    [99]狄升蒙,田宗成,高翔等.破骨细胞研究进展[J].细胞生物学杂志,2009,006):792-798.
    [100]李凌波,王洪复.破骨细胞凋亡与骨代谢[J].中华老年医学杂志,2000,19(4):311-312.
    [101]Akiyama T, Miyazaki T, Bouillet P et al. In vitro and in vivo assays for osteoclast apoptosis[J]. Biological Procedures Online,2005,7:48-59.
    [102]肖丽平,邱明才.破骨细胞凋亡的调节[J].天津医药,2001,3,(035):188-190.
    [103]Hughes D E, Dai A, Tiffee J C et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta[J]. Nature Medicine,1996,2(10):1132-1136.
    [104]Kameda T, Mano H, Yuasa T et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoc lasts [J]. The Journal of Experimental Medicine,1997,186(4):489-495.
    [105]Hughes D E, Wright K R, Uy H L et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo[J]. Journal of Bone and Mineral Research:the official journal of the American Society for Bone and Mineral Research,1995,10(10):1478-1487.
    [106]Miyazaki T, Katagiri H, Kanegae Y et al. Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts[J]. The Journal of Cell Biology,2000,148(2):333-342.
    [107]Raisz L G. The osteoporosis revolution[J]. Annals of Internal Medicine,1997,126(6):458-462.
    [108]Riggs B L, Khosla S, Melton L J. A unitary model for involutional osteoporosis:estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men[J]. Journal of Bone and Mineral Research,1998,13(5):763-773.
    [109]Prestwood K M, Pilbeam C C, Raisz L G. Treatment of osteoporosis[J]. Annual Review of Medicine, 1995,46(249-256.
    [110]Eastell R. Treatment of postmenopausal osteoporosis[J]. The New England Journal of Medicine,1998, 338(11):736-746.
    [111]Mills B G, Frausto A. Cytokines expressed in multinucleated cells:Paget's disease and giant cell tumors versus normal bone[J]. Calcified Tissue International,1997,61(1):16-21.
    [112]Siris E S. Paget's disease of bone[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1998,13(7):1061-1065.
    [113]Mee A P, Dixon J A, Hoyland J A et al. Detection of canine distemper virus in 100% of Paget's disease samples by in situ-reverse transcriptase-polymerase chain reaction[J]. Bone,1998,23(2):171-175.
    [114]Nellissery M J, Padalecki S S, Brkanac Z et al. Evidence for a novel osteosarcoma tumor-suppressor gene in the chromosome 18 region genetically linked with Paget disease of bone[J]. American Journal of Human Genetics,1998,63(3):817-824.
    [115]Schneider G B, Key L L, Popoff S N. Osteopetrosis:Therapeutic Strategies[J]. The Endocrinologist, 1998,8(6):409.
    [116]Charles J M, Key L L. Developmental spectrum of children with congenital osteopetrosis[J]. The Journal of pediatrics,1998,132(2):371-374.
    [117]Raisz L G. Physiology and pathophysiology of bone remodeling[J]. Clinical Chemistry,1999,45(8 Pt 2):1353-1358.
    [118]Matsuo K, Irie N. Osteoclast-osteoblast communication[J]. Archives of Biochemistry and Biophysics, 2008,473(2):201-209.
    [119]Pfeilschifter J, Mundy G R. Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones[J]. Proceedings of the National Academy of Sciences,1987,84(7): 2024-2028.
    [120]Saltel F, Chabadel A, Zhao Y et al. Transmigration:a new property of mature multinucleated osteoclasts[J]. Journal of Bone and Mineral Research,2006,21(12):1913-1923.
    [121]Saltel F, Destaing O, Bard F et al. Apatite-mediated actin dynamics in resorbing osteoclasts[J]. Molecular Biology of The Cell,2004,15(12):5231-5241.
    [122]Seeman E. Bone quality:the material and structural basis of bone strength[J]. Journal of Bone and Mineral Metabolism,2008,26(1):1-8.
    [123]Mashiba T, Turner C, Hirano T et al. Effects of high-dose etidronate treatment on microdamage accumulation and biomechanical properties in beagle bone before occurrence of spontaneous fractures[J]. Bone,2001,29(3):271-278.
    [124]Zhao C, Irie N, Takada Y et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis[J]. Cell Metabolism,2006,4(2):111-121.
    [125]Takeda S, Elefteriou F, Levasseur R et al. Leptin regulates bone formation via the sympathetic nervous system[J]. Cell,2002,111(3):305-317.
    [126]Baldock P A, Sainsbury A, Allison S et al. Hypothalamic control of bone formation:distinct actions of leptin and y2 receptor pathways[J]. Journal of Bone and Mineral Research,2005,20(10):1851-1857.
    [127]苏佳灿,许硕贵,张春才.骨重建中细胞因子的作用及机制[J].中国矫形外科杂志,2001,8(6):593-595.
    [128]Koinuma D, Imamura T. Bone formation and inflammation][J]. Nihon Rinsho Japanese Journal of Clinical Medicine,2005,63(9):1523.
    [129]Pogoda P, Priemel M, Rueger J M et al. Bone remodeling:new aspects of a key process that controls skeletal maintenance and repair[J]. Osteoporosis International,2005,16(2):S18-S24.
    [130]黄公怡.骨重建与骨质量[J].中华骨科杂志,2006,26(11):787-789.
    [131]Tsuda E, Goto M, Mochizuki S-i et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis[J]. Biochemical and Biophysical Research Communications, 1997,234(1):137-142.
    [132]Yasuda H, Shima N, Nakagawa N et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG):a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro[J]. Endocrinology,1998,139(3):1329-1337.
    [133]Wright H L, McCarthy H S, Middleton J et al. RANK, RANKL and osteoprotegerin in bone biology and disease[J]. Current Reviews in Musculoskeletal Medicine,2009,2(1):56-64.
    [134]刘俊栋,姜彦,刘宗平等.骨保护素对骨代谢的调控作用[J].山东医药,2006,46(4):74-75.
    [135]Hofbauer L C, Kuhne C A, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases[J]. Journal of Musculoskeletal & Neuronal Interactions,2004,4(3):268-275.
    [136]Khosla S. Minireview:the OPG/RANKL/RANK system[J]. Endocrinology,2001,142(12):5050-5055.
    [137]Grundt A, Grafe I A, Liegibel U et al. Direct effects of osteoprotegerin on human bone cell metabolism[J]. Biochemical and Biophysical Research Communications,2009,389(3):550-555.
    [138]曾晓峰,赵建宁.骨保护素及其配体对破骨细胞功能的调控作用[J].中国矫形外科杂志,2004,12(6):463-465.
    [139]Hakeda Y, Kobayashi Y, Yamaguchi K et al. Osteoclastogenesis inhibitory factor (OCIF) directly inhibits bone-resorbing activity of isolated mature osteoclasts[J]. Biochemical and Biophysical Research Communications,1998,251(3):796-801.
    [140]Chamoux E, Houde N, L'Eriger K et al. Osteoprotegerin decreases human osteoclast apoptosis by inhibiting the TRAIL pathway[J]. Journal of Cellular Physiology,2008,216(2):536-542.
    [141]Cross S S, Yang Z, Brown N J et al. Osteoprotegerin (OPG)-a potential new role in the regulation of endothelialcell phenotype and tumour angiogenesis?[J]. International Journal of Cancer,2006,118(8): 1901-1908.
    [142]Haas M, Leko-Mohr Z, Roschger P et al. Osteoprotegerin and parathyroid hormone as markers of high-turnover osteodystrophy and decreased bone mineralization in hemodialysis patients[J]. American Journal of Kidney Diseases,2002,39(3):580-586.
    [143]Vanderkerken K, De Leenheer E, Shipman C et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma[J]. Cancer Research,2003, 63(2):287-289.
    [144]Bennett B J, Scatena M, Kirk E A et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/-mice[J]. Arteriosclerosis, Thrombosis, and Vascular Biology,2006,26(9):2117-2124.
    [145]Bekker P J, Holloway D, Nakanishi A et al. The effect of a single dose of osteoprotegerin in postmenopausal women[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2001,16(2):348-360.
    [146]姚静.鸡骨保护素(chOPG)基因的克隆,表达及生物学活性研究[D].南京农业大学,2007.
    [147]Messalli E M, Mainini G, Scaffa C et al. Raloxifene therapy interacts with serum osteoprotegerin in postmenopausal women[J]. Maturitas,2007,56(1):38-44.
    [148]Heath D J, Vanderkerken K, Cheng X et al. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma[J]. Cancer Research,2007,67(1): 202-208.
    [149]Itonaga I, Sabokbar A, Murray D et al. Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthroplasty membrane derived macrophages[J]. Annals of the Rheumatic Diseases,2000,59(1):26-31.
    [150]Anderson D M, Maraskovsky E, Billingsley W L et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function[J]. Nature,1997,390(6656):175-179.
    [151]Wong B R, Rho J, Arron J et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells[J]. Journal of Biological Chemistry,1997, 272(40):25190-25194.
    [152]Lacey D L, Timms E, Tan H L et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell,1998,93(2):165-176.
    [153]Blair J, Zheng Y, Dunstan C. RANK ligand[J]. The International Journal of Biochemistry & Cell Biology,2007,39(6):1077-1081.
    [154]刘长庚,凌天牖,黄生高OPG/RANKL/RANK系统及其临床应用[J].国际病理科学与临床杂志,2007,27(6):16-538.
    [155]李晓鸣,刘耀明.RANK/RANKL/OPG系统与肿瘤[J].国际病理科学与临床杂志,2009,29(3):259-262.
    [156]奚正德,胡峻熊.RANKL-RANK信号传导与破骨细胞生成及骨病[J].中国骨质疏松杂志,2008,14(4):285-293.
    [157]Wada T, Nakashima T, Hiroshi N et al. RANKL-RANK signaling in osteoclastogenesis and bone disease[J]. Trends in Molecular Medicine,2006,12(1):17-25.
    [158]Fata J E, Kong Y-Y, Li J et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development[J]. Cell,2000,103(1):41-50.
    [159]Kim N S, Kim H J, Koo B K et al. Receptor activator of NF-kappaB ligand regulates the proliferation of mammary epithelial cells via Id2[J]. Molecular and Cellular Biology,2006,26(3):1002-1013.
    [160]Chen G, Sircar K, Aprikian A et al. Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation[J]. Cancer,2006,107(2): 289-298.
    [161]Kapur R P, Yao Z, Iida M H et al. Malignant autosomal recessive osteopetrosis caused by spontaneous mutation of murine Rank[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2004,19(10):1689-1697.
    [162]Hughes A E, Ralston S H, Marken J et al. Mutations in TNFRSF11 A, affecting the signal peptide of RANK, cause familial expansile osteolysis[J]. Nature Genetics,2000,24(1):45-48.
    [163]Darnay B G, Aggarwal B B. Signal transduction by tumour necrosis factor and tumour necrosis factor related ligands and their receptors[J]. Annals of the Rheumatic Diseases,1999,58(suppl 1):12-113.
    [164]Darnay B G, Haridas V, Ni J et al. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase[J]. The Journal of Biological Chemistry,1998,273(32): 20551-20555.
    [165]Darnay B G, Ni J, Moore P A et al. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif[J]. The Journal of Biological Chemistry,1999,274(12):7724-7731.
    [166]Galibert L, Tometsko M E, Anderson D M et al. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily[J]. The Journal of Biological Chemistry,1998,273(51): 34120-34127.
    [167]Hsu H, Lacey D L, Dunstan C R et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3540-3545.
    [168]Kim H H, Lee D E, Shin J N et al. Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase[J]. FEBS letters,1999,443(3):297-302.
    [169]Wong B R, Josien R, Lee S Y et al. The TRAF family of signal transducers mediates NF-kB activation by the TRANCE receptor[J]. Journal of Biological Chemistry,1998,273(43):28355-28359.
    [170]Inoue J, Ishida T, Tsukamoto N et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling[J]. Experimental Cell Research,2000,254(1):14-24.
    [171]Armstrong A P, Tometsko M E, Glaccum M et al. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function[J]. Journal of Biological Chemistry,2002,277(46):44347-44356.
    [172]Liu W, Xu D, Yang H et al. Functional identification of three receptor activator of NF-kB cytoplasmic motifs mediating osteoclast differentiation and function[J]. Journal of Biological Chemistry,2004, 279(52):54759-54769.
    [173]Ye H, Arron J R, Lamothe B et al. Distinct molecular mechanism for initiating TRAF6 signalling[J]. Nature,2002,418(6896):443-447.
    [174]Lomaga M A, Yeh W C, Sarosi 1 et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling[J]. Genes & Development,1999,13(8):1015-1024.
    [175]Naito A, Azuma S, Tanaka S et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice[J]. Genes to Cells:Devoted to Molecular & Cellular Mechanisms,1999,4(6):353-362.
    [176]Yamaguchi K, Shirakabe K, Shibuya H et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction[J]. Science,1995,270(5244):2008-2011.
    [177]Mizukami J, Takaesu G, Akatsuka H et al. Receptor activator of NF-kB ligand (RANKL) activates TAKl mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6[J]. Molecular and Cellular Biology,2002,22(4):992-1000.
    [178]Ninomiya-Tsuji J, Kishimoto K, Hiyama A et al. The kinase TAK1 can activate the NIK-IkB as well as the MAP kinase cascade in the IL-1 signalling pathway[J]. Nature,1999,398(6724):252-256.
    [179]Lee S W, Han S-I, Kim H-H et al. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB[J]. Journal of Biochemistry and Molecular Biology,2002,35(4): 371-376.
    [180]Shirakabe K, Yamaguchi K, Shibuya H et al. TAKl mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase[J]. The Journal of Biological Chemistry,1997,272(13): 8141-8144.
    [181]Ge B, Gram H, Di Padova F et al. MAPKK-independent activation of p38alpha mediated by TAB 1-dependent autophosphorylation of p38alpha[J]. Science,2002,295(5558):1291-1294.
    [182]Franzoso G, Carlson L, Xing L et al. Requirement for NF-kappaB in osteoclast and B-cell development[J]. Genes & Development,1997,11(24):3482-3496.
    [183]Grigoriadis A E, Wang Z-Q, Cecchini M G et al. c-Fos:a key regulator of osteoclast-macrophage lineage determination and bone remodeling[J]. Science,1994,266(5184):443-448.
    [184]Jimi E, Nakamura 1, Ikebe T et al. Activation of NF-kB is involved in the survival of osteoclasts promoted by interleukin-1[J]. Journal of Biological Chemistry,1998,273(15):8799-8805.
    [185]Lee S E, Chung W J, Kwak H B et al. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK[J]. The Journal of Biological Chemistry,2001,276(52): 49343-49349.
    [186]Wong B R, Besser D, Kim N et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src[J]. Molecular Cell,1999,4(6):1041-1049.
    [187]Ishida N, Hayashi K, Hoshijima M et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator[J]. The Journal of Biological Chemistry,2002, 277(43):41147-41156.
    [188]Takayanagi H, Kim S, Koga T et al. Induction and activation of the transcription factor NFATcl (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts[J]. Developmental Cell, 2002,3(6):889-901.
    [189]Lee S E, Woo K M, Kim S Y et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation[J]. Bone,2002,30(1): 71-77.
    [190]Li X, Udagawa N, Itoh K et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function[J]. Endocrinology,2002,143(8):3105-3113.
    [191]Li X, Udagawa N, Takami M et al. p38 Mitogen-activated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages[J]. Endocrinology,2003,144(11):4999-5005.
    [192]Matsumoto M, Sudo T, Saito T et al. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL)[J]. The Journal of Biological Chemistry,2000,275(40):31155-31161.
    [193]Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation[J]. Nature,2003, 423(6937):337-342.
    [194]Feng X. Regulatory roles and molecular signaling of TNF family members in osteoclasts[J]. Gene, 2005,350(1):1-13.
    [195]Del Fattore A, Teti A, Rucci N. Osteoclast receptors and signaling[J]. Archives of Biochemistry and Biophysics,2008,473(2):147-160.
    [196]周志琦,刘强.真核生物的MAPK级联信号传递途径[J].生物化学与生物物理进展,1998,25(6):496-503.
    [197]Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants:the role of mitogen-activated protein kinases[J]. Trends in Biotechnology,1997,15(1):15-19.
    [198]端木德强,李中海,王敬泽.MAPK信号传导通路研究进展[J].细胞生物学杂志,2002,24(3):151-155.
    [199]Robinson M J, Cobb M H. Mitogen-activated protein kinase pathways[J]. Current Opinion in Cell Biology,1997,9(2):180-186.
    [200]Lee S, Woo K, Kim S et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation[J]. Bone,2002,30(1):71.
    [201]Kobayashi N, Kadono Y, Naito A et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis[J]. The EMBO Journal,2001,20(6):1271-1280.
    [202]Miyazaki T, Katagiri H, Kanegae Y et al. Reciprocal role of ERK and NF-kB pathways in survival and activation of osteoclasts[J]. The Journal of Cell Biology,2000,148(2):333-342.
    [203]David J-P, Sabapathy K, Hoffmann O et al. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms[J]. Journal of Cell Science,2002,115(22): 4317-4325.
    [204]Yamamoto A, Miyazaki T, Kadono Y et al. Possible involvement of IkB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kB ligand[J]. Journal of Bone and Mineral Research,2002,17(4):612-621.
    [205]Matsumoto M, Sudo T, Saito T et al. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kB ligand (RANKL)[J]. Journal of Biological Chemistry,2000,275(40):31155-31161.
    [206]Song H Y, Regnier C H, Kirschning C J et al. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-KB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2[J]. Proceedings of the National Academy of Sciences,1997,94(18): 9792-9796.
    [207]Kashiwada M, Shirakata Y, Inoue J-I et al. Tumor necrosis factor receptor-associated factor 6 (TRAF6) stimulates extracellular signal-regulated kinase (ERK) activity in CD40 signaling along a ras-independent pathway [J]. The Journal of Experimental Medicine,1998,187(2):237-244.
    [208]Cano E, Mahadevan L C. Parallel signal processing among mammalian MAPKs[J]. Trends in Biochemical Sciences,1995,20(3):117-122.
    [209]Mansky K C, Sankar U, Han J et al. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kB ligand signaling[J]. Journal of Biological Chemistry,2002,277(13):11077-11083.
    [210]Lee Z H, Kim H H. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts[J]. Biochemical and Biophysical Research Communications,2003,305(2):211-214.
    [211]Berridge M J, Bootman M D, Roderick H L. Calcium signalling:dynamics, homeostasis and remodelling[J]. Nature reviews Molecular Cell Biology,2003,4(7):517-529.
    [212]Hwang S Y, Putney J W, Jr. Calcium signaling in osteoclasts[J]. Biochimica Biophysica Acta,2011, 1813(5):979-983.
    [213]Teti A, Blair H C, Schlesinger P et al. Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures[J]. The Journal of Clinical Investigation,1989,84(3):773-780.
    [214]Yu H, Ferrier J. ATP induces an intracellular calcium pulse in osteoclasts[J]. Biochemical and Biophysical Research Communications,1993,191(2):357-363.
    [215]Davies J, Warwick J, Totty N et al. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor[J]. The Journal of Cell Biology, 1989,109(4):1817-1826.
    [216]Engleman V W, Nickols G A, Ross F P et al. A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo[J]. The Journal of Clinical Investigation,1997,99(9):2284-2292.
    [217]Horton M A, Davies J. Perspectives:adhesion receptors in bone[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1989,4(6): 803-808.
    [218]Horton M, Taylor M, Arnett T et al. Arg Gly Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts [J]. Experimental Cell Research,1991,195(2):368-375.
    [219]Shankar G, Davison I, Helfrich M H et al. Integrin receptor-mediated mobilisation of intranuclear calcium in rat osteoclasts[J]. Journal of Cell Science,1993,105 (Pt 1):61-68.
    [220]Xia S L, Ferrier J. Calcium signal induced by mechanical perturbation of osteoclasts[J]. Journal of Cellular Physiology,1995,163(3):493-501.
    [221]Radding W, Jordan S E, Hester R B et al. Intracellular calcium puffs in osteoclasts[J]. Experimental Cell Research,1999,253(2):689-696.
    [222]Falsafi R, Tatakis D N, Hagel-Bradway S et al. Effects of inositol trisphosphate on calcium mobilization in bone cells[J]. Calcified Tissue International,1991,49(5):333-339.
    [223]Yaroslavskiy B B, Sharrow A C, Wells A et al. Necessity of inositol (1,4,5)-trisphosphate receptor 1 and mu-calpain in NO-induced osteoclast motility[J]. Journal of Cell Science,2007,120(Pt 16): 2884-2894.
    [224]Morikawa K, Goto T, Tanimura A et al. Distribution of inositol 1,4,5-trisphosphate receptors in rat osteoclasts[J]. Acta Histochemica Cytochemica,2008,41(2):7-13.
    [225]Malgaroli A, Meldolesi J, Zallone A Z et al. Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin[J]. The Journal of Biological Chemistry, 1989,264(24):14342-14347.
    [226]Zaidi M, Datta H K, Patchell A et al.'Calcium-activated'intracellular calcium elevation:a novel mechanism of osteoclast regulation[J]. Biochemical and Biophysical Research Communications,1989, 163(3):1461-1465.
    [227]Seuwen K, Boddeke H G, Migliaccio S et al. A novel calcium sensor stimulating inositol phosphate formation and [Ca2+]i signaling expressed by GCT23 osteoclast-like cells[J]. Proceedings of the Association of American Physicians,1999,111(1):70-81.
    [228]Mentaverri R, Yano S, Chattopadhyay N et al. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis[J]. The FASEB Journal,2006,20(14):2562-2564.
    [229]Zaidi M, Shankar V S, Towhidul Alam A et al. Evidence that a ryanodine receptor triggers signal transduction in the osteoclast[J]. Biochemical and Biophysical Research Communications,1992, 188(3):1332-1336.
    [230]Moonga B S, Li S, Iqbal J et al. Ca2+influx through the osteoclastic plasma membrane ryanodine receptor[J]. American Journal of Physiology-Renal Physiology,2002,282(5):F921-F932.
    [231]Zaidi M, Shankar V S, Tunwell R et al. A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+sensing[J]. The Journal of Clinical Investigation, 1995,96(3):1582-1590.
    [232]Brown E M, Chattopadhyay N, Yano S. Calcium-sensing receptors in bone cells[J]. Journal of Musculoskeletal & Neuronal Interactions,2004,4(4):412-413.
    [233]Parekh A B, Putney J W. Store-operated calcium channels[J]. Physiological Reviews,2005,85(2): 757-810.
    [234]Zaidi M, Shankar V S, Bax C M et al. Linkage of extracellular and intracellular control of cytosolic Ca2+in rat osteoclasts in the presence of thapsigargin[J]. Journal of Bone and Mineral Research,1993, 8(8):961-967.
    [235]Yang S, Li Y P. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation[J]. Genes & Development,2007,21(14):1803-1816.
    [236]Yoon S H, Lee Y, Kim H J et al. Lyn inhibits osteoclast differentiation by interfering with PLCgammal-mediated Ca2+signaling[J]. FEBS Letters,2009,583(7):1164-1170.
    [237]Komarova S V, Pilkington M F, Weidema A F et al. RANK ligand-induced elevation of cytosolic Ca2+ accelerates nuclear translocation of nuclear factor kappa B in osteoclasts[J]. The Journal of Biological Chemistry,2003,278(10):8286-8293.
    [238]Chamoux E, Bisson M, Payet M D et al. TRPV-5 mediates a receptor activator of NF-kappaB (RANK) ligand-induced increase in cytosolic Ca2+in human osteoclasts and down-regulates bone resorption[J]. The Journal of Biological Chemistry,2010,285(33):25354-25362.
    [239]Zayzafoon M, Fulzele K, McDonald J M. Calmodulin and calmodulin-dependent kinase IIalpha regulate osteoblast differentiation by controlling c-fos expression[J]. The Journal of Biological Chemistry,2005,280(8):7049-7059.
    [240]Zhang L, McKenna M A, Said-Al-Naief N et al. Osteoclastogenesis:the role of calcium and calmodulin[J]. Critical Reviews in Eukaryotic Gene Expression,2005,15(1):1-13.
    [241]Mishra J P, Mishra S, Gee K et al. Differential involvement of calmodulin-dependent protein kinase II-activated AP-1 and c-Jun N-terminal kinase-activated EGR-1 signaling pathways in tumor necrosis factor-a and lipopolysaccharide-induced CD44 expression in human monocytic cells[J]. Journal of Biological Chemistry,2005,280(29):26825-26837.
    [242]Sims N A, Jenkins B J, Quinn J M et al. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways[J]. The Journal of Clinical Investigation,2004,113(3): 379-389.
    [243]Heymann D, Rousselle A V. gp130 Cytokine family and bone cells[J]. Cytokine,2000,12(10): 1455-1468.
    [244]Gibson R M, Laszlo G S, Nathanson N M. Calmodulin-dependent protein kinases phosphorylate gp130 at the serine-based dileucine internalization motif[J]. Biochimica Biophysica Acta (BBA)-Biomembranes,2005,1714(1):56-62.
    [245]Seales E C, Micoli K J, McDonald J M. Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival[J]. Journal of Cellular Biochemistry,2006,97(1):45-55.
    [1]Sahin K, Onderci M, Sahin N et al. Dietary arginine silicate inositol complex improves bone mineralization in quail[J]. Poultry Science,2006,85(3):486-492.
    [2]Rath N C, Balog J M, Huff W E et al. Comparative differences in the composition and biomechanical properties of tibiae of seven-and seventy-two-week-old male and female broiler breeder chickens[J]. Poultry Science,1999,78(8):1232-1239.
    [3]Rath N C, Huff G R, Huff W E et al. Factors regulating bone maturity and strength in poultry[J]. Poultry Science,2000,79(7):1024-1032.
    [4]Gay C V. Avian osteoclasts[J]. Calcified Tissue International,1991,49(3):153-154.
    [5]Jones S J, Ali N N, Boyde A. Survival and resorptive activity of chick osteoclasts in culture[J]. Anatomy and Embryology,1986,174(2):265-275.
    [6]Gu J H, Liu J D, Shen Y et al. Effects of RANKL, osteoprotegerin, calcium and phosphorus on survival and activation of Muscovy duck osteoclasts in vitro[J]. Vet J,2009,181(3):321-325.
    [7]Chambers T, Magnus C. Calcitonin alters behaviour of isolated osteoclasts[J]. The Journal of Pathology,1982,136(1):27-39.
    [8]Akatsu T, Murakami T, Nishikawa M et al. Osteoclastogenesis inhibitory factor suppresses osteoclast survival by interfering in the interaction of stromal cells with osteoclast[J]. Biochemical and Biophysical Research Communications,1998,250(2):229-234.
    [9]Boyce B F, Xing L. Biology of RANK, RANKL, and osteoprotegerin[J]. Arthritis Research & Therapy,2007,9 Suppl 1, S1.
    [10]Hughes D E, Boyce B F. Apoptosis in bone physiology and disease[J]. Molecular Pathology:MP, 1997,50(3):132-137.
    [11]Shiotani A, Takami M, Itoh K et al. Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin[J]. The Anatomical Record,2002,268(2):137-146.
    [12]Vesely P, Boyde A, Jones S J. Behaviour of osteoclasts in vitro:contact behaviour of osteoclasts with osteoblast-like cells and networking of osteoclasts for 3D orientation[J]. Journal of Anatomy,1992, 181 (Pt 2):277-291.
    [13]Hughes D E, Wright K. R, Uy H L et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1995,10(10):1478-1487.
    [14]Arnett T R, Dempster D W. A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins[J]. Endocrinology,1987,120(2):602-608.
    [15]Wang Y, Hou J F, Zhou Z L. Chicken receptor activator of nuclear factor-kappaB ligand induces formation of chicken osteoclasts from bone marrow cells and also directly activates mature osteoclasts[J]. Poultry Science,2008,87(11):2344-2349.
    [16]Huang J, Yuan L, Wang X et al. Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro[J]. Life Sciences,2007,81(10):832-840.
    [17]王晓敏,于世风,庞淑珍.阿仑膦酸盐促进体外培养鼠破骨细胞凋亡[J].北京医科大学学报,1999,31(5):454-454.
    [18]Lion J M, Mentaverri R, Rossard S et al. Oligogalacturonic acid inhibit bone resorption and collagen degradation through its interaction with type I collagen[J]. Biochemical Pharmacology,2009,78(12): 1448-1455.
    [19]牛涛,丁仲鹃,董菲.不同表面处理钛片对成骨细胞骨架影响的研究[J].华西口腔医学杂志,2007,25(6):606-610.
    [20]Anselme K. Osteoblast adhesion on biomaterials[J]. Biomaterials,2000,21(7):667-681.
    [21]Yoshida N, Sato T, Kobayashi K et al. High extracellular Ca2+and Ca2+-sensing receptor agonists activate nonselective cation conductance in freshly isolated rat osteoclasts[J]. Bone,1998,22(5): 495-501.
    [22]Sekine-Osajima Y, Sakamoto N, Nakagawa M et al. Two flavonoids extracts from Glycyrrhizae radix inhibit in vitro hepatitis C virus replication[J]. Hepatology research:the Official Journal of the Japan Society of Hepatology,2009,39(1):60-69.
    [23]Suda T, Nakamura I, Jimi E et al. Regulation of osteoclast function[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,1997,12(6): 869-879.
    [24]Roodman G D. Cell biology of the osteoclast[J]. Experimental Hematology,1999,27(8):1229-1241.
    [25]Kobayashi Y, Hashimoto F, Miyamoto H et al. Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression[J]. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2000,15(10):1924-1934.
    [1]Aeschlimann D, Evans B A. The vital osteoclast:how is it regulated?[J]. Cell Death and Differentiation,2004,11 Suppl 1:S5-7.
    [2]Hakeda Y, Kobayashi Y, Yamaguchi K et al. Osteoclastogenesis inhibitory factor (OCIF) directly inhibits bone-resorbing activity of isolated mature osteoclasts[J]. Biochemical and Biophysical Research Communications,1998,251(3):796-801.
    [3]Vincent C, Kogawa M, Findlay D M et al. The generation of osteoclasts from RAW264.7 precursors in defined, serum-free conditions[J]. Journal of Bone and Mineral Metabolism,2009,27(1):114-119.
    [4]Matsumoto M, Sudo T, Saito T et al. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL)[J]. The Journal of Biological Chemistry,2000,275(40):31155-31161.
    [5]Theoleyre S, Wittrant Y, Couillaud S et al. Cellular activity and signaling induced by osteoprotegerin in osteoclasts:involvement of receptor activator of nuclear factor kB ligand and MAPK[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2004,1644(1):1-7.
    [6]Wittrant Y, Theoleyre S, Couillaud S et al. Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF-kB ligand and osteoprotegerin biological activities[J], Experimental Cell Research,2004,293(2):292-301.
    [7]Brinkmann J, Hefti T, Schlottig F et al. Response of osteoclasts to titanium surfaces with increasing surface roughness:an in vitro study[J]. Biointerphases,2012,7(1-4):34.
    [8]Nakayama T, Mizoguchi T, Uehara S et al. Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices-a simple method for identifying polarized osteoclasts[J]. Bone,2011, 49(6):1331-1339.
    [9]Hotokezaka H, Sakai E, Kanaoka K et al. U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells[J]. The Journal of Biological Chemistry, 2002,277(49):47366-47372.
    [10]Price C P, Kirwan A, Vader C. Tartrate-resistant acid phosphatase as a marker of bone resorption[J]. Clinical Chemistry,1995,41(5):641-643.
    [11]Saltel F, Chabadel A, Bonnelye E et al. Actin cytoskeletal organisation in osteoclasts:a model to decipher transmigration and matrix degradation[J]. European Journal of Cell Biology,2008,87(8-9): 459-468.
    [12]Grigoriadis A E, Kennedy M, Bozec A et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells[J]. Blood,2010,115(14):2769-2776.
    [13]Lee J W, Kobayashi Y, Nakamichi Y et al. Alisol-B, a novel phyto-steroid, suppresses the RANKL-induced osteoclast formation and prevents bone loss in mice[J]. Biochemical Pharmacology, 2010,80(3):352-361.
    [14]Lee S K, Goldring S R, Lorenzo J A. Expression of the calcitonin receptor in bone marrow cell cultures and in bone:a specific marker of the differentiated osteoclast that is regulated by calcitonin[J]. Endocrinology,1995,136(10):4572-4581.
    [15]Ye S, Fowler T W, Pavlos N J et al. LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhml[J]. PloS One,2011,6(11):e27285.
    [16]Jurdic P, Saltel F, Chabadel A et al. Podosome and sealing zone:specificity of the osteoclast model[J]. European Journal of Cell Biology,2006,85(3-4):195-202.
    [17]Destaing O, Saltel F, Geminard J C et al. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein[J]. Molecular Biology of the Cell,2003,14(2):407-416.
    [18]Meng B, Yang X, Chen Y et al. Effect of titanium particles on osteoclast activity in vitro[J]. Mol Med Rep,2010,3(6):1065-1069.
    [19]Hofbauer L C, Neubauer A, Heufelder A E. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin:potential implications for the pathogenesis and treatment of malignant bone diseases[J]. Cancer,2001,92(3):460-470.
    [20]Wright H L, McCarthy H S, Middleton J et al. RANK, RANKL and osteoprotegerin in bone biology and disease[J]. Current Reviews in Musculoskeletal Medicine,2009,2(1):56-64.
    [21]Boyce B F, Yao Z, Zhang Q et al. New roles for osteoclasts in bone[J]. Annals of the New York Academy of Sciences,2007,1116(245-254.
    [22]Boyce B F, Yao Z, Xing L. Osteoclasts have multiple roles in bone in addition to bone resorption[J]. Critical Reviews in Eukaryotic Gene Expression,2009,19(3):171.
    [23]Bridgham J T, Johnson A L. Characterization of chicken TNFR superfamily decoy receptors, DcR3 and osteoprotegerin[J]. Biochemical and Biophysical Research Communications,2003,307(4): 956-961.
    [24]Lemay S, Lebedeva T V, Singh A K. Inhibition of cytokine gene expression by sodium salicylate in a macrophage cell line through an NF-kappaB-independent mechanism[J]. Clinical and Diagnostic Laboratory Immunology,1999,6(4):567-572.
    [25]Kwan Tat S, Padrines M, Theoleyre S et al. IL-6, RANKL, TNF-alpha/IL-1:interrelations in bone resorption pathophysiology[J]. Cytokine & Growth Factor Reviews,2004,15(1):49-60.
    [26]Chamoux E, Houde N, L'Eriger K et al. Osteoprotegerin decreases human osteoclast apoptosis by inhibiting the TRAIL pathway[J]. Journal of Cellular Physiology,2008,216(2):536-542.
    [27]Vaananen H K, Zhao H, Mulari M et al. The cell biology of osteoclast function[J]. Journal of Cell Science,2000,113 (Pt 3):377-381.
    [28]Ying-Xiao Fu, Jian-Hong Gu, Zong-Ping Liu. Osteoprotegerin influences the bone resorption activity of osteoclasts[J]. International Journal of Molecular Medicine,2013,31:1411-1417.
    [29]Lehenkari P, Hentunen T A, Laitala-Leinonen T et al. Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+[J]. Experimental Cell Research,1998,242(1):128-137.
    [30]Gu J H, Liu J D, Shen Y et al. Effects of RANKL, osteoprotegerin, calcium and phosphorus on survival and activation of Muscovy duck osteoclasts in vitro[J]. Vet J,2009,181(3):321-325.
    [31]Teitelbaum S L, Tondravi M M, Ross F P. Osteoclasts, macrophages, and the molecular mechanisms of bone resorption[J]. Journal of Leukocyte Biology,1997,61(4):381-388.
    [32]Rousselle A V, Heymann D. Osteoclastic acidification pathways during bone resorption[J]. Bone, 2002,30(4):533-540.
    [33]Riihonen R, Supuran C T, Parkkila S et al. Membrane-bound carbonic anhydrases in osteoclasts[J]. Bone,2007,40(4):1021-1031.
    [34]Kusano K, Miyaura C, Inada M et al. Regulation of matrix metalloproteinases (MMP-2,-3,-9, and-13) by interleukin-1 and interleukin-6 in mouse calvaria:association of MMP induction with bone resorption[J]. Endocrinology,1998,139(3):1338-1345.
    [35]Wittrant Y, Theoleyre S, Couillaud S et al. Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF-kB ligand and osteoprotegerin biological activities[J]. Experimental Cell Research,2004,293(2):292-301.
    [36]Chen J, He J Q, Zhen S Y et al. OPG inhibits gene expression of RANK and CAII in mouse osteoclast-like cell[J]. Rheumatology International,2011.
    [37]Yang J, Shang G D, Zhang Y Q. Study of a novel antiosteoporosis screening model targeted on cathepsin K[J]. Biomedical and Environmental Sciences:BES,2004,17(3):273-280.
    [I]Feng X. Regulatory roles and molecular signaling of TNF family members in osteoclasts[J]. Gene, 2005,350(1):1-13.
    [2]Widmann C, Gibson S, Jarpe M B et al. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human[J]. Physiological Reviews,1999,79(1):143-180.
    [3]Ji R R, Gereau R W t, Malcangio M et al. MAP kinase and pain[J]. Brain Research Reviews,2009, 60(1):135-148.
    [4]Tian W, Zhang Z, Cohen D M. MAPK signaling and the kidney[J], American Journal of Physiology Renal Physiology,2000,279(4):F593-604.
    [5]Junttila M R, Li S-P, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival[J]. The FASEB Journal,2008,22(4):954-965.
    [6]Jimi E, Akiyama S, Tsurukai T et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function[J]. The Journal of Immunology,1999, 163(1):434-442.
    [7]Lee S, Woo K, Kim S et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation[J]. Bone,2002,30(1):71.
    [8]Li X, Udagawa N, Itoh K et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function[J]. Endocrinology,2002,143(8):3105-3113.
    [9]Chapurlat R, Palermo L, Ramsay P et al. Risk of fracture among women who lose bone density during treatment with alendronate. The Fracture Intervention Trial[J]. Osteoporosis International,2005,16(7): 842-848.
    [10]Srivastava S, Toraldo G, Weitzmann M N et al. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation[J]. The Journal of Biological Chemistry,2001,276(12):8836-8840.
    [11]Srivastava S, Weitzmann M N, Cenci S et al. Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD[J]. Journal of Clinical Investigation,1999, 104(4):503-513.
    [12]Grigoriadis A E, Wang Z-Q, Cecchini M G et al. c-Fos:a key regulator of osteoclast-macrophage lineage determination and bone remodeling[J]. Science,1994,266(5184):443-448.
    [13]Shih J, Bauer D, Orloff J et al. Proportion of fracture risk reduction explained by BMD changes using Freedman analysis depends on choice of predictors[J]. Osteoporosis international:a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA,2002,13(Suppl 3):S38-S39.
    [14]Lee S E, Chung W J, Kwak H B et al. Tumor necrosis factor-a supports the survival of osteoclasts through the activation of Akt and ERK[J]. Journal of Biological Chemistry,2001,276(52): 49343-49349.
    [15]Lee Z H, Lee S E, Kim C W et al. IL-1 alpha stimulation of osteoclast survival through the PI 3-kinase/Akt and ERK pathways[J]. Journal of Biochemistry,2002,131(1):161-166.
    [16]Huang H, Chang E J, Ryu J et al. Induction of c-Fos and NFATcl during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway[J]. Biochemical and Biophysical Research Communications,2006,351(1):99-105.
    [17]黄晓斌,孙元明,李雨民等.破骨细胞分化成熟因子及其信号转导通路[J].中国骨质疏松杂志,2007,13(11):803-808.
    [18]Jimi E, Akiyama S, Tsurukai T et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function[J]. J Immunol,1999,163(1):434-442.
    [19]Weilbaecher K N, Motyckova G, Huber W E et al. Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf (mi/mi) mice[J]. Molecular Cell,2001,8(4):749-758.
    [20]Jaworowski A, Wilson N J, Christy E et al. Roles of the mitogen-activated protein kinase family in macrophage responses to colony stimulating factor-1 addition and withdrawal [J]. The Journal of Biological Chemistry,1999,274(21):15127-15133.
    [21]Miyazaki T, Katagiri H, Kanegae Y et al. Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts[J]. The Journal of Cell Biology,2000,148(2):333-342.
    [22]Bradley E W, Ruan M M, Vrable A et al. Pathway crosstalk between Ras/Raf and PI3K in promotion of M-CSF-induced MEK/ERK-mediated osteoclast survival[J]. Journal of Cellular Biochemistry, 2008,104(4):1439-1451.
    [23]Kim M H, Shim K S, Kim S H. Inhibitory effect of cantharidin on osteoclast differentiation and bone resorption[J]. Archives of Pharmacal Research,2010,33(3):457-462.
    [24]Amcheslavsky A, Bar-Shavit Z. Toll-Like Receptor 9 Ligand Blocks Osteoclast Differentiation Through Induction of Phosphatase[J]. Journal of Bone and Mineral Research,2007,22(8):1301-1310.
    [25]Matsuo K, Owens J M, Tonko M et al. Fosll is a transcriptional target of c-Fos during osteoclast differentiation[J]. Nature Genetics,2000,24(2):184-187.
    [26]Eferl R, Hoebertz A, Schilling A F et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation[J]. The EMBO Journal,2004,23(14):2789-2799.
    [27]Takayanagi H, Kim S, Koga T et al. Induction and activation of the transcription factor NFATcl (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts[J]. Developmental Cell, 2002,3(6):889-901.
    [28]Asagiri M, Sato K, Usami T et al. Autoamplification of NFATcl expression determines its essential role in bone homeostasis[J]. The Journal of experimental medicine,2005,202(9):1261-1269.
    [29]Choi H J, Park Y R, Nepal M et al. Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW264.7 cells via JNK and NF-kappaB signaling pathways[J]. European Journal of Pharmacology, 2010,636(1-3):28-35.
    [30]Xiao Z Y, Zhou W X, Zhang Y X et al. Inhibitory effect of linomide on lipopolysaccharide-induced proinfiammatory cytokine tumor necrosis factor-alpha production in RAW264.7 macrophages through suppression of NF-kappaB, p38, and JNK activation[J]. Immunology Letters,2007,114(2):81-85.
    [31]Mohamed S G, Sugiyama E, Shinoda K et al. Interleukin-10 inhibits RANKL-mediated expression of NFATcl in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells[J]. Bone,2007,41(4):592-602.
    [32]Lee J W, Kobayashi Y, Nakamichi Y et al. Alisol-B, a novel phyto-steroid, suppresses the RANKL-induced osteoclast formation and prevents bone loss in mice[J]. Biochemical Pharmacology, 2010,80(3):352-361.
    [33]Kim M H, Ryu S Y, Bae M A et al. Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis[J]. Food and chemical toxicology:an international journal published for the British Industrial Biological Research Association,2008,46(11):3375-3382.
    [34]Simonet W S, Lacey D L, Dunstan C R et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density[J]. Cell,1997,89(2):309-319.
    [35]Chen J, He J Q, Zhen S Y et al. OPG inhibits gene expression of RANK and CAII in mouse osteoclast-like cell[J]. Rheumatology International,2011.
    [36]Boyce B F, Xing L. Biology of RANK, RANKL, and osteoprotegerin[J]. Arthritis Research & Therapy,2007,9 Suppl 1,S1.
    [1]Takayanagi H, Kim S, Koga T et al. Induction and activation of the transcription factor NFATcl (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclastsfJ]. Developmental Cell, 2002,3(6):889-901.
    [2]Soderling T R, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II[J]. Journal of Biological Chemistry,2001,276(6): 3719-3722.
    [3]Yao C H, Zhang P, Zhang L. Differential protein and mRNA expression of CaMKs during osteoclastogenesis and its functional implications[J]. Biochemistry and Cell Biology,2012,90(4): 532-539.
    [4]Seales E C, Micoli K J, McDonald J M. Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival[J]. Journal of Cellular Biochemistry,2006,97(1):45-55.
    [5]Silver I, Murrills R, Etherington D. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts[J]. Experimental Cell Research,1988,175(2):266-276.
    [6]Mentaverri R, Kamel S, Brazier M. Involvement of capacitive calcium entry and calcium store refilling in osteoclastic survival and bone resorption process[J]. Cell Calcium,2003,34(2):169-175.
    [7]Zaidi M, Shankar V S, Bax C M et al. Linkage of extracellular and intracellular control of cytosolic Ca2+in rat osteoclasts in the presence of thapsigargin[J]. Journal of Bone and Mineral Research,1993, 8(8):961-967.
    [8]Myers D E, Collier F M, Minkin C et al. Expression of functional RANK on mature rat and human osteoclasts[J]. FEBS Letters,1999,463(3):295-300.
    [9]李平,马超,李小娇等.钙离子信号在破骨细胞中作用的研究进展[J].中国骨与关节外科ISTIC, 2011,4(5).
    [10]Shinohara M, Koga T, Okamoto K et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals[J]. Cell,2008,132(5):794-806.
    [11]Takayanagi H. Osteoimmunology:shared mechanisms and crosstalk between the immune and bone systems[J]. Nature Reviews Immunology,2007,7(4):292-304.
    [12]Parekh A B, Putney J W, Jr. Store-operated calcium channels[J]. Physiological Reviews,2005,85(2): 757-810.
    [13]Berridge M J, Bootman M D, Roderick H L. Calcium signalling:dynamics, homeostasis and remodelling[J]. Nature reviews Molecular Cell Biology,2003,4(7):517-529.
    [14]Bird G S, Putney J W, Jr. Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells[J]. The Journal of Physiology,2005,562(Pt 3):697-706.
    [15]Di Capite J, Ng S W, Parekh A B. Decoding of cytoplasmic Ca(2+) oscillations through the spatial signature drives gene expression[J]. Current Biology,2009,19(10):853-858.
    [16]Kim M S, Yang Y-M, Son A et al. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+oscillations essential for osteoclastogenesis[J]. Journal of Biological Chemistry, 2010,285(10):6913-6921.
    [17]Hwang S Y, Putney J W, Jr. Calcium signaling in osteoclasts[J]. Biochimica Biophysica Acta,2011, 1813(5):979-983.
    [18]Chang E-J, Ha J, Huang H et al. The JNK-dependent CaMK pathway restrains the reversion of committed cells during osteoclast differentiation[J]. Journal of Cell Science,2008,121(15): 2555-2564.
    [19]Penzes P, Cahill M E, Jones K A et al. Convergent CaMK and RacGEF signals control dendritic structure and function[J]. Trends in Cell Biology,2008,18(9):405-413.
    [20]Soderling T R, Stull J T. Structure and regulation of calcium/calmodulin-dependent protein kinases[J]. Chemical Reviews,2001,101(8):2341-2352.
    [21]Grigoriadis A E, Wang Z-Q, Cecchini M G et al. c-Fos:a key regulator of osteoclast-macrophage lineage determination and bone remodeling[J]. Science,1994,266(5184):443-448.
    [22]Teitelbaum S L. RANKing c-Jun in osteoclast development[J]. The Journal of Clinical Investigation, 2004,114(4):463-465.
    [23]尤涵.转录激活蛋白AP-1的研究进展[J].细胞与分子免疫学杂志,1999,14(2):158-160.
    [24]David J P, Rincon M, Neff L et al. Carbonic anhydrase Ⅱ is an AP-1 target gene in osteoclasts[J]. Journal of Cellular Physiology,2001,188(1):89-97.
    [25]Ikeda F, Nishimura R, Matsubara T et al. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation[J]. Journal of Clinical Investigation,2004, 114(4):475-484.
    [26]Arai A, Mizoguchi T, Harada S et al. Fos plays an essential role in the upregulation of RANK expression in osteoclast precursors within the bone microenvironment[J]. Journal of Cell Science, 2012,125(12):2910-2917.
    [27]Ang E S, Zhang P, Steer J H et al. Calcium/calmodulin-dependent kinase activity is required for efficient induction of osteoclast differentiation and bone resorption by receptor activator of nuclear factor kappa B ligand (RANKL)[J]. Journal of Cellular Physiology,2007,212(3):787-795.
    [28]Feng X. Regulatory roles and molecular signaling of TNF family members in osteoclasts[J]. Gene, 2005,350(1):1-13.
    [29]Zhang L, McKenna M A, Said-Al-Naief N et al. Osteoclastogenesis:the role of calcium and calmodulin[J]. Critical Reviews in Eukaryotic Gene Expression,2005,15(1):1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700