用户名: 密码: 验证码:
重组腺病毒介导siBMPR-Ⅱ抑制UHMWPE诱导破骨细胞分化成熟的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     人工关节置换术在治疗类风湿性关节炎、骨关节炎、股骨头坏死以及老年性髋部骨折等方面,已经取得巨大成功,它能显著改善患者的运动功能和生存质量。人工关节松动失效是术后严重的并发症。近年研究发现,假体周围产生的磨损颗粒,诱导破骨细胞过度分化成熟,引起局部骨溶解是导致人工关节晚期无菌松动的最重要因素。防治术后无菌松动的关键即是抑制局部破骨细胞过度激活所引起的骨溶解效应。最近几年发现BMPs可直接或间接调控破骨细胞的分化成熟,使我们思考是否可以通过RNA干扰技术沉默BMP受体,干扰BMP通路来抑制破骨细胞的分化成熟,因为它可以作用于破骨前体细胞本身,也可调控成骨细胞对破骨细胞的影响,这将对抑制破骨细胞的分化成熟起到双管齐下的作用,这是其它靶点及信号通路所不具备的。
     目的
     构建重组腺病毒siRNA-BMPR-II,观察其在UHMWPE诱导溶骨的小鼠植骨气囊模型中,抑制破骨细胞分化成熟及骨溶解的作用。并通过体外培养原代成骨细胞与原代破骨前体细胞,观察siBMPR是否具有抑制破骨前体细胞向具有溶骨作用的成熟破骨细胞分化的间接或直接调控作用。
     方法
     1.将选定的siBMPR-II基因片段应用到改良的AdEasy系统中,将siBMPR-II基因片段克隆连接到pSES-HUS穿梭质粒上,构成pSES-HUS-siBMPR-II质粒。在基因测序后,正确的重组质粒被Pmel酶线性化,与骨架质粒pAdEasy-1一起转导到感受态细胞Escherichiacoli BJ5183中,构成pAd-siBMPR-II质粒。并通过脂质体2000转染到293T细胞中进行病毒包装。测定病毒滴度,获得携带siBMPR-II的重组腺病毒。
     2.在体内研究中,首先建立小鼠植骨气囊聚乙烯颗粒(UHMWPE)诱导破骨细胞形成的溶骨模型。通过real-time PCR、Western blot、破骨细胞TRAP(抗酒石酸酸性磷酸酶)染色,相关蛋白免疫组织化学与免疫荧光等实验方法,检测各处理组局部破骨细胞数量及溶骨情况。观察siBMPR在体内是否能抑制UHMWPE颗粒引起的破骨细胞过度分化成熟,减少局部溶骨的作用。
     3.体外实验:原代成骨细胞与原代破骨前体细胞培养体系的建立。 A:原代成骨细胞的分离培养与纯化。B:原代破骨前体细胞分离与纯化。
     (1)在原代破骨前体细胞培养体系中:
     通过检测经siBMPR处理过后破骨细胞形成的标志性基因及蛋白的表达,以及破骨细胞的特殊染色(抗酒石酸酸性磷酸酶染色)观察BMP信号通路直接调控破骨细胞分化成熟的作用。
     (2)在原代成骨细胞培养体系中:
     通过检测经siBMPR处理过后的成骨细胞RANKL、OPG的基因及蛋白表达情况,用以观察siBMPR作用于破骨细胞分化成熟是否是通过间接调控作用。
     结果
     1.成功构建表达siBMPR-II的重组腺病毒。并通过real-time PCR,Western blot检测,重组腺病毒siBMPR-II可明显减降破骨前体细胞BMPR-II基因与蛋白的表达。
     2.证实在UHMWPE诱导溶骨的小鼠植骨气囊模型中,通过siRNA干扰BMPR-II的表达,可以明显抑制破骨细胞的分化成熟及骨的溶解。
     3.通过体外培养原代成骨细胞与原代破骨前体细胞,观察得到siBMPR-II可以直接抑制破骨前体细胞向具有溶骨作用的成熟破骨细胞的分化,以及调控成骨细胞OPG/RANKL的表达,间接抑制破骨细胞的分化成熟。
     结论
     本课题揭示了在磨损颗粒引起的局部溶解模型中,局部注射重组腺病毒siBMPR-II可有效的起到抑制破骨细胞分化成熟与骨溶解的作用。同时也证实了BMPR-II信号通路可直接或间接调控破骨细胞的分化成熟。
Background
     Total joint replacement is a common procedure that has provenhighly successful for the treatment of rheumatoid arthritis, ostseoarthritis,femoral head necrosis, hip fractures in the elderly and other diseases. Itreduces pain, restores joint function, and allows arthritis patients to returnto varied activities of daily living. Aseptic loosening(AL) is the single mostcommon complication of total joint arthroplasty. The long-term outcome oftotal joint replacement surgery remains compromised by weardebris-associated implant loosening. The critical factor may contribute toloosening is the adverse tissue response to wear debris. The particles arephagocytosed by macrophages, activate an inflammatory cascade, result ina bone resorption process and promote osteoclastogenesis at thebone-implant interface. A growing body of literature suggests that BMPsinfluence the formation and activity of osteoclasts, and BMP signalingplays an important role in the osteoclast formation. So we will employ anRNA interference approach by transfecting a small interfering RNA (siRNA) specific for BMPR in osteoblast and osteoclast, to inhibit BMPsignaling pathways, regulate osteoclast formation directly or indirectly, andreduce osteolysis. BMP signaling plays a two-pronged role which othersignaling pathways do not have.
     Objective
     To construct the recombinant adenovirus vector containing siRNAtargeting BMPR-II gene. In order to observe the effect ofadenovirus-mediated siRNA targeting BMPR-II on UHMWPE-inducedosteoclast formation, and the effects of BMPR-II signaling on osteoclastformation are mediated directly by osteoclast itself, as well as indirectly byaltered expression of RANKL and OPG in osteoblast.
     Methods
     1. To construct the recombinant adenovirus vector containing siRNAtargeting BMPR-II gene using modified AdEasy system, the designedsiRNA oligonucleotide fragments of BMPR-II gene were cloned intoshuttle plasmid pSES-HUS to construct pSES-HUS-siBMPR-II plasmid.Afterward, the correct recombinant was linearized by Pmel, followingco-transformation with the backbone vector pAdEasy-1in Escherichia coliBJ5183to construct pAd-siBMPR-II plasmid, and then transfected into293T cell line via Lipofectamine2000to package the adenovirus. Viralsupernatants were harvested. The viral titers were determined by infecting293T cells with serial dilutions of concentrated adenoviruses.
     2. In vivo studies, firstly, we should build the air pouch model inwhich the differentiation and formation of osteoclasts are induced byUHMWPE, then test the effect of adenovirus-mediated siRNA targetingBMPR-II on UHMWPE-induced osteoclast formation by real-time PCR,Western blot, TRAP staining, immunohistochemistry, immunofluorescence,electron microscopy and so on.
     3. In vitro studies, firstly, we should build the bone marrow cells andprimary osteoblasts culture system.
     (1) In the bone marrow cells culture system, to test whether theadenovirus-mediated siRNA targeting BMPR-II can inhibit the osteoclastdifferentiation by real-time PCR, Western blot, TRAP staining and so on.
     (2) In the primary osteoblasts culture system, to measure whether theadenovirus-mediated siRNA targeting BMPR-II can changed the gene andprotein expression of RANKL and OPG by real-time PCR, Western blot.
     Results
     1. Adenovirus-mediated siRNA targeting BMPR-II was builtsuccessfully. And adenovirus-mediated BMPR-II siRNA could successfullyinhibit BMPR-II expression in high efficiency both at mRNA and proteinlevels.
     2. The air pouch model with UHMWPE was built successfully. Wefound that siBMPR-II inhibited differ-entiation of osteoclasts in theUHMWPE-stimulated pouches, including reduction of gene and protein expression levels of TRAP and RANK, and TRAP positive cells, decreasein the area of absorbing lacuna.
     3. Furthermore, we revealed that loss of BMPR-II signaling inhibitsosteoclast differentiation directly, and acts on osteoblasts to reduceosteoclast formation through altered expression of RANKL and OPG,including down-regulation of the amount of TRAP positive cells inducedby RANKL, the gene and protein expression levels of osteoclast marker(TRAP and RANK) in the bone marrow cells culture system, and resultingin an increase of OPG mRNA and protein expression levels, a decrease ofRANKL expression in the primary osteoblasts culture system.
     Conclusions
     In the present study, we revealed that locally injection ofadenovirus-mediated siRNA targeting BMPR-II appears to be a feasibleand effective candidate to treat or prevent wear debris-associated osteolysis.Furthermore, we revealed that the effects of BMPR-II signaling onosteoclast formation are mediated directly by osteoclast itself, as well asindirectly by altered expression of RANKL and OPG in osteoblast.
引文
[1] Keener JD, Callaghan JJ, Goetz DD, Pederson DR, Sullivan PM, Johnston RC.Twenty-five-year results after Charnley total hip arthroplasty in patients less thanfifty years old: A concise follow-up of a previous report. J Bone Joint Surg Am [J].2003;85:1066-72.
    [2] Berry DJ, Harmsen WS, Cabanela ME, Morrey BF. Twenty-five-year survivorshipof two thousand consecutive primary Charnley total hip replacements: Factorsaffecting survivorship of acetabular and femoral components. J Bone Joint Surg Am[J].2002;84:171-7.
    [3] al-Saffar N, Mah JT, Kadoya Y, Revell PA. Neovascularisation and the induction ofcell adhesion molecules in response to degradation products from orthopaedicimplants. Ann Rheum Dis [J].1995;54:201-8.
    [4] Miyanishi K, Trindade MC, Ma T, Goodman SB, Schurman DJ, Smith RL.Periprosthetic osteolysis: Induction of vascular endothelial growth factor fromhuman monocyte/macrophages by orthopaedic biomaterial particles. J Bone MinerRes [J].2003;18:1573-83.
    [5] Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling inosteoclastogenesis and bone disease. Trends Mol Med [J].2006;12:17-25.
    [6] Negishi-Koga T, Takayanagi H. Ca2+-NFATc1signaling is an essential axis ofosteoclast differentiation. Immunol Rev [J].2009;231:241-56.
    [7] Markel DC, Zhang R, Shi T, et al. Inhibitory effects of erythromycin on weardebris-induced VEG F/Flt-1gene production and osteolysis. Inflamm Res2009[J];58:413-21.
    [8] Ren WP, Markel DC, Zhang R, et al. Association between UHMWPEparticle-induced inflammatory osteoclastogenes and expression of RANKL, VEGF,and Flt-1in vivo. Biomaterials [J].2006;27:5161-9.
    [9] Yang SY, Mayt on L, Wu B, et al. Adeno-associated virus-mediated osteoprotegeringene transfer protects against particulate polyethylene-induced osteolysis in amurine model. Arthritis Rheum [J].2002;46:2514-23.
    [10]Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, Niehrs C.Silencing of TGF-beta signaling by the pseudoreceptor BAMBI. Nature [J].1999,401:480-5.
    [11]Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. A SMAD ubiquitin ligasetargets the BMP pathway and affects embryonic pattern formation. Nature [J].1999,400:687-93.
    [12]Okamoto M, Murai J, Yoshikawa H, Tsumaki N. Bone morphogenetic proteins inbone stimulate osteoclasts and osteoblasts during bone development. J Bone MinerRes [J].2006;21:1022-33.
    [13]Mishina Y, Starbuck MW, Gentile MA, Fukuda T, Kasparcova V, Seedor JG,Hanks MC, Amling M, Pinero GJ, Harada S, Behringer RR. Bone morphogeneticprotein type IA receptor signaling regulates postnatal osteoblast function and boneRemodeling. J Biol Chem [J].2004;279:27560-6.
    [14]Kamiya N, Ye L, Kobayashi T, Lucas DJ, Mochida Y, Yamauchi M, KronenbergHM, Feng JQ, and Mishina Y. Disruption of BMP signaling in osteoblasts throughtype IA receptor (BMPRIA) increases bone mass. J Bone Miner Res.2008;23:2007-17.
    [15]Kamiya N, Ye L, Kobayashi T, et al. BMP signaling negatively regulates bone massthrough sclerostin by inhibiting the canonical Wnt pathway. Development [J].2008;135:3801-11.
    [16]Itoh K, Udagawa N, Katagiri T, et al. Bone morphogenetic protein2stimulatesosteoclast differentiation and survival supported by receptor activator of nuclearfactor-kappaB ligand. Endocrinology [J].2001;142:3656-62.
    [17]Kaneko H, Arakawa T, Mano H, et al. Direct stimulation of osteoclastic boneresorption by bone morphogenetic protein (BMP)-2and expression of BMPreceptors in mature osteoclasts. Bone [J].2000;27:479-86.
    [18]Otsuka E, Notoya M, Hagiwara H. Treatment of Myoblastic C2C12Cells withBMP-2Stimulates Vitamin D-induced Formation of Osteoclasts. Calcif Tissue Int[J].2003;73:72-7.
    [19]Jensen ED, Pham L, Billington CJ Jr, Espe K, Carlson AE, Westendorf JJ, Petryk A,Gopalakrishnan R, Mansky K. Bone morphogenic protein2directly enhancesdifferentiation of murine osteoclast precursors. J Cell Biochem [J].2010;109:672-82.
    [20]Wang Y, Wu NN, Hu M, Mou YQ, Li RD, Chen L, He BC, Deng ZL. Inhibitoryeffect of adenovirus-mediated siRNA targeting BMPR-IB on UHMWPE-inducedbone destruction in the murine air pouch model. Connect Tissue Res [J].2012;53(6):528-34.
    [21]Wang Y, Wu NN, Mu YQ, Zhang RX, Hu M, Li RD, Chen L, He BC, Deng ZL.The effect of adenovirus-mediated siRNA targeting BMPR-II onUHMWPE-induced osteoclast formation. Biomaterials [J].2013;34(1):150-9.
    [1] Wu N, Zhao Y, Yin Y, Zhang Y, Luo J. Identification and analysis of type II TGF-βreceptors in BMP-9-induced osteogenic differentiation of C3H10T1/2mesenchymalstem cells. Acta Biochim Biophys Sin (Shanghai)[J].2010;42:699-708.
    [2] He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified systemfor generating recombinant adenoviruses.Proc Natl Acad Sci USA [J].1998;95(5):2509-14.
    [3] Luo Q, Kang Q, Song WX, Luu HH, Luo X, An N, Luo J, Deng ZL, Jiang W, Yin H,Chen J, Sharff KA, Tang N, Bennett E, Haydon RC, He TC. Selection and validationof optimal siRNA target sites for RNAi-mediated gene silencing. Gene [J].2007;395:160-9.
    [4] Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al.Tumornecrosis factor alpha stimulates osteoclast differentiation by a mechanismindependent of the ODF/RANKL-RANK interaction. J Exp Med [J].2000;191:275e86.
    [5] Itoh K, Udagawa N, Katagiri T, Iemura S, Ueno N, Yasuda H, Higashio K, QuinnJM, Gillespie MT, Martin TJ, Suda T, Takahashi N. Bone morphogenetic protein2stimulates osteoclast differentiation and survival supported by receptor activator ofnuclear factor-kappa B ligand. Endocrinology [J].2001;142:3656-62.
    [6] Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, Toyama Y,Yabe Y, Kumegawa M, Hakeda Y. Direct stimulation of osteoclastic boneresorption by bone morphogenetic protein (BMP)-2and expression of BMPreceptors in mature osteoclasts. Bone [J].2000;27:479-86.
    [7] Kanatani M, Sugimoto T, Kaji H, Kobayashi T, Nishiyama K, Fukase M, KumegawaM, Chihara K. Stimulatory effect of bone morphogenetic protein-2onosteoclast-like cell formation and bone resorbing activity. J Bone Miner Res [J].1995;10:1681-90.
    [8] Anderson HC, Hodges PT, Aguilera XM, Missana L, Moylan PE. Bonemorphogenetic protein (BMP) localization in developing human and rat growthplate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem [J].2000;48:1493-502.
    [9] Spector JA, Luchs JS, Mehrara BJ, Greenwald JA, Smith LP, Longaker MT.Expression of bone morphogenetic proteins during membranous bone healing. PlastReconstr Surg [J].2001;107:124-34.
    [10]Zoricic S, Maric I, Bobinac D, Vukicevic S. Expression of bone morphogeneticproteins and cartilage-derived morphogenetic proteins during osteophyte formationin humans. J Anat [J].2003;202:269-77.
    [11]Balemans W, Van Hul W. Extracellular regulation of BMP signaling in vertebrates:A cocktail of modulators. Dev Biol [J].2002;250:231-50.
    [12]Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. RevEndocr Metab Disord2006;7:51-65.
    [13]Kawabata M, Chytil A and Moses HL. Cloning of a novel type II serine/threoninekinase receptor through interaction with the type I transforming growth factor-betareceptor. J Biol Chem [J].1995;270:5625-30.
    [14]Hassel S, Eichner A, Yakymovych M, Hellman U, Knaus P and Souchelnytskyi S.Proteins associated with type II bone morphogenetic protein receptor (BMPR-II)and identified by two-dimensional gel electro-phoresis and mass spectrometry.Proteomics [J].2004;4:1346-58.
    [15]Chan MC, Nguyen PH, Davis BN, Ohoka N, Hayashi H, Du K, Lagna G, Hata A. Anovel regulatory mechanism of the bone morphogenetic protein (BMP) signalingpathway involving the carboxyl-terminal tail domain of BMP type II receptor. MolCell Biol [J].2007;27:5776-89.
    [16]Mazerbourg S, Sangkuhl K, Luo CW, Sudo S, Klein C and Hsueh AJ. Identificationof receptors and signaling pathways for orphan bone morphogenetic protein/growthdifferentiation factor ligands based on genomic analyses. J Biol Chem [J].2005;280:32122-32.
    [1] Keener JD, Callaghan JJ, Goetz DD, Pederson DR, Sullivan PM, Johnston RC.Twenty-five-year results after Charnley total hip arthroplasty in patients less thanfifty years old: A concise follow-up of a previous report. J Bone Joint Surg Am [J].2003;85:1066-72.
    [2] Berry DJ, Harmsen WS, Cabanela ME, Morrey BF. Twenty-five-year survivorshipof two thousand consecutive primary Charnley total hip replacements: Factorsaffecting survivorship of acetabular and femoral components. J Bone Joint Surg Am[J].2002;84:171-7.
    [3] al-Saffar N, Mah JT, Kadoya Y, Revell PA. Neovascularisation and the induction ofcell adhesion molecules in response to degradation products from orthopaedicimplants. Ann Rheum Dis [J].1995;54:201-8.
    [4] Miyanishi K, Trindade MC, Ma T, Goodman SB, Schurman DJ, Smith RL.Periprosthetic osteolysis: Induction of vascular endothelial growth factor fromhuman monocyte/macrophages by orthopaedic biomaterial particles. J Bone MinerRes [J].2003;18:1573-83.
    [5] Markel DC, Zhang R, Shi T, et al. Inhibitory effects of erythromycin on weardebris-induced VEG F/Flt-1gene production and osteolysis. Inflamm Res[J].2009;58:413-21.
    [6] Ren WP, Markel DC, Zhang R, et al. Association between UHMWPEparticle-induced inflammatory osteoclastogenes and expression of RANKL, VEGF,and Flt-1in vivo. Biomaterials [J].2006;27:5161-9.
    [7] Yang SY, Mayt on L, Wu B, et al. Adeno-associated virus-mediated osteoprotegeringene transfer protects against particulate polyethylene-induced osteolysis in amurine model. Arthritis Rheum [J].2002;46:2514-23.
    [8] Ren W, Yang SY, Wooley PH. A novel murine model of orthopaedic wear-debrisassociated osteolysis. Scand J Rheumatol [J].2004;33:349-57.
    [9] Markel DC, Zhang R, Shi T, Hawkins M, Ren W. Inhibitory effects of erythromycinon wear debris-induced VEGF/Flt-1gene production and osteolysis. Inflamm Res[J].2009;58:413-21.
    [10]Yang SY, Mayton L, Wu B, Goater JJ, Schwarz EM, Wooley PH. Adeno-AssociatedVirus-mediated osteoprotegerin Gene Transfer Protects Against ParticulatePolyethylene-Induced Osteolysis in a Murine Model. Arthritis Rheum [J].2002;46:2514-23.
    [11]Ren WP, Markel DC, Zhang R, Peng X, Wu B, Monica H, Wooley PH.. Associationbetween UHMWPE particle-induced inflammatory osteoclastogenesis andexpression of RANKL, VEGF, and Flt-1in vivo. Biomaterials [J].2006;27:5161-9.
    [12]Ritchlin CT, Schwarz EM, O'Keefe RJ, Looney RJ. RANK, RANKL and OPG ininflammatory arthritis and periprosthetic osteolysis. J Musculoskel Neuron Interact[J].2004;4:276-84.
    [13]Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, MaedaN, Nishikawa S, Kodama H. Vascular endothelial growth factor can substitute formacrophage colony-stimulating factor in the support of osteoclastic bone resorption.J Exp Med [J].1999;190:293-8.
    [14]Kaku M, Kohno S, Kawata T, Fujita T, Tokimasa C, Tsutsui K. Effects of vascularendothelial growth factor on osteoclast induction during tooth movement in mice. JDent Res [J].2001;80:1880-3.
    [15]Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K,Kurnegawa M, Hakeda Y. Vascular endothelial growth factor(VEGF) directlyenhances osteoclastic bone resorption and survival of mature osteoclasts [J]. FEBSLett2000;473:161-4.
    [16]王文良,姜文学,杨柳,等.人工关节松动的生物学因素:细胞因子和人工关节骨溶解[J].中国临床康复,2004,28(6),2632-2634.
    [17]Clohisy JC, Calvert G, Tull F, McDonald D, Maloney WJ. Reasons for revision hipsurgery: a retrospective review. Clin Orthop Relat Res [J].2004;429:188-92.
    [18]Epstein NJ, Warme BA, Spanogle J, Ma T, Bragg B, Smith RL, Goodman SB.Interleukin-1modulates periprosthetic tissue formation in an intramedullary modelof particle-induced inflammation. J Orthop Res [J].2005;23:501-10.
    [19]Waddell J, Pritzker KP, Boynton EL. Increased cytokine secretion in patients withfailed implants compared with patients with primary implants.Clin Orthop Relat Res[J].2005;434:170-6.
    [20]Ren W,Yang SY,Wooley PH.A novel murine model of orthopaedic wear-debrassociated osteolysis. Scandinavian Journal of Rheumatology [J],2004,33:349-57.
    [21]Paul H.Wooley,Robert Morren,John Andary et al.Inflammatory responses toorthopaedic biomaterials in the murine air pouch. Biomaterials [J].2002,2:517-26.
    [22]RenW, Wu B, Mayton L, Wooley PH. Ployethylene and methyl methacrylateparticle-stimulated inflammatory tissue and macrophages up-regulate boneresorption in a murine neonatal calvaria in vitro organ system. J Orthop Res [J].2002,20:1031-7.
    [23]Yang SY, Mayton L, Wu B, Goater JJ, Schwarz EM, Wooley PH. Adeno-associatedvirus-mediated osteoprotegerin gene transfer protects against particulatepolyethylene-induced osteolysis in a murine model.Arthritis Rheum [J].2002;46:2514-23.
    [24]Sud S, Yang SY, Evans CH, Robbins PD, Wooley PH. Effects of cytokine genetherapy on particulate-induced inflammation in the murine air pouch. Inflammation[J].2001;25:361-72.
    [25]Ren W, Markel DC, Schwendener R, Ding Y, Wu B, Wooley PH. Macrophagedepletion diminishes implant-wear-induced inflammatory osteolysis in a mousemodel. J Biomed Mater Res A [J].2008;85:1043-51.
    [26]Wang Y, Wu NN, Mou YQ, Chen L, Deng ZL. Inhibitory effects of recombinantIL-4and recombinant IL-13on UHMWPE-induced bone destruction in the murineair pouch model. J Surg Res.2012Apr28.[Epub ahead of print]
    [27] Wang Y, Wu NN, Hu M, Mou YQ, Li RD, Chen L, He BC, Deng ZL. Inhibitoryeffect of adenovirus-mediated siRNA targeting BMPR-IB on UHMWPE-inducedbone destruction in the murine air pouch model. Connect Tissue Res.2012;53(6):528-34.
    [28] Wang Y, Wu NN, Mu YQ, Zhang RX, Hu M, Li RD, Chen L, He BC, Deng ZL.The effect of adenovirus-mediated siRNA targeting BMPR-II onUHMWPE-induced osteoclast formation. Biomaterials.2013;34(1):150-159.
    [29]汪洋,王信,周锐,姜蓉,邓忠良,张健,陈婷梅。骨保护素抑制小鼠植骨气囊模型中聚乙烯磨损颗粒诱导的溶骨效应。第三军医大学学报。2011,33(14):1446-50。
    [30]汪洋,张健,周锐,成名翔,曾理,吴宁宁,李锐东,牟钰钦,邓忠良。NBD与OPG联合抑制聚乙烯磨损颗粒诱导的溶骨效应,第三军医大学学报。2011,33(17):1789-1793。
    [31]汪洋,周锐,吴宁宁,牟钰钦,李锐冬,邓忠良。IL-4与骨保护素联合抑制聚乙烯磨损颗粒诱导的溶骨效,南方医科大学学报,2011,31(10):1709-1713。
    [32]贾庆卫,戴克戎,汤亭亭.改良大鼠气囊模型在人工关节假动松动研究中的应用[J].中国矫形外科杂志,2008,16(2),127-130.
    [1] Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bonecell biology. Mol Cell Endocrinol [J].2004;228:79-102.
    [2] Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumornecrosis factor alpha stimulates osteoclast differentiation by a mechanismindependent of the ODF/RANKL-RANK interaction. J Exp Med [J].2000;191:275-86.
    [3] Sells Galvin RJ, Gatlin CL, Horn JW, Fuson TR. TGF-beta enhances osteoclastdifferentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF.Biochem Biophys Res Commun [J].1999;265:233-9.
    [4] Kaneda T, Nojima T, Nakagawa M, Ogasawara A, Kaneko H, Sato T, Mano H,Kumegawa M, Hakeda Y. Endogenous production of TGF-beta is essential forosteoclastogenesis induced by a combination of receptor activator of NF-kappa Bligand and macrophage-colony-stimulating factor. J Immunol [J].2000;165:4254-63.
    [5] Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclastinduction. Biochem Biophys Res Commun [J].2000;268:2-7.
    [6] Seeherman HJ, Li XJ, Bouxsein ML, Wozney JM. rhBMP-2induces transient boneresorption followed by bone formation in a nonhuman primate core-defect model. JBone Joint Surg Am [J].2010;92:411-26.
    [7] Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB. Graft resorption withthe use of bone morphogenetic protein: lessons from anterior lumbar interbodyfusion using femoral ring allografts and recombinant human bone morphogeneticprotein-2. Spine [J].2006;31: E277-84.
    [8] Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD. Interbody fusionwith allograft and rhBMP-2leads to consistent fusion but early subsidence. J BoneJoint Surg Br [J].2007;89:342-5.
    [1] Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, andmammalian evolution.Annu Rev Immunol [J].2002;20:795-823.
    [2] Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature[J].2003;423:337-42.
    [3] Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletaldevelopment. Dev Cell [J].2002;2:389-406.
    [4] Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone.J Cell Biochem [J].2003;88:259-66.
    [5] Walsh MC, Choi Y. Biology of the TRANCE axis. Cytokine Growth Factor Rev [J].2003;14:251-63.
    [6] Wittrant Y, Théoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Rédini F.RANKL/RANK/OPG: new therapeutic targets in bone tumors and associatedosteolysis. Biochim Biophys Acta [J].2004;1704:49-57.
    [7] Liu W, Xu D, Yang H, Xu H, Shi Z, Cao X, Takeshita S, Liu J, Teale M, Feng X.Functional identification of three receptor activator of NF-kappa B cytoplasmicmotifs mediating osteoclast differentiation and function. J Biol Chem [J].2004;279:54759-69.
    [8] Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, Inoue J.Segregation of TRAF6-mediated signaling pathways clarifies its role inosteoclastogenesis. EMBO J [J].2001;20:1271-80.
    [9] Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature[J].2003;423:337-42.
    [10]刘学进,陈垦.NBD多肽的临床应用研究进展[J].国外医学·生理、病理科学与临床分册[J].2004,24(6):527-530.
    [11]汪洋,张健,周锐,成名翔,曾理,吴宁宁,李锐冬,牟钰钦,邓忠良. NBD与OPG联合抑制聚乙烯磨损颗粒诱导的溶骨效应.第三军医大学学报[J],2011,33(17):1789-1793.
    [12]Lee ZH, Kim HH. Signal transduction by receptor activator of nuclear factor kappaB in osteoclasts. Biochem Biophys Res Commun [J].2003;305:211-4.
    [13]Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP,Teitelbaum SL. The IkappaB function of NF-kappaB2p100controls stimulatedosteoclastogenesis. J Exp Med [J].2003;198:771-81.
    [14]Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, Suda T, Takahashi N.p38MAPK-mediated signals are required for inducing osteoclast differentiation butnot for osteoclast function. Endocrinology [J].2002;143:3105-13.
    [15]Lee ZH, Lee SE, Kim CW, Lee SH, Kim SW, Kwack K, Walsh K, Kim HH.IL-1alpha stimulation of osteoclast survival through the PI3-kinase/Akt and ERKpathways. J Biochem [J].2002;131:161-6.
    [16] Yamamoto A, Miyazaki T, Kadono Y, Takayanagi H, Miura T, Nishina H, Katada T,Wakabayashi K, Oda H, Nakamura K, Tanaka S. Possible involvement of IkappaBkinase2and MKK7in osteoclastogenesis induced by receptor activator of nuclearfactor kappaB ligand. J Bone Miner Res[J].2002;17:612-21.
    [17]Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogendecreases osteoclast formation by down-regulating receptor activator of NF-kappa Bligand (RANKL)-induced JNK activation. J Biol Chem [J].2001;276:8836-40.
    [18]Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin andhyperosmolarity in mammalian cells. Science [J].1994;265:808-11.
    [19]Janknecht R, Hunter T. Convergence of MAP kinase pathways on the ternarycomplex factor Sap-1a. EMBO J [J].1997;16:1620-7.
    [20]Mansky KC, Sankar U, Han J, Ostrowski MC. Microphthalmia transcription factoris a target of the p38MAPK pathway in response to receptor activator of NF-kappaB ligand signaling. J Biol Chem [J].2002;277:11077-83.
    [21]Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N,Nakayama K. U0126and PD98059, specific inhibitors of MEK, acceleratedifferentiation of RAW264.7cells into osteoclast-like cells. J Biol Chem [J].2002;277:47366-72.
    [22]Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, PandoMP, Asano T, Verma IM, Oda H, Nakamura K, Tanaka S. Reciprocal role of ERKand NF-kappaB pathways in survival and activation of osteoclasts. J Cell Biol [J].2000;148:333-42.
    [23]Jelinek T, Catling AD, Reuter CW, Moodie SA, Wolfman A, Weber MJ. RAS andRAF-1form a signalling complex with MEK-1but not MEK-2. Mol Cell Biol[J].1994;14:8212-8.
    [24]Soriano P, Montgomery C, Geske R, Bradley ATargeted disruption of the c-srcproto-oncogene leads to osteopetrosis in mice. Cell [J].1991;64:693-702.
    [25]Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, SakaiH. Protein expression and functional difference of membrane-bound and solublereceptor activator of NF-kappaB ligand: modulation of the expression by osteotropicfactors and cytokines. Biochem Biophys Res Commun [J].2000;275:768-75.
    [26]Walsh MC, Choi Y. Biology of the TRANCE axis. Cytokine Growth Factor Rev [J].2003;14:251-63.
    [27]Ha H, Kwak HB, Lee SK, Na DS, Rudd CE, Lee ZH, Kim HH. Membrane raftsplay a crucial role in receptor activator of nuclear factor kappaB signaling andosteoclast function. J Biol Chem [J].2003;278:18573-80.
    [28]Mandine E, Jean-Baptiste V, Vayssière B, Gofflo D, Bénard D, Sarubbi E, Deprez P,Baron R, Superti-Furga G, Lesuisse D. High-affinity Src-SH2ligands which do notactivate Tyr(527)-phosphorylated Src in an experimental in vivo system.BiochemBiophys Res Commun [J].2002;298:185-92.
    [29]Lakkakorpi PT, Bett AJ, Lipfert L, Rodan GA, Duong le T. PYK2autophosphorylation, but not kinase activity, is necessary for adhesion-inducedassociation with c-Src, osteoclast spreading, and bone resorption [J]. J Biol Chem.2003:11502-12.
    [30]Nakamura I, Rodan GA, Duong le T.Distinct roles of p130Cas and c-Cbl inadhesion-induced or macrophage colony-stimulating factor-mediated signalingpathways in prefusion osteoclasts. Endocrinology [J].2003;144:4739-41.
    [31]Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, Brodt MD,Helgason CD, Kalesnikoff J, Rauh MJ, Humphries RK, Krystal G, Teitelbaum SL,Ross FP. SHIP-deficient mice are severely osteoporotic due to increased numbers ofhyper-resorptive osteoclasts. Nat Med [J].2002;8:943-9.
    [32]Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF,TNFalpha and RANK ligand promote osteoclast survival by signaling throughmTOR/S6kinase.Cell Death Differ [J].2003;10:1165-77.
    [33]Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R. Src kinase activity isessential for osteoclast function.J Biol Chem [J].2004;279:17660-6.
    [34]Koga S, Yogo K, Yoshikawa K, Samori H, Goto M, Uchida T, Ishida N, Takeya T.Physical and functional association of c-Src and adhesion and degranulationpromoting adaptor protein (ADAP) in osteoclastogenesis in vitro.J Biol Chem [J].2005;280:31564-71.
    [35]Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M,Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction andactivation of the transcription factor NFATc1(NFAT2) integrate RANKL signalingin terminal differentiation of osteoclasts. Dev Cell [J].2002;3:889-901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700