用户名: 密码: 验证码:
蚕丝蛋白及某些染料的电化学研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然蛋白质材料蚕丝蛋白(丝素、丝胶)及丝素的水解产品丝素肽,以其优异的生物相容性、良好的抗氧化性和富含氨基酸而在生物医学材料、食品、化状品、医药工业、纺织工业等行业有广泛的应用。此外,印染工艺中所使用的染料除了染色纤维外,在电化学等领域也有相当多的应用。本论文围绕蚕丝蛋白产品和某些功能染料,采用电化学方法,测定了生丝液体样品中丝素蛋白含量、脱胶废水中丝胶蛋白浓度,构筑了蚕丝蛋白产品生物相容性功能界面,探索了功能界面的应用性能;通过研究某些功能染料的电化学行为,建立了测定染料染色纤维上染率的电化学方法。这些研究对开发生物相容性功能界面,拓宽电化学技术应用范围,搭建电化学与纺织印染工业的联系具有重要的意义。全文共分4章,主要研究内容如下:
     1.采用循环伏安法,以丝素肽(SP)磷酸缓冲液(pH7.4)为电聚合前体,在碳糊电极(CPE)表面制备了“聚”丝素肽(“P-SP”)。与采用自组装方法将9,修饰在CPE表面上的自组装丝素肽(“S-SP”)稀疏颗粒相比,“P-SP”以大量粒子团簇形式存在;在0.1 mol·L~(-1)硫酸(pH 1.1)溶液中,P-SP-CPE界面被质子化,显示稳定的质子氧化还原反应电极过程,而S-SP-CPE却无任何电化学响应。
     2.采用循环伏安法,在0.1mol·L~(-1)硫酸(pH1.1)溶液中,研究P-SP-CPE界面与荷正电荷染料孔雀石绿MG、荷负电表面活性剂十二烷基苯磺酸钠SDBS组成的电化学开关。由于P-SP-CPE界面质子化程度受到荷正电物质的减弱,使界面的质子浓度下降,导致质子氧化还原峰电流逐渐变小,并在80 min后氧化还原峰消失,即MG“关闭”P-SP-CPE界面质子的氧化还原反应;随着与MG作用后的P-SP-CPE浸在SDBS溶液中时间增加,P-SP-CPE界面质子原有的一对氧化还原峰又逐步重新出现,即SDBS“开启”质子的氧化还原反应。因此,MG、P-SP-CPE界面、SDBS组成了简单的电化学开关系统。此外,根据MG与P-SP-CPE界面作用时间与峰电流的下降值,计算出阳离子物质孔雀石绿与P-SP-CPE界面质子作用动力学方程呈现一级反应动力学方程:
     ln C_(H+,0)/C_(H+,t)=1.19+9.67×10~(-2)t,其中作用速率常数=9.67×10~(-2)min~(-1),半衰期=7.17 min。
     3.采用循环伏安法,在0.1 mol·L~(-1)硫酸(pH1.1)溶液中,研究β-环糊精对P-SP-CPE界面上“P-SP”的包合识别。β-环糊精对“P-SP”的包合,导致P-SP-CPE界面质子浓度降低,氧化峰电流下降,峰电位负移。由包合反应时间和P-SP-CPE界面质子氧化峰电流降低值,计算出该包合反应的动力学方程为一级反应速率方程:ln C_(H+,0)/C_(H+,t)=0.952+2.88×10~(-2)t,包合反应速率常数为2.88×10~(-2)min~(-1),半衰期=24.1 min。根据“直线法”,计算出β-环糊精包合“P-SP”的包合比为1:1,包合常数是2.9×10~5L·mol~(-1),25℃时包合反应吉布斯自由能△G_1~0=-31.136 kJ·mol~(-1)。
     4.采用循环伏安法,以丝胶0.02 mol·L~(-1)磷酸缓冲液(pH 7.0)为电聚合前体,在纳米TiO_2掺杂碳糊电极表面(TCPE)制备了“聚”丝胶(“P-SE”)。“P-SE”在TCPE表面形成了网络结构。在pH1.81B-R缓冲液中,P-SE-TCPE具有一对稳定的氧化还原峰,阳离子表面活性剂对其有阻止作用,阴离子表面活性剂对其有增敏作用。此外,在0.02 mol·L~(-1)磷酸缓冲液(pH 7.0)溶液中,P-SE-TCPE可将亚铁氰化钾在TCPE上的电极反应速率常数由0.03s~(-1)提高到0.26s~(-1)。
     5.采用循环伏安、方波伏安法,研究了丝素蛋白在碳糊电极上的伏安行为。丝素蛋白在0.01 mol·L~(-1)盐酸(pH 2.0)溶液中,丝素蛋白的循环伏安图中出现一个不可逆氧化峰和一对峰型较差的氧化还原峰。根据丝素蛋白的不可逆氧化峰电流与其浓度在5.8×10~(-8)-1.1×10~(-6)mol·L~(-1)范围内成正比,建立了电化学测定生丝液体样品中丝素蛋白含量的方法,丝胶及其他无机离子、氨基酸等并不干扰测定,加标平均回收率在97.0-103.0%。
     6.采用电化学方法和光谱法,研究了胭脂红与丝胶蛋白的结合反应。在无丝胶的pH1.81 B-R缓冲液中,胭脂红有一对峰型好的氧化还原峰。随着丝胶蛋白的加入,尽管无新峰出现,但胭脂红原有的这对氧化还原峰却有所变化:氧化还原峰电流下降:氧化还原峰电位正移。这种现象是由于丝胶蛋白与胭脂红结合造成胭脂红的电极反应速率常数和扩散系数的下降而形成的。丝胶蛋白与胭脂红主要以静电引力方式结合。结合反应的结合常数为2.32×10~6L·mol~(-1),结合比为1:1。基于胭脂红氧化峰电流的降低值与丝胶蛋白浓度在32.0-800.0μg·mL~(-1)范围内成正比,测定了脱胶废水中丝胶蛋白含量,加标平均回收率在96.7-103.3%,与经典考马斯亮蓝G-250光谱测定法分析结果一致。
     7.采用循环伏安、方波伏安法研究了三芳甲烷染料孔雀石绿、酸性染料酸性大红3R、弱酸性染料弱酸性深蓝GR、活性染料活性嫩黄K-4G在碳糊电极上的伏安行为。根据染料的伏安峰电流与其浓度在一定范围内成正比,建立了测定孔雀石绿染色腈纶、酸性大红3R染色羊毛和丝绸、弱酸性深蓝GR染色丝绸、活性嫩黄K-4G染色丝绸上染率的电化学方法,并与分光光度法测定方法比较,结果一致。
Silk protein(silk fibroin,sericin) and silk peptide(the hydrolysis product of silk fibroin) are widely used in biomedical material,food,cosmetic,pharmacy and textile industries because of their excellent biocompatibility,anti-oxidation and enough amino acids contains.Also,dyes used in textiles can be applied in other domain such as electrochemistry.In this paper,silk and some dyes are investigated with electrochemical methods.Two kinds of biocompatible functional interface are set up and their properties are investigated.The determination of silk fibroin in raw liquid silk samples and sericin in degumming waste water are performed with SWV method,respectively.The dye-uptakes of 4 kinds of dyes dyeing fiber are carried out using SWV,respectively. These studies are significant to opening the biocompatible functional interface, broadening the application range of electrochemistry and building the link between electrochemistry and textiles.The paper consists of four chapters.The main contributions are summarized and presented as follows:
     1."P-SP" is obtained by electrochemical polymerization of silk peptide on carbon paste electrode surface in 0.04 mol·L~(-1) phosphate buffer(pH7.4).Compared with the few particles of the self-assembled SP on the surface of carbon paste electrode(S-SP-CPE), "P-SP" is formed with a large number of particle clusters.The P-SP-CPE is characterized by cyclic voltammetry and shows a pair of well-defined redox peaks in 0.1 mol·L~(-1) H_2SO_4 solution(pH 1.1),which is ascribed to the redox reaction of proton combined with "P-SP",while S-SP-CPE has no voltammetric response.
     2.Electrochemical switch formed by positive-charged dye malachite green(MG) and negative-charged anionic surfactant sodium dodecyl benzene sulfonate(SDBS) on the interface of "P-SP" is studied in 0.1 mol·L~(-1) H_2SO_4 solution(pH1.1) using cyclic voltammetry.The protonated degree of "P-SP" is reduced by the interaction of MG, which induce the concentration of proton decrease and then the peak current of proton redox peaks become low.After 80 min,no response is nearly observed,suggested that "MG" shuts off the redox of proton on P-SP interface.This interface is named P-SP-MG-CPE.The redox response of proton is found again with the interacting time increase of P-SP-MG-CPE with SDBS solution,indicating that "SDBS" opens the redox of proton.Therefore,MG,SDBS and P-SP form a simple "electrochemical switch".In addition,the interaction between MG and P-SP obeys the 1st order rate equation:In C_(H+,0)/C_(H+,t)=1.19 + 9.67×10~(-2) t;interaction rate constant = 9.67×10~(-2) min~(-1),t_(1/2)= 7.17 min.
     3.The inclusion and recognition ofβ-CD with "P-SP" is investigated in 0.1 mol·L~(-1) H_2SO_4 solution(pH 1.1) with cyclic voltammetry.The oxidative peak currents decrease with the peak potential shifting negatively as a result ofβ-CD inclusion "P-SP".The inclusion reaction obeys the 1st order rate rate equation:In C_(H+,0)/ C_(H+,t)= 0.952 +2.88×10~(-2) t,inclusion rate constant = 2.88×10~(-2) min~(-1),t_(1/2) = 24.1 min.Based on the "Linear method",the inclusion constant and ratio are calculated as 2.9×10~5 L·mol~(-1), 1:1,respectively.The△G_1~0 of inclusion reaction is -31.136 kJ·mol~(-1).
     4."P-SE" is prepared by electrochemical polymerization of sericin in 0.02 mol·L~(-1) phosphate buffer(pH 7.0) on nanometer TiO_2 modified carbon paste electrode surface. The net structure is formed on this interface.A pair of stable redox peaks has been found in pH 1.81B-R buffer for P-SE-TCPE.This redox reaction can be hindered by cationic surfactants while enhanced by anionic surfactants.Also,the electrode reaction rate constant of potassium ferrocyanide in 0.02 mol·L~(-1) PBS(pH 7.0) on P-SE-TCPE is 0.26 s~(-1),which is higher than that of 0.03s~(-1) on TCPE.
     5.The electrochemical behavior of protein material silk fibroin is studied in pH 2.0 of hydrochloric acid solution with cyclic voltammetry and square wave voltammetry at a CPE.Silk fibroin has a clearly irreversible oxidation peak(P_(a,1)) and a pair of weak-defined reversible peak(P_(a,2) and P_c).The peak currents of peak P_(a,1) are proportional to the concentration of silk fibroin in the range of 5.8×10~(-8) to 1.1×10~(-6) mol·L~(-1).Sericin,amino acids and inorganic ions do not interfere with silk fibroin determination.This method is applied to the determination of SF in raw silk liquid samples without any pre-separation and pre-purification.The average recoveries are 97.0-103.0%.
     6.The interaction between carmine and sericin is investigated with electrochemical methods and the UV-Vis spectrophotometry.In the absence of sericin,carmine has a pair of well-defined redox peaks in a pH 1.81 B-R buffer solution.Although no new redox peaks appear upon the addition of sericin into a carmine solution,the peak currents of the old peaks reduce while the peak potentials shift positively.This observation is attributed to the decrease in the diffusion coefficient and electrode reaction rate constant of carmine in the presence of sericin.The main binding mode between carmine and sericin is electrostatic attraction.The binding constant and binding ratio are calculated as 2.32×10~6 L·mol~(-1) and 1:1,respectively.Furthermore,the decrease in the peak currents is found proportional to the sericin concentration in the range of 32.0-800.0μg·mL~(-1).The method is further applied to the determination of sericin in a degumming wastewater with satisfied average recoveries from 96.7 to 103.3%.The results are in good agreement with those obtained by the conventional Coomassie brilliant blue G-250 spectrophotometric method.
     7.The electrochemical behaviors of malachite green(MG),brilliant acid scarlet red 3R,C.I. Acid Blue 120(WAGR) and reactive yellow K-4G are studied with cyclic voltammetry and square wave voltammetry at a CPE.Based on the linear correlation between peak currents and dye concentrations,SWV methods are set up to the determination of dye-uptakes of these four dyes dyeing different fibers(MG dyeing acrylic fiber,brilliant acid scarlet red 3R dyeing silk and wool,C.I.ACID BLUE 120 dyeing silk and reactive yellow K-4G dyeing silk).The results are in accordance with the traditional spectrophotometric method.
引文
[1]上海市丝绸工业公司。丝绸染整手册[M]。北京:纺织工业出版社,1982:4
    [2]王佳培,胡建恩,杜昱光.蚕丝素蛋白及其应用[J].精细与专用化学品,2004,V12(12):3-7
    [3]Liu Y.,Yu T.,Yao H.,et al.PIXE analysis of silk[J].J.Appl.Polym.Sci.,1997,V66(2):405-408
    [4]Zhou L.,Chen X.;Shao Z.Z.,et al.Copper in the silk formation process of Bombyx mori silkworm[J].FEBS lett.,2003,V554(3):337-341
    [5]Vepari C.,Kaplan D.L.,Silk as a biomaterial[J].Prog.Polym.Sci.,2007,V32(8-9):991-1007
    [6]Zhou C.Z.,Confalonieri F.,Jacquet M.,et al.Silk fibroin:structural implications of a remarkable aminoacid sequence[J].Proteins,2001,V44(2):119-122
    [7]焦林,王雪燕,狄群英.棉织物的丝素防皱整理[J].印染,2003,V29(7):6-7
    [8]何新杰,梅士英。丝素整理剂在真丝绸防皱整理中的应用[J].丝绸,1999,(5):20-23
    [9]杨百春.稀土金属离子处理丝素涂膜涤纶的作用研究[J].苏州丝绸工学院学报,1995,V15(1):6-13
    [10]何新杰.丝素整理剂的制备及性能对羊毛织物抗皱性能的影响[J].毛纺科技,2000,V8(3):30-32
    [11]贾艳梅.天然丝素在化妆品中的护肤特性及应用[J].精细与专用化学品,1999, V7(14):13-14
    [12]盛家镛,孙锦华,胡汉清。高纯度丝肽粉的微细结构及其性能研究[J].丝绸,2001,V(6):6-9
    [13]倪莉,王璋,许时婴。废蚕丝在食品中的开发和利用[J].食品工业,1999,(3):6-7
    [14]贾艳梅.榨蚕丝素肽沐浴液的研制[J].辽宁丝绸,2002,(3):3-5
    [15]Atlman G.H.,Diaz F.,Jakuba C.,Silk-based biomaterials[J].Biomaterials,2003,V24(3):401-416
    [16]Wang X.,Kim H.J.,Xu P.,Biomaterial coatings by stepwise deposition of silk fibroin[J].Langrnuir,2005,V21(24):11335-11341
    [17]Fini M.,Motta A.,Torricelli P.,et al.The healing of confined critical size cancellous defects in the presence of silk fibroin hydmgel[J].Biomaterials,2005,V26(17):3527-3536
    [18]Nazarov R.,Jin H.Y.,Kaplan D.L.,Porous 3-D scaffolds from regemated silk fibroin[J].Biomacromolecules,2004,V5(3):718-726
    [19]Dal P.I.,Freddi G..,Minic J.,et al.De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials[J].Biomaterials,2005,V26(10):1987-1999
    [20]Wang X.,Kim H.J.,Wong C.,et al.Fibrous proteins and tissue engineering[J].Maters.Today,2006,V9(12):44-53
    [21]盛家镛.蚕丝蛋白质的分子量与亚单位结构[J].丝绸,1988,(9):43-45
    [22]陈华,朱良均,闽思佳,等.蚕丝丝胶蛋白的利用研究[J].东华大学学报(自然科学版),2002,V28(3):132-135
    [23]苏州丝绸工学院。制丝化学[M].北京:纺织工业出版社,1992:1-130
    [24]王群,齐鲁.丝胶蛋白在纤维与纺织品中的应用[J].合成纤维,2006,(11):28-30
    [25]何中琴(译),杨百春(校).凝胶纺丝制作聚乙烯醇/丝胶混合纤维及其结构和物理性能[J].国外丝绸,2001,(5):16-18
    [26]王鱼来.蚕丝提取物的应用[J].福建轻纺,1998,(8):27
    [27]Sasaki M.,Yamada H.,Kato N.,Consumption of silk protein,sericin elevates intestinal absorption of zinc,iron,magnesium and calcium in rats[J].Nutri.Res.,2000,V20(10):1505-1511
    [28]张惠嫒,崔建云,胡长利,等.蚕丝的理化性质及其在食品中的应用[J].食品工业科技,2008,V29(7):309-312
    [29]张雨青.丝胶蛋白的药理及其在医用材料上的应用[J].纺织学报,2003,V24(3):278-280
    [30]Sasaki M.,Kato N.,Watanabe H.,et al.Silk protein,seicin,suppresses colon carcinogenesis induced by 1,2 -dimethylhydrazine in mice[J].Oncology Reports,2000,V7(5):1049-1052
    [3]]张长法。降血糖药物组合物[P]。中国:CNll811968,1998
    [32]Tamada Y.,Sano M.,Niwa K.,et al.Sulfation of silk sericin and anticoagulant activity of sulfated sericin[J].J.Biomater.Sci.Poly.Ed.,2004,V15(2):971-980
    [33]Zhang Y.Q.,Tao M.L.,Shen W.D.,et al.Immobilization of 1-asparaginase on the microparticles of the natural silk sericin protein and its characters[J].Biomaterials,2004,V25(17):3751-3759
    [34]Zhang Y.Q.,Ma Y.,Xie Y.Y.,et al.Silk sericin-insulin bioconjugates:Synthesis,characterization and biological activity[J].J.Control.Release.,2006,V115(3):307-315
    [35]Anghileri A.,Lantto R.,Kruus K.,Arosio C.,et al.Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates[J].J.Biotechnol.,2007,V 127(3):508-519
    [36]Kundu S.C.,Dash B.C.,Dash R.,et al.Natural protective glue protein,sericin bioengineered by silkworms:Potential for biomedical and biotechnological applications[J].Prog.Polym.Sci.,2008,V33(10).998-1012
    [37]Song Y.,Jin Y.,Wei D.,et al.Graft copolymerization of methyl acrylate onto silk sericin initiated by tert-butyl hydroperoxide[J].Polym.Int.,2006,V55(11):1350-1354
    [38]Wei D.Q.,Li G;J.,Tao J.L.,et al.Investigation of the graft copolymerization of styrene onto silk sericin[J].Acta Polym.Sin.,1989,V6(4):740-744
    [39]Xie R.J.,Li M.J.,Lu S.Z.,et al.Preparation of sericin film and its cytocompatability[J].Key Eng.Mater.,2007,V342-343(2):241-244
    [40]Kweon H.Y.,Yeo J.H.,Lee K.G.,et al.Effects of poloxamer on the gelation of silk sericin[J].Macromol.Rapid Commun.,2000,V21(18):1302-1305
    [41]Tao W.,Li M.Z.,Xie R.J.,Preparation and structure of porous silk sericin materials[J].Macromol.Mater.and Engine.,2005,V290(3):188-194
    [42]Mandal B.B.,Priya A.S.,Kundo S.C.,Novel silk sericingelatin 3D scaffolds and 2D films: Fabrication and characterization for potential tissue engineering applications [J]. Acta Biomater., doi 10.1016/j.actbio.2009.03026
    [43]Sehanl F., Prospects of the practical use of silk sericins [J]. Entomolo. Res., 2008,V38(S1):S1-S8
    [44]Barek J., Fogg A. G, Moreira J. C, et al. Polarographic and voltammetric determination of selected triazine-based azo dyes with different reactive groups [J]. Anal. Chim. Acta,1996,V320(1-2): 31-42
    [45] Shamsipur M., Siroueinejad A., Hemmateenejad B., et al. Cyclic coltammetric, computational,and quantative structure-electrochemistry relationship studies of the reduction of several 9,10-anthraquione deratives [J]. J. Electroanl. Chem., 2007, V600(2): 345-358
    [46]Bersier P.M., Bersier J., Polarography and voltammetry of dyes and intermediates [J].Trends in Analytical Chemistry, 1986, V5(4): 97-102
    [47]Zhang G. Q., Yang W. S., Yang F. L., Electrochemical behavior and electrocatalytic activity of anthraquinonedisulphonate in solution phase. and as doping species at polypyrrole modified glass electrode [J]. J. Electroanal. Chem., 2007,V602(1):163-171
    [48] Almeida P. J., Rodrigues J. A., Barros A. A., et al.Voltammetric studies of anthraquione dyes adsorbed at a hanging mercury drop electrode using fast pulse techniques[J]. Anal.Chim. Acta, 1999,V385(1-3): 287-293
    [49]Salimi A., Eshghi H., Sharghi H., et al. Electrocatalytic reduction of dioxygen at the surface of glassy carbon electrodes modified by some anthraquinone substituted podands[J]. Electroanalysis, 1999, V11(2): 114-119
    [50] Shamsipur M., Salimi A., Golabi S.M., et al. Electrochemical properties of modified carbon paste electrodes containing some amino derivatives of 9, 10-anthraquinone [J]. J.Solid State Electrochem., 2001,V 5(1): 68-73
    [51]Wightman R. M., Cockrell J. R., Murray R.W., etal. Protonation kinetics and mechanism for 1,8-dihydroxyanthraquinone and anthraquinone anion radicals in dimethylformamide solvent [J]. J. Am. Chem. Soc., 1976, V98(9): 2562-2570
    [52]Wawzonek S., Polarography of organic compounds in aprotic solvents[J].Talanta, 1965,V12(12):1229-1235
    [53]Hall D. A., Sakuma M., Elwing P. J., Voltammetric oxidation of triphenylmethane dyes at platinum in liquid sulphur dioxide[J].Electrochim.Acta,1966,V11(3):337-350
    [54]Konthe G.,Suemmermann W.,Baumgaertel M.,et al.Polarographische untersuchungen an carboniumionen und radikalen der triphenylmethan-reihe[J].Tetrahedron Lett.,1969,V10(26):2185-2188
    [55]Nemcova I.,Nemec I.,The voltammetry of triarylmethane dyes in acetonitrile[J].J.Elecanal.Chem.,1971,V30(3):506-510
    [56]Govaert F.,Temmerman E.,Kiekens P.,Development of voltammetric sensors for the determination of sodium dithionite and indanthrene/indigo dyes in alkaline solutions[J].Anal.Chim.Acta,1999,V385(1-3):307-314
    [57]Zanoni M.V.B.,Fogg A.G.,Barek J.,et al.Electrochemical investigations of reactive dyes;polarographic determination of anthraquinone-based chlorotriazine dyes[J].Anal.Chim.Acta,1995,V315(1-2):41-54
    [58]Zanoni M.V.B.,Fogg A.G.,Barek J.,et al.Electrochemical investigations of reactive dyes;cathodic stripping voltammetric determination of anthraquinone-based chlorotriazine dyes at a hanging mercury drop electrode[J].Anal.Chim.Acta,1997,V349(1-3):101-109
    [59]Zanoni M.V.B.,Sousa W.R.,Lima J.P.D.,et al.Application of voltammetric technique to the analysis of indanthrene dye in alkaline solution[J].Dyes and Pigments,2006,V68(1):19-25
    [60]Zanoni M.V.B.,Camerio P.A.,Furlan M.,et al.Determination of the vinylsulphone azo dye,remazol brilliant organge 3R,by cathodic stripping voltammetry[J].Anal.Chim.Acta,1999,V385(1-3):385-392
    [61]Fogg A.G,Zanoni M.V.B,YussofA.R.H.M.,et al.Polarographic and voltammetric determination of triazine-based reactive azo dyes with 4-carboxypyridyl and 1,4-diazabieyelo[2,2,2]oetanyl (DABCO) leaving groups[J].Anal.Chim.Acte,1998,V362(2-3):.235-240
    [62]Nevado J.J.B.,Flores J.R,Lerena L.M.J.,Square wave adsorptive voltammetric determination of sunset yellow[J].Talanta,1997,V44(3):467-474
    [63]Ni Y.N.,Bai J.L.,Simultaneous determination of amaranth and sunset yellow by ratio derivative voltammetry[J].Talanta,1997,V44(1 ):105-109
    [64]Guo Y.J.,Pan J.H.,Jing W.J.,Determination of organge Ⅱ and the supramolecular system of orange Ⅱ with cyclodextrins by polarography[J].Dyes and Pigments,2004, V63(1):65-70
    [65]郭玉晶,潘景浩,郭春花等.甲基绿的电化学行为及其与环糊精形成超分子体系研究[J].电化学,2003,V9(3):363-367
    [66]Li Y.Q.,Guo Y.J.,Li X.E,et al.Electrochemical studies of determination of basic brown G and its interaction with cyclodextrins[J].Dyes and Pigments,2007,V74(1):6-72
    [67]郭玉晶,潘景浩.邻氯酚红的电化学行为及其与环糊精超分子体系的研究[J].分析科学学报,2004,V20(1):32-34
    [68]郭玉晶,潘景浩,王惠.线性扫描伏安法研究茜素红及茜素红.环糊精超分子体系[J].分析化学,2003,V31(12):1533
    [69]李有琴,潘景浩,郭玉晶,等.活性艳红K-2G与环糊精相互作用的极谱伏安法研究[J].分析试验室,2006,V25(1):9-12
    [70]李有琴,郭玉晶,潘景浩。活性艳红K-2BP与环糊精相互作用的电化学研究[J].分析科学学报,2006,V22(4):421-424
    [71]Guo Y.J.,Pan J.H.,Li X.M.,Electroanalytical method of acid blue 120 and its supramolecular system with cyclodextrins[J].J.Inclus.Phenom.Macro.,2006,V56(1-2):243 -246
    [72]芦飞,潘景浩,孟莉新,等。用极谱法研究酸性大红GR与环糊精超分子体系[J].分析科学学报,2005,V21(6):616-618
    [73]芦飞,潘景浩,王英特,等.酸性深蓝5R的极谱分析方法及其与环糊精的超分子体系研究[J].电化学,2005,V11(1):105-108
    [74]王中慧,潘景浩.用电化学分析法研究碱性染料与β-环糊精的包结作用[J]。分析化学,2004,V32(7):889-892
    [75]Ramarj C.R.,Electrochemistry and photoelectrochemistry of phenothiazine dye-β-cyclodextrin inclusion complexes[J].J.Electroanal.Chem.,1996,V405(1-2):141-147
    [76]刘宁,宋俊峰.碳糊电极吸附溶出伏安法测定游离钙[J].分析化学,2005,V33(9):1261-1264
    [77]Lu N.,Song J.F.,Catalytic adsorptive stripping voltammetric determination of copper(Ⅱ)on a carbon paste electrode[J].Anal.Bioanal.Chem.,2005,V383(2):358-364
    [78]Li Y.H.,Zhao Q.L.,Huang M.H.,Adsorptive anodic stripping voltammetry of zirconium(Ⅳ)-alizarin red S complex at a carbon paste electrode[J].Microchim.Aeta,2007,V157(3-4):245-249
    [79]Deng P.H.,Fei J.J.,Zhang J.,et al.Trace determination of vanadium(Ⅴ) using anodic adsorptive voltammetry at a glassy carbon electrode modified with multi-walled carbon nanotubes[J].Microchim.Acta,2009,V 165(1-2):211-216
    [80]Shiu K.K.,Chan O.Y.,Electroanalysis of copper species at polypyrrole-modified electrodes beating alizarin red s ligands[J].J.Electroanal.Chem.,1995,V388(1-2):45-51
    [81]Zhang J.,Li J.N.,Deng P.H.,Adsorptive voltammetry of the scandium-alizarin red s complex onto a carbon paste electrode[J].Talanta,2001,V54(4):561-566
    [82]廖钫,艾珍,朱清涛,等.酵母核糖核酸与中性红相互作用及电化学检测(J).分析测试学报,2007,V26(6):869-872
    [83]廖钫,朱清涛,何晓英,等.亚甲基蓝与酵母核糖核酸相互作用的电化学研究[J].化学研究与应用,2007,V19(10):1158-1161
    [84]Erden A.,Kerman K.,Meric B.,Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the Hepatitis B Viru[J].Anal.Chim.Acta,.2000,V422(2):139-149
    [85]Ozkan D.,Kara P.,Kerman K.,et al.DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label[J].Bioelectrochemistry,2002,V58(1):119-126
    [86]Zhang Y.,Hu N.F.,Cyclic voltammetric detection of chemical DNA damage induced by styrene oxide in natural dsDNA layer-by-layer films using methylene blue as electrochemical probe[J].Electrochem.Commun.,2007,V9(11):35-41
    [87]Kara P.,Kerman K.,Ozkan D.,etal.Electrochemical genosensor for the detection of interaction between methylene blue and DNA[J].Electrochem.Commun.,2002,V4(9):705-709
    [88]Li Y.Q.,Guo Y.J.,Li X.F.,et al.Electrochemical studies of the interaction of basic brown G with DNA and determination of DNA[J].Talanta,2007,V71(1):123-128
    [89]Ibrahim M.S.,Kamal M.M.,Temerk Y.M.,Comparision of the voltammetric studies at mercury and glassy carbon electrodes for the interaction of lumichrome with DNA and analytical applications[J].Anal.Bioanal.Chem.,2003,V375(8):1024-1030
    [90]Zhu Z.W.,Li N.Q.,Electrochemical studies of the interaction of 9,10-anthraquinone with DNA[J].Microchem.J.,1998,V59(2):294-306
    [91]Jiao K.,Li Q.J.,Sun W.,et al.Voltammetric detection of the DNA interaction with toluidine blue[J].Electroanalysis,2005,V 17(11 ):997-1002
    [92]Yang Z.S.,Zhang D.P.,Long H.Y.,et al.Voltammetric behavior of the alizarin red S interaction with DNA and damage to DNA[J].Electroanalysis,2007,V19(24):2577-2582
    [93]牛淑妍,张书圣,马立波,等.茜素红S与脱氧核糖核酸相互作用的电化学研究[J].分析化学,2004,V32(9):1234-1236
    [94]Liu J.L.,Li J.H.,Dong S.J.,Interaction of brilliant cresyl blue and methylene green with DNA studied by spectrophotometric and voltammetric methods[J].Electroanalysis,1996,V8(8-9):803-807
    [95]Alvarez P.,Castanon M.J.L.,Ordieres A.J.M.,et al.Electrocatalytic oxidation of NADH by brilliant cresyl blue-DNA intercalation adduct[J].Electrochim.Acta,2005,V50(5):1107-1112
    [96]孙伟,杨茂霞,钟江华,等.灿烂甲酚蓝在DNA修饰金电极上的电化学行为[J].物理化学学报,2007,V23(4):499-502
    [97]Ju H.X.,Ye H.K.,Zhu Y.L.,Interaction between nile blue and immobilized single- or double-stranded DNA and its application in electrochemical recognition[J].Electrochim.Acta,2005,V50(6):1361-1367
    [98]Sun W.,You J.,Zhao N.,et al.Application of linear-sweep voltammetry to the determination of nucleic acids using crystal violet as an electrochemical probe[J].J.Anal.Chem.,2008,V63(3):265-270
    [99]王振永,焦奎,孙伟.结晶紫与DNA相互作用的电化学研究[J].青岛科技大学学报(自然科学版),2004,V25(6):480-483
    [100]王增健,焦奎,杨涛,等.碱性品红及聚碱性品红修饰电极与DNA的相互作用[J].青岛科技大学学报(自然科学版),2004,V25(6):475-479
    [101]孙伟,尤加宇,周宇峰,等。以茜素兰S为电化学探针测定DNA的研究[J].分析科学学报,2006,V22(4):5-8
    [102]刘萍,杨涛,焦奎。麦尔多拉蓝与DNA相互作用的循环伏安法和电化学交流阻抗法研究[J].青岛科技大学学报(自然科学版),2008,V29(5):381-385
    [103]Sun W.,You J.Y.,Wang Q.X.,et al.Electrochemical studies of pyronine B with RNA and determination of RNA[J].Chem.Anal.,2005,V51(4):477-488
    [104]徐白.某些染料小分子与DNA相互作用的电化学和光谱研究[D].青岛:青岛科技大学,2007
    [105]Wang X.L.,Yang J.,Jiao K.,Electrochemical study on the interaction of protein with bromothymol blue and its analytical application[J].Chem.Res.Chin.Univ.,2008,V24(8):701-706
    [106]Sun W.,Jiao K.,Wang X.L.,et al.Electrochemical studies of the reaction between albumin and amaranth and its analytical application[J].J.Electroanal.Chem.,2005,V 578(1):37-43
    [107]孙伟,赵娜,徐啸,等.甲苯胺蓝线扫极谱法测定硫酸软骨素[J]。分析化学,2007,V35(11):1548-1552
    [108]孙伟,张士航,韩军英,等.铬天青S线扫伏安法测定人血清蛋白质[J].青岛科技大学学报(自然科学版),2004,V25(6):471-474
    [109]Sun W.,Jiao K.,Han J.Y.,et al.Voltammetric studies of chromotrope 2B-protein interaction and its application[J].J.Chin.Chem.Soc.,2006,V 53(5):1141-1147
    [110]焦奎,徐静,孙伟.以变色酸2R为底物测定辣根过氧化物酶的研究[J].分析化学,2004,V32(5):593-597
    [111]王学亮,孙伟,焦奎,等.以溴甲酚紫为电化学探针测定血清白蛋白[J].高等学校化学学报,2004,V25(8):1448-1550
    [112]韩英强,罗登柏,蓝金贵,等.血清蛋白.荧光素复合物单扫极谱波研究与应用.分析科学学报,2003,V19(2):113-116
    [113]孙伟,韩军英,焦奎,等.钍试剂线扫极谱分析法测定蛋白质的研究[J].分析科学学报,2006,V22(2):145-148
    [114]孙伟,韩军英,焦奎,等.铍试剂Ⅱ线性扫描伏安探针法测定蛋白质[J].应用化学,2005,V22(3):242-245
    [115]彭贞,程乐华,陆光汉.蛋白质与罗丹明B相互作用的极谱分析[J].分析科学学报,2006.V22(3):318-320
    [116]孙伟,韩军英,焦奎,等.金橙G为电化学探针检测血清白蛋白[J]。化学研究与应用,2005,V17(4):556-558
    [117]郑石英,周春,罗登柏,等。刚果红与血清白蛋白相互作用的极谱分析[J].分析测试学报,2003,V22(4):64-66
    [118]王学亮,孙伟,焦奎.用鸡冠花红线性扫描极谱法测定蛋白质及其应用[J].分析科学学报,2005,V21(2):135-138
    [119]王学亮,焦奎,孙伟.茜素黄R与蛋白质相互作用的线性扫描极谱法研究及分析应用[J].分析试验室,2004,V23(8):5-8
    [120]孙伟,王学亮,焦奎,等.以溴甲酚绿为电化学探针线性扫描极谱法测定人血清白蛋白[J].分析化学,2005,V33(1):143
    [121]彭贞,郑钰琴.孔雀石绿与蛋白质相互作用的电化学行为的研究[J].化学试剂,2009,V31(1):49-51
    [122]Hianik T.,Ostatna V.,Zajacova Z.,et al.Detection of aptamer-protein interactions using QCM and electrochemical indicator methods[J].Bioorganic & Medicinal Chemistry Letters,2005,V 15(2):291-295
    [123]Zhu Z.W.,Li N.Q.,Electrochemical studies of 9,10-anthraquinone interacting with hemoglobin and determination of hemoglobin[J].Microchim.Acta,1999,V130(4):301-308
    [124]Sun W.,Ding Y.Q.,Jiao K.Electrochemical studies on the interaction of heparin with crystal violet and analytical application[J].J.Anal.Chem.,2006,V61(4):359-364
    [125]Sun W.,Jiao K.,Han J.Y.,et al.Linear sweep voltammetric determination of heparin based on its interaction with netural red[J].Anal.Lett.,2005,V38(7):1137-1148
    [126]孙伟,焦奎,丁雅勤.甲基紫与肝素钠结合反应的电化学研究及分析应用[J].化学学报,2006,V64(5):397-402
    [127]赵娜,庄光超,丁环,等。壳聚糖与溴甲酚绿相互作用的电化学研究[J].化学与生物工程,2007,V24(9):69-71
    [128]Sun W.,Ding Y.Q.,Wang Q.x.,et al.Electrochemical detection of heparin based on its interaction with light green[J].Electroanalysis,2006,V 18(11):1114-1120
    [129]孙伟,高瑞芳,丁雅勤,等。藏红T作为电化学探针线扫极谱法测定透明质酸[J]。分析化学,2006,V34(9):1265-1268
    [130]孙伟,焦奎,怀盈盈,等.茜素红S-壳聚糖结合反应的电化学研究[J].青岛科技大学学报(自然科学版),2004,V25(5):377-380
    [131]Sun W.,Ding Y.Q.,Jiao K.,Voltammetric determination of heparin based on its interaction with brilliant cresyl blue[J].Chem.Res.Chin.Univ.,2006,V22(3):406-409
    [132]Kumar S.A.,Lo P.H.,Chen S.M.,Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71[J].Biosens.Bioelectron.,2008,V24(4):518-523
    [133]Du P.,Liu S.,Wu P.,et al.Single-walled carbon nanotubes functionalized with poly(nile blue A) and their application to dehydrogenase-based biosensors[J].Electrochim.Acta,2007,V53(4):1811-1823
    [134]Chen Z.W.,Balamurugan A.,Chen S.M.,Detection of DNA by using bio-conducting polymer-Nile blue composite electrode;Nile blue as an indicator[J].Bioelectrochemistry,2009,V75(1):13-18
    [135]Chai C.X.,Xue K.H.,Electrocatalysis oxidation of NADH at glassy carbon electrodes with an electropolymerized film of nile blue A[J].Chin.J.Chem.2000,V18(2):182-187
    [136]Yu R.M.,Ma M.Wang L L,et al.Highly sensitive and surface-renewable electrochemical quartz crystal microbalance assays of heparin and chondroitin sulfate based on their effects on the electrodeposition of neutral red[J].Biosens.Bioelectron.,2009,V24(6):1771-1776
    [137]孙元喜,冶保献,周性尧.聚中性红膜修饰电极上神经递质的电化学行为及应用[J].分析化学,1998,V26(5):506-510
    [138]Sun Y.X.,Ye B.X.,Wang Y.,et al.Study on the determination of neurotransmitters using poly(neutral red) coated carbon fiber microelectrodes[J].Microchem.J.,1998,V582(2):182-191
    [139]Sun Y.X.,Ye B.X.,Zhang W.M.,et al.Simultaneous determination of dopamine and ascorbic acid at poly(neutral red) modified electrodes[J].Anal.Chim.Acta,1998,V 363(1-2):75-80
    [140]孙登明.聚碱性品红修饰电极对抗坏血酸与多巴胺重叠氧化峰的分离[J].淮北煤师范学院学报,1999,V20(4):46-50
    [141]Liu X.Y.,Li C.Y.,Hu S.S.,et al.Voltammetric sensor for the determination of parathion using an electropolymerized poly(Carmine) film electrode[J].Microchim.Acta,2006,V154(3-4):275-280
    [142]Wang C.H.,Wang F.,Li C.Y.,et al.Voltammetric sensor for tinidazole based on poly(carmine) film modified electrode and its application[J].Dyes and Pigments,2007,V75(1):213-217
    [143]罗济文,李家洲,李家贵,等.聚灿烂甲酚蓝修饰玻碳电极的制备及电化学性质[J]化学研究,2003,V14(1):18-22
    [144]Ghica M.E.,Brett C.M.A.,Poly(brilliant cresyl blue) modified glassy carbon electrodes:Electrosynthesis,characterisation and application in biosensors[J].J.Electroanal.Chem.,2009,V 629(1-2):35-42
    [145]万其进,喻玖宏,王刚,等.聚茜素红膜修饰电极控制电位扫描法分别测定多巴胺和抗坏血酸[J].高等学校化学学报,2000,V21(11):1651-1654
    [146]汪振辉,张永花,周漱萍.聚吖啶橙修饰电极的电化学行为及其对肾上腺素的电催化性能[J].分析化学,2001,V29(12):1384-1388
    [147]靳桂英,张玉忠,杨周生。聚吖啶红修饰玻碳电极在抗坏血酸共存时测定肾上腺素[J).分析试验室,2004,V23(4):1-4
    [148]万其进,喻玖宏,杨年俊,等.聚溴甲酚绿膜修饰电极示差脉冲溶出伏安法测定叶酸[J].分析科学学报,2002,V18(2):174
    [149]汪云,周东美,陈刚,等.亚甲紫的电化学聚合和亚硝酸根的电催化还原[J].高等学校化学学报,1997,V18(6):864-868
    [150]Chen S.M.,Fa Y.H.,The electropolymerization and electrocatalytic properties of polymerized new fuchsin film modified electrodes[J].J.Electroanal.Chem.,2003,V553:63-75
    [151]Pauliukaite R.,Selskiene A.,Malinauskas A.,et al.Electrosynthesis and characterisation of poly(safranine T) electroactive polymer films[J].Thin solid film,2009,doi 10.1016/j.tsf.2009.01.092
    [152]Chai R.,Yuan R.,Chai Y.Q.,et al.Amperometric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin[J].Talanta,2008,V 74(5):1330-1336
    [153]Zeng J.X.,Wei W.Z.,Zai X.R.,et al.Assemble-electrodeposited ultrathin conducting poly(Azure A) at a carbon nanotube-modified glassy carbon electrode,and its electrocatalytic properties to the reduction of nitrite[J].Microchim.Acta,2006,V153(3-4):379-386
    [154]Yang P.H.,Wei W.Z.,Liu Y.,Simultaneous voltammetric determination of dihydroxybenzene isomers using a poly(acid chrome blue K)/ carbon nanotube composite electrode[J].Microchim.Acta,2007,V157(3-4):229-235
    [155]Zeng J.X.,Wei W.Z.,Wu L.,et al.Fabrication of poly(toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH[J].J.Electroanal.Chem.,2006,V595(2):152-160
    [156]Zeng J.X,Wei W.Z.,Zai X.R.et al Low-potential nicotinamide adenine dinucleotide detection at a glassy carbon electrode modified with toluidine blue O functionalized multiwall carbon nanotubes[J].Anal.Sci.,2006,V22(3):399-403
    [157]Liu M.C.,Shi G.Y.,Zhang L.,et al.Electrode modified with toluidine blue-doped silica nanoparticles,and its use for enhanced amperometric sensing of hempglobin[J].Anal.Bioanal.Chem.,2008,V391(5):1951-1959
    [158]Barsan M.M.,Pinto E.M.,Florescu M.,et al.Development and characterization of a new conducting carbon composite electrode[J].Anal.Chim.Acta,2009,V635(1-2):71-78
    [159]王晋芬,袁若,柴雅琴,等。碱性品红/纳米金/聚碱性品红修饰电极的制备及其对抗坏血酸的催化氧化[J].西南大学学报(自然科学版),2008,V30(3):42-46
    [160]Zheng L.,Song J.F.,Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine[J].Sensors and actuators B:chemical,2009,V135(2):650-655
    [161]Adams R.N.,Electrochemistry at solid Electrodes[M].New York:Marcel Dekker,1969:1
    [162]Leech D.,Wang J.,Smyth M.R.,Electrocatalysis and flow detection of alcohols at ruthenium dioxide-modified electrodes[J].Electroanalysis,1991,V3(1):37-42
    [163]Navratilova Z.,Hg(Ⅱ) voltammetry on a 1,5-diphenylcarbazide containing carbon paste electrode[J]. Electroanalysis, 1991, V 3(8): 799-802
    [164]Lexa J., Stulik K., Preparation of a mercury film electrode modified by tri-n-octylphosphine oxide and the electrochemical properties of this electrode [J].Talanta,1985,V32(11): 1027-1033
    [165]Wang J., Golden T., Ozsoz M., et al. Sensitive and selective voltammetric measurements of tricyclic antidepressants using lipid-coated electrodes [J]. Bioelectrochem. Bioenerg.,1989,V23(3):217-226
    [166]Khodari M., Voltammetric determination of the antidepressant trimipramine at a lipid-modified carbon paste electrode [J]. Electroanalysis, 1993, V 5(5-6): 521-523
    [167]Linden W. E. V., Dieker J. W., Glassy carbon as electrode material in electro-analytical chemistry [J]. Anal. Chim. Acta, 1980/V119(1): 1-24
    [168]Sheng Q. L., Yu H., Zheng J. B., Sol-gel derived carbon ceramic electrode for the investigation of the electrochemical behavior and electrocatalytic activity of neodymium hexacyanoferrate [J]. Electrochim. Acta, 2007, V52 (5-6): 4506-4512
    [169]Walcarius A., Zeolite-modified electrodes in electroanalytical chemistry [J]. Anal.Chim.Acta, 1999,V384(1): 1-16
    [170]Walcarius A., Voltammetric in situ investigation of an MCM-41-modified carbon paste electrode—a new sensor [J]. Electroanalysis, 1998, V10 (18): 1217-1290
    [171]Breck D.W., Zeolite, Molecular Sieves [M]. New York: Wileylnterscience, 1974: 56
    [172]Peieira R. J. P, Messina R, Electrochemical behaviour of a silver-exchanged "mordenite"-type zeolite [J]. J. Electroanal. Chem., 1983, V146(1): 157-169
    [173]Senaratne C., Zhang J., Baker M. D., et al. Zeolite-modified electrodes: intra- versus extrazeolite electron transfer [J]. J. Phys. Chem. 1996, V100(4): 5849-5862
    [174]Bessel C. A., Rolison. D. R., Topological redox isomers: surface chemistry of zeolite encapsulated Co(salen) and [Fe(bpy)~3]~(2+)complexes [J]. J. Phys. Chem., 1997, V 101(7):1148-1157
    [175]Baker M. D., Senaratne C., Trace analysis in solution using zeolite-modified electrode [J]. Anal. Chem., 1992, V64 (6): 697-700
    
    [176]Wang J., Walcarius A., Zeolite-modified carbon paste electrode for selective monitoring of dopamine [J]. J. Electroanal. Chem., 1996, V407(1-2): 183-187
    [177]Wang J.,Walcarius A.,Zeolite containing oxidase-based carbon paste biosensors[J].J.Electroanal.Chem.,1996,V 404(2):237-242
    [178]Rolison D.R.,Nowak R.J,Analytical implications of zeolites in ovedayers at electrodes [J].Talanta,1991,V38(1):27-35
    [179]Cox J.A.,Jaworsji P.K.,Kulesza P.J.,et al.Electroanalysis with electrodes modified by inorganic films[J].Electroanalysis,1991,V3(9):869-877
    [180]Cox J.A.,Kulesza P.J.,Electrocatalytic oxidation and determination of arsenic(Ⅲ) on a glassy carbon electrode modified with a thin film of mixed-valent ruthenium(Ⅲ,Ⅱ)cyanide[J].Anal.Chem.,1984,V56(8):1021-1025
    [181]Cox J.A.,Kulesza P.J.,Oxidation and determination of nitrite at modified electrodes[J].J.Electroanal.Chem.,1984,V175(1-2):105-118
    [182]Walcarius A.,Zeolite-modified electrodes:Analytical applications and prospect[J].Electroanalysis,1996,V8(11 ):971-986
    [183]Teixeira M.F.S.,Bergamini M.F.,Marques C.M.P.,et al.Voltammetric determination of L-dopa using an electrode modified with trinuclear ruthenium ammine complex(Ru-red)supported on Y-type zeolite[J].Talanta,2004,V63(4):1083-1088
    [184]Arvand M.,Sohrabnezhad S.H.,Electrochemical study of methylene blue incorporated into mordenite type zeolite and its application for amperometric determination of ascorbic acid in real samples[J].Anal.Chim.Acta,2003,V491(2):193-201
    [185]Walcarius A.,Lamberts L.,Voltammetric response of the hexammino-ruthenium complex incorporated in zeolite-modified carbon paste electrode[J].J.Electroanal.Chem.,1997,V422(1-2):77-89
    [186]易长青,陶颖,陈曦。有机改性溶胶-凝胶固定联吡啶修饰电极的电化学行为(J).化学通报,2005,V68(1):54-58
    [187]王全林,杨宝军,吕功煊.碳糊电极上无机膜固载血红蛋白的直接电化学[J].高等学校化学学报,2003,V24(9):1561-1566
    [188]Li J.,Chia L.S.,Goh N.K.,et al.Mediated amperometric glucose sensor modified by the sol-gel method[J].Sensors and Actuators B,1997,V40(2-3):135-141
    [189]Wang Q.L.,Lu G.X.,Yang B.J.,Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film[J].Biosens.Bioelectron.,2004,V19(10): 1269-1275
    [190]Lazarin A.M.,Aimldi C.,Intercalation of methylene blue into barium phosphate- synthesis and electrochemical investigation[J].Anal.Chim.Acta,2004,V523(1):89-95
    [191]Munteanu F.D.,Kubota L.T.,Gorton L.,Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate [J].J.Electroanal.Chem.,2001,V 509(1):2-10
    [192]Lazarin A.M.,Airoldi C.,Synthesis and electrochemical properties of meldola blue intercalated into barium and calcium phosphates[J].Sensors and Actuators B,2005,V 107(1 ):446-453
    [193]Quangpipat W.,Lelasattarathkul T.,Dongduen C.,et al.Bioaccumulation and determination of lead using treated-pennisetum-modified carbon paste electrode[J].Talanta,2003,V61(4):455-464
    [194]李桂敏,吴志皓,赵阁.2-羟基-3-(三乙胺基)丙基正癸基硫醚修饰碳糊电极测定痕量金[J].分析测试学报,2004,V23(4):22-24
    [195]Svegl S.R.,Ogorevc B.,Hudnik V.,A methodological approach to the application of a vermiculite modified carbon paste electrode in interaction studies:Influence of some pesticides on the uptake of Cu(Ⅱ) from a solution to the solid phase[J].Fresenius's J.Anal.Chem.,1995,V354(5-6):770-773
    [196]Rodriguez I.N.,Leyva J.A.,Hidalgo J.,et al.Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry [J].Anal.Chim.Acta,1997,V344(1-2):167-173
    [197]Marino G.,Bergamini M.F.,Teixeira M.F.S.,et al.Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic stripping voltammetric procedure[J].Talanta,2003,V59(5):1021-1028
    [198]Zou Y.D.,Mo J.Y.,The 2.5th order differential voltammetric determination of phenol with a composite carbon paste/polyamide electrode[J].Anal.Chim.Acta,1997,V353(1):71-78
    [199]Biryol I.,Uslu B.,Kucukyavuz Z.Anodic voltammetry of fluphenazine at different solid electrodes[J].J.Pharm.Biomed.Anal.,1996,V15(3):371-381
    [200]Uslu B.,Biryol I.,Voltammetric determimnation of amoxicillin using a poly(N-vinyl imidazole) modified carbon paste electrode[J].J.Pharm.Biomed.Anal.,1999,V 20(3):591-598
    [201]Cordero R.M.D.M.,Rodriguez I.N.,Voltammetric study of 2-rnethyl-4,6-dinitrophenol at a modified carbon paste electrode[J].Anal.Chim.Acta,1998,V370(2-3):231-238
    [202]Alpat S.K.,Yuksel U.,Akcay H.,Development of a novel carbon paste electrode containing a natural zeolite for the voltammetric determination of copper[J].Electrochem.Commun.,2005,V7(2):130-134
    [203]Walcarius A.,Despas C.,Trens P.,et al.Voltammetric in situ investigation of an MCM-41-modified carbon paste electrode-a new sensor[J].J.Electroanal Chem,1998,V453(1-2):249-252
    [204]Sugawara K.,Miyasita T.,Voltammetric detection of MoO_2~(-4) at a modified carbon paste electrode containing chitin[J].Anal.Chim.Acta,1997,V353(2-3):301-306
    [205]Etinne M.,Bessiere J.,Walcarius A.,Voltammetric detection of copper(Ⅱ) at a carbon paste electrode containing an organically modified silica[J].Sensors and Actuators B,2001,V76.(1-3):531-538
    [206]Yantasee W.,Lin Y.H.,Fryxell G.E.,et al.Simultaneous detection of cadmium,copper,and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica(SAMMS)[J].Anal.Chim.Acta,2004,V502(2):207-212
    [207]Perlado J.C.,Zapardiel A.,Bermejo E.,Determination of phenylephrine with a modified carbon paste electrode[J].Anal.Chim.Acta,1995,V305(1-3):83-90
    [208]Ibrahim H.,Chemically modified carbon paste electrode for the potentiometric flow injection analysis of piribedil in pharmaceutical preparation and urine[J].J.Pharm.Biomed.Anal.,2005,V38(4):624-632
    [209]齐菊锐,李陟,宋文波,等。四羟基葸醌修饰活性炭碳糊电极流动注射安培法测定铬(Ⅵ)[J]。分析化学,2004,V32(11):1421-1425
    [210]何琼.聚乙烯吡咯烷酮修饰碳糊电极上酪氨酸的电化学研究及其测定[J].分析科学学报,2003,V19(4):346-348
    [211]张海丽,周兴旺.1-(4-偶氮苯基苯)-3-丙基-三氮烯键合硅胶修饰碳糊电极溶出伏安法测定饲料中镉的研究[J]。粮食与饲料工业,2005,(1):46-47
    [212]黄文胜,瞿万云,张升辉.丁二酮肟修饰碳糊电极阳极溶出伏安法测定痕量铋[J]。分 析科学学报,2004,V20(4):367-369
    [213]魏培海,李关兵。多巴胺在3-巯丙基三甲氧基硅烷-铜/多孔晶形分子筛修饰碳糊电极上的电化学氧化[J].分析化学,2005,V33(5):703-706
    [214]魏培海,李关兵,陈立仁。NO_2-的芯片毛细管电泳-修饰碳糊电极电化学检测[J].色谱,2005,V23(3):258-260
    [215]卢丹青,赵洁,李一峻,等.PVC-碳糊电极的制备与应用[J].分析试验室,2003,V22(5):18-21
    [216]杨春海.漆酚铝高分子修饰碳糊电极用于溶出伏安法测定痕量银[J].应用化学,2003,V20(6):597-599
    [217]Kroncka A.,Paunukaite K.R.,et al.Bismuth-film-plated carbon paste electrodes[J].Electrochem.Commun.,2002,V4(2):193-196
    [218]Ding C.F.,Zhao F.,Ren R.,et al.An electrochemical biosensor for α-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles[J].Talanta,2009,V78(3):1148-1154
    [219]Sun W.,Duan Y.Y.,Li Y.R.,et al.Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination[J].Talanta,2009,V78(3):695-699
    [220]Lubert K.H.,Wagner M.,Olk R.M.,Voltammetric characterisation of an insoluble tetrathiafulvalene derivative by means of modified carbon paste electrode[J].Anal.Chim.Acta,1996,V336(1-3):77-84
    [221]Teixeira M.F.S.,Glimaldo,Dockal E.R.,et al.Voltammetric determination of pyridoxine(Vitamin B6) at a carbon paste electrode modified with vanadyl(Ⅳ)-Salen complex[J].Anal.Chim.Acta,2004,V508(1):79-85
    [222]王秀丽,李兴伟,杜永强.钼钒磷酸-聚吡咯导电杂化材料本体修饰碳糊电极的制备、电化学及其电催化研究[J].渤海大学学报(自然科学版),2004,V25(2):97-10
    [223]张幸儿,胡效亚.铜纳米粒子修饰碳糊电极测定氨基酸[J]。扬州大学学报(自然科学版),2005,V8(2):16-20
    [224]Shahrokhian S.,Yazdani J.,Electrocatalytic oxidation of thioglycolic acid at carbon paste electrode modified with cobalt phthalocyanine:application as a potentiometric sensor[J].Electrochim.Acta,2003,V48(28):4143-4148
    [225]Zare K R.,Nasirizadeh N,Ardakani M.M.,Electrochemical properties of a tetraromo-p-enzoquinone modified carbon paste electrode.Application to the simultaneous determination of ascorbic acid,dopamine and uric acid[J].J.Electroanal.Chem.,2005,V577(1):25-33
    [226]Abbaspour A.,Asadi M.,Ghaffarinejad A.,et al.A selective modified carbon paste n electrode for determination of cyanide using tetra-3,4-pyridinoporphyrazinatocobalt(Ⅱ)[J].Tanlata,2005,V66(4):931-936
    [227]Alernu H.,Chandravanshi B.S.,Differential pulse anodic stripping voltammetric determination of copper(Ⅱ) with N-phenylcinnamohydroxamic acid modified carbon paste electrodes[J].Anal.Chim.Acta,1998,V368(1-2):165-173
    [228]Ibrahim H.,Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(Ⅰ)[J].Anal.Chim.Acta,2005,V545(2):158-165
    [229]瞿万云.芦丁修饰碳糊电极吸附溶出伏安法测定铅[J].化工科技,2003,V11(5):47-49
    [230]钟爱国.利眠宁汞修饰碳糊电极的制作及应用[J]。分析科学学报,2003,V19(6):590-591
    [231]傅崇岗,苏昌华.流动注射掺杂普鲁士蓝碳糊电极测定过氧化氢[J]。分析科学学报,2005,V21(3):256-258
    [232]钟爱国.培氟沙星修饰碳糊电极的制作及应用[J].理化检验-化学分册,2003,V39(6):332-333
    [233]刘传银,胡军福,李新民,等.酞菁铁-邻苯二甲酸二正辛酯修饰碳糊电极测定抗坏血酸的研究与应用[J].西南师范大学学报(自然科学版),2005,V30(2):289-292
    [234]武冬梅,李敬芬。木犀草素修饰碳糊电极的电化学性质研究[J].黑龙江医药科学,2005.V28(3):16-17
    [235]Yeom J.S.,Won M.S.,Shim Y.B.,Voltammetric determination of the iodide ion with a quinine copper(Ⅱ) complex modified carbon paste electrode[J].J.Electroanal.Chem.,1999,V 463(1):16-23
    [236]Yu H.,Sheng Q.L.,Zheng J.B.,Preapration,electrochemical behavior and performance of galliurn hexacynoferrate as electrocatalyst of H_2O_2[J].Electrochim.Acta,2007,V52(13):4403-4410
    [237]Zhang Y.,Zheng J.B.,Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode[J].Talanta,2008,V77(1):325-330
    [238]Liu L.,Song J.F.,Yu P.F.,et al.Voltammetric determination of glucose based on reduction of copper(Ⅱ)-glucose complex at lanthanum hydroxide nanowire modified carbon paste electrodes[J].Talanta,2007,V 71(5):1842-1848
    [239]Hamidi H.,Shams E.,Yadollahi B.,et al.Fabrication of carbon paste electrode containing[PFeW_(11)O_(39)]~(4-) polyoxoanion supported on modified amorphous silica gel and its electrocatalytic activity for H_2O_2 reduction[J].Electrochim.Acta,2009,V54(12):3495-3500
    [240]Clank W.M.,Oxidation-reduction potentials of organic systems[M].Huntington:R.E.Krieger Publishers,1972:143
    [241]Yao T.,Musha S.,Electrochemical enzymatic determinations of ethanol and L-lactic acid with a carbon paste electrode modified chemically with nicotinamide adenine dinucleotide[J].Anal.Chim.Acta,1979,V 110(2):203-209
    [242]Matuszewski W.,Trojanowicz M.,Graphite paste-based enzymatic glucose electrode for flow injection analysis[J].The Analyst,1988,V 113(5):735-738
    [243]Tarmure C.,Sandulescu R.,Ionescu C.,Voltammetric determination of lactate dehydmgenase using a carbon paste electrode[J].J.Pharm.Biomed.Anal.,2000,V 22(2):355-361
    [244]Parellada J.,Narvaez A.,Dominguez E.,et al.A new type of hydrophilic carbon paste electrodes for biosensor manufacturing:,binder paste electrodes[J].Biosens.Bioelectron.,1997,V12(4):267-275
    [245]Pedano M.L.,Rivas G.A.,Amperometric biosensor for the quantification of gentisic acid using polyphenol oxidase modified carbon paste electrode[J].Talanta,2000,V53(3):489-495
    [246]Spohn U.,Narasaiah D.,Gorton L.,et al.A bienzyme modified carbon paste electrode for the amperometric detection of L-lactate at low potentials[J].Anal.Chim.Acta,1996,V316(1):79-90
    [247]Wu X.X.,Wie B.J.V.,Kidwell D.A.,Palladium hexacyanoferrate hydrogel as a novel and simple enzyme immobilization matrix for amperometric biosensors[J].Biosens.Bioelectron.,2004,V20(9):878-885
    [248]Saidman S.B.,Castanon L.M.J.,Ordieres.M.A.J.,et al.Amperometric detection of D-sorbitol with NAD~+-D -sorbitol dehydrogenase modified carbon paste electrode[J].Anal.Chim.Acta,2000,V 424(1):45-50
    [249]陈婉华,袁帅,胡成国.CTAB化学吸附修饰电极线性扫描伏安法直接测定苯酚[J]。分析科学学报,2005,V21(1):54-56
    [250]Korbut O.,Buckova M.,Tarapcik P.,et al.Damage to DNA indicated by an electrically heated DNA-modified carbon paste electrode[J].J.Electroanal.Chem.,2001,V 506(2):143-148
    [251]Radi A.,Accumulation and trace measurement of chloroquine drug at DNA-modified carbon paste electrode[J].Talanta,2005,V 65(1):271-275
    [252]Stadlober M.,Kalcher K.,Raber G.,et al.Anodic stripping voltammetric determination of titanium(Ⅳ) using a carbon paste electrode modified with cetyltrimethylammonium bromide[J].Talanta,1996,V43(11):1915-1924
    [253]Svancara I.,Vytras K.,Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis[J].Talanta,2002,V58(1):45-55
    [254]Radi A.,Voltammetric study of khellin at a DNA-coated carbon paste electrode[J].Anal.Chim.Acta,1999,V 386(1-2):63-68
    [255]李玉平,曹宏兵,张懿。血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为[J].物理化学学报,2005,V21(2):187-191
    [256]Sanchez C.F.,Garcia M.B.G.,Garcia A.G.,AC voltammetric carbon paste-based enzyme immunosensors[J].Biosens.Bioelectron.,2000,V 14(11):917-924
    [257]胡贵权,管文军,李昱,等.纳米碳管葡萄糖生物传感器的研究[J).浙江大学学报(工学版),2005,V39(5):668-671
    [258]Zheng J.B.,Zhou X.L.,Sodium dodecyl sulfate modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid[J].Bioelectrochemisty,2007,V 70(2):408-415
    [259]Zhang Y.,Zeng G.M.,Tang L.,et al.A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode[J].Biosens.Bioelectron.,2007,V22(9-10):2121-2126
    [260]Heli H.,Hajjizadeh M.,Jabbari A.,et al.Copper nanoparticles-modified carbon paste transducer as a biosensor for determination of acetylcholine[J].Biosens.Bioelectron.,2009,V24(8):2328-2333
    [26]]焦奎,张旭志,徐桂云,等。ssDNA/十八酸修饰碳糊电极的制备及伏安法表征[J]。化学学报,2005,V63(12):1100-1104
    [262]Liang Y.,He P.,Ma Y.J.,et al.A novel bacterial cellulose-based carbon paste electrode and its polyoxometalate-modified properties[J].Electrochem.Commun.,2009,V 11(5):1018-1021
    [1]Iron J.O.,Zhu Y.,Shah K.,et al.Electrochemical synthesis:a novel technique for processing multi-functional coatings[J].Prog.Org.Coat,2003,V47(3-4):365-371
    [2]Miao Y.Q.,Chen J.R.,Wu X.H.,Using electropolymerized non-conducting polymers to develop enzyme amperometric biosensors[J].Trends in Biotechnol,2004,V22(5):227-231
    [3]Gerard M.,Chaubey A.,Malhotra B.D.,Application of conducting polymers to biosensors[J]. Biosens.Bioelectron.,2002,V17(5):345-359
    [4]Guerrieri A.,De Benedetto G.E.,Palmisano F.,et al.Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes:a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer[J].Biosens.Bioelectron.,1998,V 13(1):103-112
    [5]Killoran S.J.,Neil R.D.O.,Characterization of permselective coatings electrosynthesized on Pt-Ir from the three phenylenediamine isomers for biosensor applications[J].Electrochim.Acta,2008,V53(24):7303-7312
    [6]Wu Q.,Storrier G.D.,Pariente F.,et al.A nitrite biosensor based on a maltose binding protein nitrite reductase fusion immobilized on an electropolymerized film of a pyrrole-derived bipyridinium[J].Anal.Chem.,1997,V69(23):4856-4863
    [7]Stauffer W.R.,Cui X.T.,Polypyrrole doped with 2 peptide sequences from laminin[J].Biomaterials,2006,V27(11):2405-2413
    [8]Raitman O.A.,Katz E.,B(u|¨)ckmann A.F.,et al.Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports:An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems[J].J.Am.Chem.Soc.,2002,V124(22):6487-6496
    [9]Lu Q.,Li C.M.,One-step co-electropolymerized conducting polymer-protein composite film for direct electrochemistry-based biosensors[J].Biosens.Bioelectron.,2008,V24(4):773-778
    [10]Heiduschka P.,G(o|¨)pel W.,Beck W.,et al.Microstructured peptide-functionalised surfaces by electrochemical polymerization[J].Chem.Eur.J.,1996,V2(6):667-672
    [11]Leipert D.,Heiduschka P.,Mack J.,et al.Spatially resolved immobilization of peptides by electrochemical polymerization after photolytic cleavage of a protecting group[J].Angew.Chem.Int.Ed.,1998,V37(17):2337-2340
    [12]Pournaghi-Azar M.H.,Habibi B.,Electrocatalytic oxidation of methanol on poly (phenylenediamines) film palladized aluminum electrodes,modified by Pt micro-particles:Comparison of permselectivity of the films for methanol[J].J.Electroanal.Chem.,2007,V601(1-2):53-62
    [13]Blanco-Lopez M.C.,Lobo-Castanon M.J.,Miranda-Ordiers A.J.,et al.Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes[J].Biosens.Bioelectron.,2003,V18(4):353-362
    [14]Mortimer R. J., Dyer A. L., Reynolds J. R., Electrochromic organic and polymeric materials for display applications [J]. Displays, 2006, V 27(1): 2-18
    [15]Kontturi K., Pentti P., Sundholm G., Polypyrrole as a model membrane for drug delivery [J]. J. Electroanal. Chem., 1998, V 453(1-2): 231-238
    [16]Chou M. Y., Leung M. K., Su Y. O., Electropolymerization of starburst triarylamines and their Application to electrochromism and electroluminescence [J]. Chem. Mater., 2004, V16(4): 654-661
    [17]Si P. C., Chi Q. J., Li Z. S., et al. Functional polythiophene nanoparticles: size-controlled electropolymerization and ion selective response [J]. J. Am. Chem. Soc, 2007, V129(13): 3888-3896
    [18] Malitesta C., Losito I., Zambonin P.G., Molecularly imprinted electrosynthesized polymers:new materials for biomimetic sensors [J]. Anal. Chem., 1999, V71(71): 1366-1370
    [19]Li C.Y., Voltammetric determination of tyrosine based on an L-serine polymer film electrode. Colloids and Surfaces B: biointerfaces, 2006, V 50(2): 147-151
    [20]Song J. C., Yang J., Hu X. M., Electrochemical determination of estradiol using a poly (Lserine) film-modified electrode [J]. J. Appl. Electrochem., 2008, V 38(6): 833-836
    [21]Minoura N., Tsukada M., Nagura M., Physico-chemical properties of silk fibroin membrane as a biomaterial [J]. Biomaterials, 1990, V 11(6): 430-434
    [22]Minoura N., Tsukada M., Nagura M., Fine structure and oxygen permeability of silk fibroin membrane treated with methanol [J]. Polymer, 1990, V 31(2): 265-269
    [23]Sukigara S., Gandhi M., Ayutsede J., Regeneration of bombyx mori silk by electrospinning-part 1: processing parameters and geometric properties [J]. Polymer,2003,V44(19): 5721-5727
    [24]Lovett M. L., Cannizzaro C. M., Novakovic G. V., et al. Gel spinning of silk tubes for tissue engineering [J]. Biomaterials, 2008, V 29(35): 4650-4657
    [25]Furuzono T., Ishihara K., Nakabayashi N., et al. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets [J]. Biomateials, 2000, V 21(4): 327-333
    [26]Ki C. S., Park S.Y., Kim H. J., et al. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications forbone regeneration [J]. Biotechnol.Lett., 2008, V30(3): 405-410
    [27]Furuzono T.,Taguchi T.,Kisshida A.,et al.Preparation and characterization of apatitc deposited on silk fabric using an alternate soaking process[J].J.Biomed.Mater.Res.,2000,V 50(3):344-352
    [28]Yan H.B.,Zhang Y.Q,Ma Y.L.,et al.Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evalution of a drug delievery system[J].J.Nano.Res.,200810.1007/s 11051-008-9549-y
    [29]Wenk E.,Wandrey A.J.,Merkle H.P.,et al.Silk fibroin spheres as a platform for controlled drug delivery[J].J.Control.Releas.,2008,V 132(1):26-34
    [30]Wu Y.H.,Shen Q.C.,Hu S.S.,Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film[J].Anal.Chim.Acta,2006,V 558(1-2):179-186
    [31]Yin H.S.,Ai S.Y.,Shi W.J.,et al.A novel hydrogen peroxide biosensor based on horseradish immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase[J].Sensors and Actuators B:Chemical,2009,V 137(2):747-753
    [32]Deinharnmer R.S.,Ho.M.,Anderegg J.W.et al.Electrochemical oxidation of amine-containing compounds:a route to the surface modification of glassy carbon electrodes[J].Langmuir,1994,V 10(4):1306-1313
    [33]Tanaka H.,Aramata A.,Aminopyridyl cation radical method for bridging between metal complex and glassy carbon:cobalt(Ⅱ) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO_2 electroreduction[J].J.Electroanal.Chem.,1997,V 437(1-2):29-35
    [34]Downard A.J.,Moharned A.,Suppression of protein adsorption at glassy carbon electrodes covalently modified with tetraethylene glycol diamine[J].Electroanalysis,1999,V 11(6):418-423
    [35]Takehara K.,Takemura H.,Ide Y.,Electrochemical studies of the terminally substituted alkanethiol monolayers formed on a gold electrode:Effects of the terminal group on the redox responses of Fe(CN)_3~(-6),Ru(NH_3)_3~(+6) and ferrocenedimethanol[J].Electrochim.Acta,1994,V39(6):817-822
    [36]Jones T.A.,Perez G.P,Johnson B.J,et al.Interactions between organized,surface-confined monolayers and liquid-phase probe molecules.3.Fundamental aspects of the binding interaction between charged probe molecules and organomercaptan monolayers [J].Langrnuir,1995,V 11(4):1318-1328
    [37]Liu J.Y.,Cheng L.,Liu B.F.,et al.Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films[J].Langrnuir,2000,V 16(19):7471-7476
    [38]Prodromidis M.I.,Veltsistas P.G.,Karayannis M.I.,Electrochemical study of chemically modified and screen-printed graphite electrodes with[SbVO(CHL)_2]Hex:application for the selective determination of sulfide[J].Anal.Chem.,2000,V72(17):3995-4002
    [39]Laviron E.,General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J].J.Electroanal.Chem.,1979,V101(1):19-28
    [40]BrowneW.R.,Feringa B.L,Making molecular machines work[J].Nature Nanotechnology,2006,V 1(1):25-35
    [41]吴璧耀,张道洪。分子开关研究进展[J].化工新型材料,2001,V 29(11):9-13
    [42]Yurke B.,Turberfield A.J.A.,DNA-fuelled molecular machine made of DNA[J].Nature,2000,V406(6796):605-608
    [43]Katz E.,Lioubashevsky O.,Electromechanics.of a redox-active rotaxane in a monolayer assembly on an electrode[J].J.Am.Chem.Soc.,2004,V 126(47):15520-15532
    [44]刘颖.基于表面分子开关的生物传感器新方法研究[D].上海:复旦大学,2007
    [45]Wang X.Y.,Dong P.,Yun W.,et al.A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labled molecular beacon aptamer[J].Biosens.Bioelectron.,2009,V24(11):3288-3292
    [46]Balzani V.,Credi A.,Controlled disassembling of self-assembling systems:Toward artificial molecular-level devices and machines[J].Proceedings of the National Academy of Sciences of the United States of America,2002,V 99(8):4814-4817
    [47]Balzani V.,Credi A.,Artificial molecular machines[J].Angew.Chem.Int.Ed.,2000,V39(19):3349-3341
    [48]Nirnez A.,Rotello V.M.,From enzyme to molecular devices.Exploring the interdependence of redox and molecular recognition[J].Accounts of Chemical Research,1999,V 32(1 ):44-52
    [49]Kaifer A.E.,Interplay between molecular recognition and redox chemistry[J].Accounts of Chemical Research,1999,V32(1):62-71
    [50]Balzani V.,Gomez L.M.Molecular machines[J].Accounts of Chemical Research,1998,V31(7):405-414
    [51]Kaji H.,Hasahimoto M.,Nishizawa M.,On-demand patterning of protein matrixes inside a microfluidic device[J].Anal.Chem.,2006,V 78(15):5469-5473
    [52]Wu Z.S.,Guo M.M.,Zhang S.B.,et al.Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling apatmers[J].Anal.Chem.,2007,V 79(7):2933-2939
    [53]Wang L.G.,Li Y.H.,Tien H.T.,Electrochemical transduction of an immunological reaction via s-BLMs[J].Bioelectrochem.Bioenerg.,1995,V36(2):145-147
    [54]Liu Y.,Mu L.,Liu B.H.,et al.Controlled switchable surface[J].Chem.Eur.J.,2005,V11(9):2622-2631
    [55]Liu Y.,Mu L.,Liu B.H.,et al.Controlled protein assembly on a switchable surface electronic supplementary information(ESI) available:preparation and characterization of LD-MHA-SAM-n and the assembled protein films[J].Chem.Commun.,2004,V4(10):1194-1195
    [56]Vaze A.,Rusling J.F.,Microemulsion-controlled reaction sites in biocatalytic films for electrochemical reduction of vicinal dibromides[J].Langrnuir,2006,V22(25):10788-10795
    [57]Koga T.,Nagaoka A.,Higashi N.,Fabrication of a switchable nano-surface composed of acidic and basic bloek-polypeptides[J].Colloids and surfaces A:Physiocochem.Eng.Aspects,2006,V284-285(15):521-527
    [58]Liu G D.,Wang J.,Wunschel D.S.,et al.Electrochemical pmteolytic beacon for detection of matrix metallopmteinase activities[J].J.Am.Chem.Soc.,2006,V128(38):12382-12383
    [59]Vieira S.N.,Ferreira L.F.,Franco D.L.,et al.Electrochemical modification of graphite electrodes with poly(4-aminophenol[J].Macromol.Symp.,2006,V245-246(1):236-242
    [60]Stauffer W.R.,Cui X.T.,Polypyrrole doped with 2 peptide sequences from laminin[J].Biomaterials,2006,V27(11):2405-2413
    [61]尤长城,张旻,刘育.超分子体系中的分子识别研究23.多胺修饰/β-环糊精及其铜配合物与萘衍生物的包结配位作用[J].化学学报,2000,V58(3):338-342
    [62]Catoire L.,Michon V.,Monville L.,et al.Dynamic behavior of a perfunctionalized β-cyclodextrin as probed by NMR and molecular modeling[J].Carbohydr.Res.,1997,V303(4):379-393
    [63]Saenger W.,Cyclodextrin inclusion cornpornds in research and industry[J].Angew.Chem.Int.Ed.,1980,V19(5):344-362
    [64]Szejtli J.,Introduction and general overview of cyclodextrin chemistry[J].Chem.Rev.,1998,V98(5):1743-1753
    [65]Milovic N.M.,Badjic J.D.,Kostic N.M.,et al.Conjugate of Palladium(Ⅱ) Complex and β-Cyclodextrin acts as a biomimetic peptidase[J].J.Am.Chem.Soc.,2004,V 126(3):696-697
    [66]Plackett D.V.,Holm V.K.,Johansen P.,et al.Characterization of L-polylacide and L-polylacide-polycapmlactone co-polymer films for use in cheese-packaging applications[J].Pack.Tech.Sci.,2007,V 19(1):1-24.
    [67]Wang H.D.,Chu L.Y.,Song H.,et al.Preparation and enantiomer separation characteristics of chitosan/β-cyclodextrin composite membranes[J].J.Mem.Sci.,2007,V297(1-2):262-270
    [68]Roger A.R.,Valentino J.S.,Pharmaceutical applications of clodextrins.2.in vivo drug delivery[J].J.Pharrn.Sci.,1996,V85(11):1142-1169
    [69]Lutka A.,Pawlaczyk J.,Inclusion complexation of coenzyme Q_(10) with clodextrins[J].Acta Pol.Pharm.,1995,V52(5):379-386
    [70]Roza A.,Michael A.,Gerold H.,et al.Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers[J].Water Res.,2007,V41(2):476-486
    [71]Bojana V.,Vera V.,Darja J.,β-Cyclodextrin as retarding reagent in polyacrylonitrile dyeing [J].Dyes and Pigments,2007,V74(3):642-646
    [72]靖波,陈晓,柴永存。环糊精与大分子组装(准)聚轮烷[J].化学进展,2006,V18(10):1361-1368
    [73]李南强,高小霞。钒极谱催化波的研究Ⅰ:钒磷酸盐体系中过氧化氢极谱催化波的研究[J].分析化学,1973,V1(4):40-42
    [74]董绍俊,张东波.环糊精包络物的循环伏安法研究[J].化学学报,1988,V46(4):335-339
    [75]姚超,张智宏,林西平.纳米技术与纳米材料(Ⅴ)-防晒化妆品中的纳米二氧化钛[J].日用化学工业,2003,V33(5):333-336
    [76]吴雪燕,高欣宝,姚恺,等.纳米二氧化钛改性弹药用涂料的研究[J].表面技术,2008,V37(6):27-29
    [77]陈丽,李喜宏,胡云峰,等.富士苹果PVC/TiO_2纳米保鲜膜研究[J].食品科学,2001,V22(7):60-62
    [78]朱融融,王世龙,陈小平,等.纳米二氧化钛对卵巢肿瘤细胞的选择性凋亡诱导作用[J].化学学报,2006,V64(21):2161-2164
    [79]何仕均,谢雷,王建龙,等.纳米TiO_2协同γ辐射处理造纸废水[J].清华大学学报(自然科学版),2008,V48(12):2096-2098,2109
    [80]Zhou H.,Gan X.,Wang J.,et al.Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano Titanium Dioxide[J].Anal.Chem.,2005,V77(18):6102-6104
    [81]Xu J.W.,Wang Y.F.,Li Z.H.,et al.Preparation and electrochemical properties of carbon-doped TiO_2 nanotubes as an anode material for lithium-ion batteries[J].Journal of Power Sources,2008,V175(2):903-908
    [82]Wang D.A.,Yu B.,Zhou F.,et al.Synthesis and characterization of anatase TiO_2nanotubes and their use in dye-sensitized solar cells[J].Materials Chemistry and Physics,2009,V113(2-3):602-606
    [83]Li Q.W.,Luo G.A.,Feng J.,Direct electron transfer for heme proteins assembled on nanocrystalline TiO_2[J].Electroanalysis,2001,V 13(5):359-363
    [84]Zhang Y.,He P.L.,Hu N.F.,Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes:direct electrochemistry and bioelectrocatalysis[J].Electrochim.Acta,2004,V49(12):1981-1988
    [85]Topoglidis E.,Cass A.E.G.,Regan B.O.,et al.Immobilisation and bioelectrochemistry of proteins on nanoporous TiO_2 and ZnO films[J].J.Electroanal.Chem.,2001,V517(1-2):20-27
    [86]Topoglidis E.,Cass A.E.G.,Gilardi G.,et al.Protein adsorption on nanocrystalline TiO_2films:an immobilization strategy for bioanalytical devices[J].Anal.Chem.,1998,V70(23):5111-5113
    [87]Zheng W.,Zheng Y.F.,Jin K.W.,et al.Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO_2 nanotube films[J].Talanta,2008,V74(5):1414-1419
    [88]Zhu Y.H.,Cao H.M.,Tang L.H.,et al.Immobilization of horseradish peroxidase in three-dimensional macropomus TiO_2 matrices for biosensor applications[J].Electrochim.Acta,2009,V54(10):2823-2827
    [89]Wu F.H.,Xu J.J.,Tian Y.,et al.Direct electrochemistry of horseradish peroxidase on TiO_2nanotube arrays via seeded-growth synthesis[J].Biosens.Bioelectron.,2008,V24(2):198-203
    [90]Kongdee A.,Bechtold T.,Teufel L.,Modification of cellulose fiber with silk sericin[J].J.Appl.Poly.Sci.,2005,V96(4):1421-1428
    [91]Ahn J.S.,Choi H.K.,Lee K.H.,et al.Novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of silk sericin [J]. J. Appl. Poly.Sci., 2001,V80(2):274-280
    [1]Gauthier N.,Mandon N.,Renault S.,et al.The Acrolepiopsis assectella silk cocoon:kairomonal function and chemical characterization[J].J.Insect Phys.,2004,V50(11):1065-1074
    [2]Yoo M.K.,Kweon H.Y.,Lee K.G.,et al.Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer[J].Int.J.Biol.Macromol.,2004,V34(4):263-270
    [3]Wang Y.Z.,Blasioli D.J.,Kim H.J.,et al.Cartilage tissue engineering with silk scaffolds and human articular chondrocytes[J].Biomaterials,2006,V27(25):4434-4442
    [4]Hofmann S.,Wong P.,Foo C.T.,et al.Silk fibroin as an organic polymer for controlled drug delivery[J].J.Control.Rlease.,2006,V111(1-2):219-227
    [5]Hino R.,Tomita M.,Yoshizato K.,The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor[J].Biomaterials,2006,V27(33):5715-5724
    [6]Min B.M.,Jeong L.,Nam Y.S.,et al.Formation of silk fibroin matrices.with different texture and its cellular response to normal human keratinocytes[J].Int.J.Biol.Macromol.,2004,V34(5):281-288
    [7]Palecek E.,Determination of nanogram quantities of osmium-labeled nucleic acids by stripping(inverse) voltammetry[J].Anal.Biochem.,1983,V 132(2):236-242
    [8]Brezina M.,Zuman P.,Polarographische studie der reaktionen des 2:3-dimercaptopropanols(bal)mit schwermetallen und einigen oxydationsmitteln polarography in medicine[J].Biochem.Pharm.,1957,V1(4):289-380
    [9]Havran L.,Billova S.,Palecek E.,Electroactivity of avidin and strept avidin.Avidin signals at mercury and carbon electrodes respond to biotin binding[J].Electroanalysis,2004,V16(13-14):1139-1148
    [10]Tomschik M.,Havran L.,Fojta M.,et al.Constant current chronopotentiometric stripping analysis of bioactive peptides at mercury and carbon electrodes[J].Electroanalysis,1998,V10(6):403-409
    [11]Heyrovsky M.,Early polarographic studies on proteins[J].Electroanalysis,2004,V16(13-14):1067-1073
    [12]Ostatna V.,Uslu B.,Dogan B.,et al.Native and denatured bovine serum albumin D.C. polarography,stripping voltammetry and constant current chronopotentiometry[J].J.Electroanal.Chem.,2006,V593(1-2):172-178
    [13]Masarik M.,Cahova K,Kizek R.,et al.Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS[J].Anal.Bioanal.Chem.,2007,V388(1):259-270
    [14]Palecek E.,Ostatna V.,Electroactivity of nonconjugated proteins and peptides.Towards electroanalysis of all proteins[J].Electroanalysis,2007,V19(23):2383-2403
    [15]Um I.C.,Kweon H.Y.,Lee K.G.,et al.The role of formic acid in solution stability and crystallization of silk protein polymer[J].Int.J.Biol.Macromol.,2003,V33(4-5):203-213
    [16]Um I.C.,Kweon H.Y.,Park Y.H.,et al.Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid[J].Int.J.Biol.Macromol.,2001,V29(2):91-97
    [17]Min B.M.,Jeong L.,Nam Y.S.,et al.Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes[J].Int.J.Biol.Macromol.,2004,V34(5):223-238
    [18]Izuka E.,Yang J.T.,The disordered and β-conformations of silk fibroin in solution [J].Biochemistry,1968,V7(6):2218-2228
    [19]Bard A.J.,Faulkner L.R.,Electrochemical Methods:Fundmentals and Apllication[M].John & Sons Inc.,1980:223
    [20]Reynauld J.A.,Malfoy B.,Bere A.,The electrochemical oxidation of three proteins:RNAase A,bovine serum albumin and concanavalin A at solid electrodes[J].Bioelectrochem.Bioenerg.,1980,V 7(3):595-606
    [21]Brabe V.,Electrochemical oxidation of nucleic acids and proteins at graphite electrode.qualitative aspects[J].Bioelectrochem.Bioenerg.,1980,V7(1):69-82
    [22]Cai X.,Rivas G.,Farias M.A.P.,et al.Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations[J].Anal.Chim.Acta,1996,V332(1):49-57
    [23]Brabec V.,Momstein V.,Oxidation of deoxyribonucleic acid at carbon electrodes.The effect of the quality of the deoxyribonucleic acid sample[J].Bioelectro.Bioenerg.,1980, V7(4): 793-805
    [24]Seves A., Romano M., Maifreni T., et al. The microbial degradation of silk: a laboratory investigation [J]. Biodeterior. Biodegrad., 1998, V42(4): 203-211
    [25]Lee B. M., Buck-Koehntop B. A., Martinez-Yamout M. A., et al. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: Solution structure reveals a solvent-exposed β-Sheet and zinc binuclear cluster [J]. J. Mol. Biol., 2007,V371(5): 1274-1289
    [26]Zhou C. Z., Confalomieri F., Medina N., et al. Fine organization of Bombyx mori fibroin heavy chain gene [J]. Nucle. Acid Res., 2000, V28(12): 2413-2419
    [27]Dash R., Mukherjee S., Kundu S. C., Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, antheraea mylitta [J].Int. J. Biol. Macromol., 2006, V38(3-5): 255-258
    [28]Cho K.Y., Moon J. Y., Lee Y. W., et al. Preparation of self-assembled silk sericin nanoparticles [J]. Int. J. Bio. Macromol., 2003, V32(3); 36-42
    [29]Masakazu T., Kazuhisa T., Hideyuki Y., et al. The silk protein, sericin, protects against cell death caused by acute serum deprivation in insect cell culture [J]. Biotech. Lett.,2003,V25(21): 1805-1809
    [30]Siqin Z., Noriyuki Y, Masahiro S., et al. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse [J]. J. Photochem. Photobio. B: Biology, 2003, V71(1-3): 11-17
    [31]Kato N., Sato S., Yamanaka A., et al. Silk protein sericin inhibits lipid peroxidation and tyrosinase activity [J]. Biosci. Biotechnol. Biochem., 1998, V62(1): 145-147
    [32]Wu J. H., Wang Z., Xu S.Y., Preparation and characterization of sericin powder extracted from silk industry wastewater [J]. Food Chem., 2007, V103(4): 1255-1262
    [33]Zhang Y.Q., Applications of natural silk protein sericin in biomaterials [J]. Biotechno.Adv., 2002,V20(2):91-100
    [34]Wu J. H., Wang Z., Xu S.Y., Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater [J]. Process Biochem., 2008, V43(5): 480-487
    [35]Gao H.W., Jiang J., Yu L. Q., Study on spectrometric probe of protein solution with piodochlorophosphonazo as adsorbate by mPASC technique [J]. The Analyst, 2001, V126(4): 528-533
    [36]Guo Z. X., Hao Y. M., Cong X., et al. Application of the dibromo hydroxy phenyl fluorone-molybdenum (VI) complex to the sensitive spectrophotometric determination of protein [J]. Anal. Chim. Acta, 2000, V403(1-2): 225-233
    [37]You W. W., Hanglang R. P., Ryan D. K., et al. 3-(4-Carboxybenzoyl)quinoline-2-carboxaldehyde, a reagent with broad dynamic range for the assay of proteins and lipoproteins in solution [J]. Anal. Biochem., 1997, V244(2): 277-282
    [38]Ma C. Q., Li K. A., Tong S. Y., Determination of proteins by fluorescence quenching of erythrosin B [J]. Anal. Chim. Acta, 1996, V333(1-2): 83-88
    [39]Ma C. Q, Li K. A, Tong S. Y., Microdetermination of proteins by Rayleigh light scattering technique with acid green 25 [J]. Anal. Chim. Acta, 1997, V338(3): 255-260
    [40]Cao Q. E., Ding Z. T., Fang R. B., et al. A sensitive and rapid method for the determination of proteins by the resonance Rayleigh light-scattering technique with pyrogallol red [J]. The Analyst, 2001,V126(8): 1444-1448
    [41]Zhang M. L., Sheng G. P., Yu H. Q., Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method [J]. Water Res., 2008, V42(13): 3464-3472
    [42]Cerda M. F., Mendez E., Obal G., et al. Voltammetric studies of the interaction between Re(V) complexes and proteins [J]. J. Inorg. Biochem., 2004, V98(2): 238-244
    [43] Sun W., Jiao K., Wang X. L., et al. Electrochemical studies on the interaction of protein with Beryllon III and its analytical application [J]. Electroanalysis, 2005, V17(2): 162-168
    [44] Sun W., Jiao K., Linear sweep voltammetric determination of protein based on its interaction with Alizarin Red S [J]. Talanta, 2002, V56(6): 1073-1080
    [45] Sun W., Han J.Y., Jiao K., et al. Studies on the interaction of protein with acid chrome blue K by electrochemical method and its analytical application [J]. Bioelectrochemistry,2006, V68(1): 60-66
    [46] Li C.Y., Construction of a novel sensor based on electropolymerization of carmine for voltammetric determination of 4-nitrophenol [J]. J. Appl. Poly. Sci., 2007, V103(5):3271-3277
    [47]Bclitz H.D.,Grosch W.,Schicbcrlc P.,Food Chemistry[M].4th ed Berlin Heidelberg:Springer,2009:8
    [48]刘笑笑,王立世,张水锋,等.对苯二酚在多壁碳纳米管修饰电极上的电化学行为研究[J].分析测试学报,2007,V26(1):24-28
    [49]李南强,闵静。钪-胭脂红酸非电活性络合物的极谱研究[J].分析化学,1989,V17(4):346-349
    [1]李振亚,赵敏政.钌(Ⅱ)-氯化亚锡-孔雀绿超高灵敏显色反应体系的研究-离心光度法测定钌[J].分析化学,1989,V17(11):966-969
    [2]李建国,乔艳,魏永前。氯胺T氧化孔雀绿动力学光度法测定食品中痕量碘[J].分析化学,1999,V27(9):1072-1075
    [3]李振亚,赵敏政.锇-氯化亚锡-孔雀绿高灵敏离子缔合显色反应的研究与应用[J].分析化学,1989,V17(2):118-121
    [4]郭荣,刘薇娅,范国康孔雀绿与CTAB胶束的相互作用[J].物理化学学报,2001,V17(12):1062-1066
    [5]Leah T.,Henryk S.,Govind R.,et al.Lifetime-based sensing of glucose using energy transfer with a long lifetime donor[J].Anal.Biochem.,1997,V250(1):102-108
    [6]Lyle A.,Alan M.J.,Triphenyimethane dyes containing the N-methy-N-N- methy-N-2,2,2-trifluoroethyl group[J].Dyes and Pigments,1999,V42(1):65-70
    [7]Mafia C.T.D.,Orlando F.F.,Emerson V.A.,et al.Determination of phosphate in natural water employing a monosegrnented flow system with simultaneous multiple injection[J].Talanta,2004,V62(3):469-475
    [8]Caius B.Z.,Ralph N.A.,The anodic oxidation of triphenylmethane dyes[J].J.Am. Chem.Sot.,1962,V84(16):3207-3208
    [9]Caius B.Z.,Ralph N.A.,The anodic oxidation of triphenylmethane dyes[J].J.Am.Chem.Soc.,1964,V86(9):1666-1670
    [10]Khaled E.,Hassan H.N.A.,Barsoum B.N.,et al.Kinetic catalytic determination of trace nitrite based on the oxidation of malachite green with bromate monitored potentiometrically using coated-wire electrodes[J].Electroanalysis,2001,V13(4):338-341
    [11]Hu X.,Jiao K.,Sun W.,et al.Electrochemical and spectroscopic studies on the interaction of malachite green with DNA and its application[J].Electroanalysis,2006,V18(6):613-620
    [12]Yi H.C.,Qu W.Y.,Huang W.S.,Electrochemical determination of malachite green using a multi-wall carbon nanotube modified glassy carbon electrode[J].Microchim.Acta,2008,V160(1):291-296
    [13]王梅,高作宁.孔雀石绿在CPB胶束介质中的电化学行为[J].应用化学,2007,V24(10):1140-1144
    [14]张旭麟,王宗花,王晓彤,等.聚孔雀石绿功能化碳纳米管修饰电极的电化学研究[J].青岛大学学报(工程技术版),2007,V22(2):84-87
    [15]Anson F.C.,Application of potentiostatic current integration to the study of the adsorption of cobalt (Ⅲ)-(Ethylenedinitrilo(tetraacetate) on mercury electrodes[J].Anal.Chem.,1964,V36(4):932-934
    [16]Anson F.C.,Innovations in the study of adsorbed reactants by chronocoulometry[J].Anal.Chem.,1966,V38(1):54-57
    [17]Zanoni M.V.B.,Cameiro P.A.,Duarte E.S.,et al.Determination of the vinylsulphoneazo dye,remazol brilliant orange 3R,by cathodic stripping voltammetry[J].Anal.Chim.Acta,1999,V385(1-3):385-392
    [18]Paula F.S.,Cioletti A.G.,Filho J.F.,Electrochemical studies of the reduction of biollogically active arylazoxy compounds.Relationship between redox potentials and molluscicidal[J].J.Electroanal.Chem.,2003,V544(28):25-34
    [19]Menek N.,Karaman Y.,Polarographic and voltammetric investigation of 8-hydroxy-7-(4-sulfo- 1-naphthylazo)-5-quinoline sulfonic acid[J].Dyes and Pigments,2006,V67(1):9-14
    [20]Bechtold T.,Gutmann R,Burtscher E.,Cyclic voltammetric study of anthraquinone-2-sul fonate in the presence of acid yellow[J].Electrochim.Acta,1997,V42(23-24):3483-3487
    [21]Barek J.,Fogg A.G.,Moreria J.C.,Polarographic and voltammetric determination of selected triazine-based azo dyes with different reactive groups[J].Anal.Chim.Acta,1996,V320(1):31-42
    [22]杨新玮。国内外酸性染料的进展[J].染料与染色,2006,V43(2):1-6
    [23]何瑾馨.染料化学[M].北京:中国纺织出版社,2004:114
    [24]刘传银,李学强,陆光汉.碳糊电极在有机物电化学分析中的应用[J].化学研究与应用,2005,V17(4):443-447
    [25]周学良.精细化学品大全(染料卷)[M]。杭州:浙江科学技术出版社,2000:14
    [26]Khosravi A.,Moradian S.,Gharanjig K.,et al.Investigation of synthesis and dyeing properties of some azonaphthalimide disperse dyestuffs for the dyeing of polyester fibres [J].Iranian Polymer,2005,V14(7):667-679
    [27]Dixit B..C.,Patel H.M.,Desai D.J.,Synthesis and application of new mordent and disperze azo dyes based on 2,4-dihydroxybenzophenone[J].J.Serbian Chem.Soc.,2007,V72(1):119-127
    [28]Patel K.J.,Patel M.P.,Patel R.G.,Synthesis and studies of coloured polyesters derived from bis-azo diols[J].Indian J.Chem.Tech.,2007,V7(6):307-311
    [29]Trofimov B.A.,Schmidt E.Y.,Mikhaleva A.I.,et al.2-Arylazo-1-vinylpyrroles:A novel promising family of reactive dyes[J].Europ.J.Org.Chem.,2006,V2006(17):4021-4033
    [30]Towns A.D.,Developments in azo disperse dyes derived from heterocyclic diazo components[J].Dyes and Pigments,1999,V42(1):3-8
    [31]Hallas G.,Towns A.D.Dyes derived from aminothiophenes--Part 3.Application of some disperses dyes derived from 2-aminothiophenes to hydrophobic fibres[J].Dyes and Pigments,1997,V33(3):215-228
    [32]Necati M,Yeliz K.,polarographic and voltammetric investigation of 8-hydraxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonicacid[J]Dyes and Pigments,2005,V67(2).9-14
    [33]Ruyffelaere F.,Nardello V.,Schmidt R.,et al.Photosensitizing properties and reactivity of aryl azo naphtol dyes towards singlet oxygen[J].J.Photochem.Photobio.A:Chem.,2006,V183(1-2):98-105
    [34]Kuznetsov V.V.,Sheremet S.V.,Sensing elements of optical sensors based on polystyrene with covalently immobilized reagents[J].J.Anal.Chem.,2007,V62(3):270-278
    [35]Ohlsson J.,Wolpher H.,Hagfeldt A.,et al.New dyes for solar cells based on nanostructured semiconducting metal oxides:synthesis and characterisation of ruthenium(Ⅱ) complexes with thiol-substituted ligands[J].J.Photochem.Photobio.A:Chem.,2002,V148(1-3):41-48
    [36]Steven W.M.,Fiona S.M.,Anita C.J.,et al.Two-photon-induced photoisomerization of an azo dye[J].Chem.Mater.,2005,V17(8):2059-2062
    [37]Alaa S.,Aziz A.E.,Tarek H.A.,et al.The first example of cationic iron-coordinated polyaromatic ethers and thioethers with azo dye-functionalized side chains[J].Macromolecular,2002,V35(24):8929-8932
    [38]Zhang D.Q.,Zhang M.,Liu Z.Q.,et al.Highly selective colorimetric sensor for cysteine and homocysteine based on azo derivatives[J].Tetrahedron Lett.,2006,V47(39):7093-7096
    [39]Makedonski P.,Brandes M.,Grahn W.,et al.Synthesis of new kinds of reactive azo dyes and their application for fibre-optical pH-measurements[J].Dyes and Pigments,2004,V61(2):109-119
    [40]Georgiou D.,Melidis P.,Aivasidis A.,Use of a microbial sensor inhibition effect of azo-reactive dyes on activated sludge[J].Biopro.Biosys.Engineer.,2002,V25(2):79-83
    [41]Ojala W.H.,Sudbeck E.A.,Lu L.K.,et al.Complexes of lysine,histidine,and arginine with sulfonated azo dyes:Model systems for understanding the biomolecular recognition of glycosaminoglycans byproteins[J].J.Am.Chem.Soc.,1996,V118(9):2131-2142
    [42]Ikawa T.,Hoshino F.,Matsuyama T.,et al.Molecular-shape imprinting and immobilization of biomolecules on a polymer containing azo dye[J].Langmuir,2006,V22(6):2747-2753
    [43]Kuwabara T.,Nakajima H.,Nanasawa M.,et al.Color change indicators for molecules using methyl red-modified cyclodextrins[J].Anal.Chem.,1999,V71(14):2844-2849
    [44]Dragan S.,Schwarz S.,Surface modification by self-assembled polycation/azo dye multilayers[J].Macromol.Symp.,2002,V181(1):155-166
    [45]Delorme N.,Bardeau J.F.,Nicolas D.,et al.New Route for the elaboration of polyolefin surfaces bearing azo molecules[J].Langmuir,2003,V19(13):5318-5322
    [46]Rehan H.H.,Electrosynthesis of conducting polymer films from the azo dye methoxy red [J].J.Appl.Electrochem.,2000,V30(8):945-951
    [47]Bigg T.,Judd J.,Electrochemical monitoring of water remediation by metallic iron[J].J.Appl.Electrochem.,2001,V13(12):1399-1344
    [48]Jain R.,Bhargava M.,Sharma N.,Electrochemical studies on a pharmaceutical azo dye:Tartrazine[J].Indus.Engineer.Chem.Res.,2003,V42(2):243-247
    [49]Jayadevappa H.,Shivaraj Y.,Mahadevan K.M.,et al.Electrochemical behaviour of some industrially important azonaphthol derivatives at glassy carbon electrode[J].Indian J.Chem.Tech.,2006,V13(3):269-274
    [50]Menek N.,Karaman Y.,Polarographic and voltammetric investigation of 6'-butoxy-2,6-diamino-3,3'-azodipyridine[J].Dyes and Pigments,2006,V68(3):101-108
    [51]Ucar M.,Solak A.O.,Menek N.,Electrochemical behavior of 2'-halogenated derivatives of N,N-Dimethyl-4-aminoazobenzene at mercury electrode[J].Anal.Sci.,2002,V18(9):997-1002
    [52]Chirakadze C.C.,Geliashvili Z.E.,Razmadze T.O.,Immobilization of thienyl-containing azo pigments on silica gel surface[J].Russian J.Org.Chem.,2001,V37(7):1013-1016
    [53]Peng X.,Wang J.Electrochemical behaviour of azo dyes in acid/ethanol media[J].Dyes and Pigments,1992,V20(1):73-81
    [54]Mandic Z.,Nigovic B.,Simunic B.,The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids[J].Electrochim.Acta,2004,V49(4):607-615
    [55]Kolev S.D.,Coo L.D.,Cardwell T.G,et al.Study of the reduction of 1-(2'-pyridylazo)-2-naphthol in ethanol water solutions[J].Electroanalysis,2000,V12(11):841-845
    [56]Fernandez M.A.,Yudi L.M.,Baruzzi A.M.,Kinetic analysis of a two-phase EC mechanism with concomitant lateral Processes[J].Electroanalysis,2004,V16(6):491-496
    [57]Killa H.M.,Mabrouk E.M.,El-Fattah A.A.A.,et al.Electrochemical behavior of some azo-compounds of 4-aminoantipyrine derivatives using cyclic voltammetry and dc-polarography[J].Anal.Lea.,1991,V24(2):257-285
    [58]Ghoneim M.M.,El-Desoky H.S.,Amer S.A.,et al.Electroreduction and spectrophotometric studies of some pyrazolyl-azo dyes derived from 3-acethlamino-1-phenyl-5-pyrazolone in buffered solutions[J].Dyes and Pigments,2008,V77(3):493-501
    [59]Uwe S.,Dierk K.,Eckhard S.,Electrochemical investigations on the analysis of reactive dyes with monoazo-and monoanthraquinone structures[J].Fresenius J.Anal.Chem.,1990,V338(7):824-830
    [60]上海市纺织工业局染料应用编写组.染料应用手册(下册)[M].北京:纺织工业出版社出版,1989:182
    [61]宋金萍,郭玉晶,双少敏.活性艳橙K-7R的电化学行为及其与环糊精相互作用的研究[J].山西大学学报(自然科学版),2009,V32(1):104-107
    [62]Li Y.Q.,Guo Y.J.,Pan J.H.,Electrochemical study on reactive red 15 and its interaction with Cyelodextrins[J].Indus.Pheno.Macro.Chem.,2006,V56(1-2):237-241
    [63]陈昌国,鲁蕴甜,王丽等.葸醌类染料的电化学行为研究[J].化学研究,2007,V18(2):87-89
    [64]李有琴,潘景浩,郭玉晶,等.活性艳红K-2G的电化学行为及分析应用[J].山西大学学报(自然科学版),2005,V28(4):400-403
    [65]Rio A.I.D.,Molina J.,Bonastre J.,et al.Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I.Reactive Orange 4solutions[J].Chemosphere,V75(10):1329-1337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700