用户名: 密码: 验证码:
木质纤维素底物对纤维素酶吸附脱附规律及预处理同步制备纳米纤维素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用凝胶排阻法和荧光蛋白吸附法测定了纤维素酶对不同程度角质化处理和不同预处理方法得到的两组木质纤维素底物中纤维素的可及性,研究了纤维素可及性与酶解效率的关系。利用紫外光谱法测定了木质纤维素底物对纤维素内切酶的吸附。凝胶排阻法以及TGC荧光蛋白吸附法测定了纤维素酶对木质纤维素底物中纤维素的可及性发现两者有很好的线性相关性。不同程度角质化的底物的酶解效率与纤维素酶对纤维素的可及性也呈线性关系。90%的酶解效率是由木质纤维素底物中纤维素酶可及的孔洞吸附纤维素酶水解贡献的;木质纤维素底物表面积吸附的纤维素酶对纤维素可及性以及酶解效率的贡献有限。预处理底物吸附的纤维素酶的吸附量与底物中纤维素的可及性呈线性关系。
     利用紫外光谱法适时定量地测定了纤维素内切酶在木质纤维素混合液中的吸附、脱附以及重吸附,定义了纤维素内切酶吸附和脱附的竞争因子、准结合和脱附常数、纤维素酶的吸附和脱附容量以及纤维素酶结合的可逆性和纤维素酶的可回收率。木质纤维素底物的化学成分和结构对纤维素的吸附、脱附有重要影响。漂白桉木浆对内切纤维素酶的吸附基本可逆;而纤维素酶在木质素含量高的底物上的吸附几乎不可逆。木素的存在对纤维素酶的吸附有极大的促进作用,底物中木素种类、结构的差异使得对纤维素酶的吸附量也不同。木素的存在不利于纤维素酶循环利用。角质化的底物中纤维细胞发生了不可逆的塌陷,纤维素酶对纤维素的可及性下降,增加了纤维素酶结合的可逆性,利于纤维素酶的循环利用。增加洗脱温度或者调高pH促进纤维素酶从底物上脱附,利于纤维素酶结合的可逆性和纤维素酶的可回收率。研究结果为纤维素酶的循环利用奠定了一定的理论基础。
     利用漂白针叶木浆,同步制取了可发酵糖和纳米纤丝纤维素。生物质制备生物燃料的瓶颈在于酶解过程中木质纤维素底物的顽抗性,彻底将底物中纤维素转化为可溶性糖很困难。木质纤维素底物中的“快糖”水解完,即终止酶解反应。结晶度高的纤维素残渣留在酶解液中。用高压微射流均质机处理分离的纤维残渣制备纳米纤丝纤维素,实现了同步生产生物燃料和纳米纤维素。实验优化了纤维素酶/内切纤维素酶的用量,探讨了酶解条件与纤维残渣得率及制备的纳米纤丝纤维素性能的关系,包括纳米纤丝纤维素的结晶度、聚合度、不透明度和机械强度。
     强酸水解漂白桉木浆同步制备了纳米微晶纤维素和纳米纤丝纤维素。优化的酸水解条件下,原料的损失很少,纳米纤维素的总得率很高。文献中优化的酸水解制备纳米纤维素的条件较为剧烈,大量的纤维素被水解成葡萄糖,难以回收。本文采用较为缓和的水解条件,避免了纤维素过度降解,制备了纳米微晶纤维素,而纤维残渣经过简单的分离,便可回收用于纳米纤丝纤维素的制备。纳米微晶纤维素与纤维残渣共存范围很窄,因此同步制备纳米微晶纤维素和纳米纤丝纤维素对水解条件要求苛刻。缓和条件下制备的纳米微晶纤维素的得率与和文献中优化结果相当,同时额外得到大量的纤维残渣。纤维残渣上引入了大量的磺酸基团,通过简单机械的处理,在能耗很小的情况下,便可制备成具有很好光学性能和机械强度的纳米纤丝纤维素。在优化条件下,纳米微晶纤维素和纳米纤丝纤维素的总得率为84%
     以商品漂白浆为原料,利用超微粒粉碎机,分离制备了纳米纤丝纤维素。采用扫描电镜、透射电镜等手段详细检测纳米纤维素的微米、纳米尺寸及形貌变化。超微粒粉碎机碾磨浆料产生了两种主要结构:(1)高度弯曲、自然螺旋,无扭结的骨架结构;(2)相互交织、扭曲,结构复杂的层状结构。这两种结构形成了如树状、网状、花状结构以及单根纳米纤丝纤维素等其它具体结构。经过长时间的碾磨,浆料中发现棒状结构的纳米微晶纤维素。根据其形态推测纳米微晶纤维素源于未扭结自然状态的骨架纳米纤维素。超微粒粉碎机制备纳米纤丝纤维素的能耗约为5-30kWh/kg。离心分离证实,随着碾磨能耗的增加,小尺寸的纳米纤维素的比例增加。然而,即便在碾磨后期,仍然能观察到较大尺寸的纤维结构。
     纳米纤维素来源广泛,强度高,具有很好的可降解性,作为潜在的结构材料,具有广泛用途。纳米纤维素材料的性能受纳米纤维素本身的性质影响。采用扫描电镜、透射电镜以及原子力显微镜等现代测试技术深入地研究了各种方法制备的纳米微晶纤维素和纳米纤丝纤维素。纳米微晶纤维素为棒状纳米晶须结构;纳米纤丝纤维素则一般为网状结构。采用了多种便携式的商品粒度仪快速表征了纳米纤维素。依据离心分离以及布朗运动制备的两种仪器快速表征纳米纤维素得到较好的结果,实验重复性也很好。这两种仪器非常适合半定量快速表征非网状结构的纳米微晶纤维素。
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by dryingthe never dried pretreated sample and a set of differently pretreated lodgepople pine substrateswere evaluated using solute exclusion and protein adsorption methods. Direct measurementsof cellulase adsorption onto cellulose surface of the set of pretreated substrates were alsocarried out using an in-situ UV-Vis spectrophotometric technique. The celluloseaccessibilties measured by the solute exclusion and a CBM-containing green fluorescentprotein (TGC) adsorption methods correlate well for both sets of samples. The substrateenzymatic digestibilities of the hornified substrates are proportional to the measured celluloseaccessibilities. Approximately over90%of substrate enzymatic digestibility was contributedby the accessible pore surfaces of the hornified substrates, suggesting that the substrateexternal surface plays a minor role contributing to cellulose accessibility and substrateenzymatic digestibilities. The cellulose accessibilities of the pretreated substrates arecorrelated well with the amounts of cellulase adsorbed. The substrate enzymaticdigestibilities directly are correlated with the amounts of adsorbed cellulase.
     Quantitative kinetic modeling and in-situ and temporally resolved measurements ofadsorption, desorption, and re-adsorption of a commercial endoglucanase in lignocellulosicsuspensions was conducted. The study defined a cellulase adsorption and desorptioncompetition parameter, a pseudo rate of binding and desorption, binding and desorptioncapacity, as well as cellulase binding reversibility and recyclability. The results indicate thatboth substrate chemical and physical structures play important roles in cellulase binding anddesorption. Binding of a commercial cellulase onto a cellulosic substrate was reversible.Bindings to two different lignocellulosic substrates were almost irreversible. While lignin andits structure positively affect binding capacity to substrate, they negatively affect cellulaserecyclability. Collapsing of substrate pores reduce cellulose accessibility and cellulase bindingcapacity and increase reversibility and recyclability. Increasing temperature and pH increasecellulase desorption and increase binding reversibility and capacity. This study lays thefoundation for developing effective cellulase recycling strategies.
     Integrating preparation of biofuel and cellulose nanofibrils as a co-product was carriedout using softwood pulp. One key barrier to converting woody biomass to biofuel through thesugar platform is the enzymatic cellulose saccharification because of the strong recalcitranceof the crystalline cellulose. Cellulase cocktails were optimized for integrated preparation ofsugar and cellulose nanofibrils. Enzymatic hydrolysis of substrates was quenched as long as all fast sugar was degraded. Cellulosic substrate left with high crystallinity was separatedfrom hydrolysate and utilized as staring material for cellulose nanofibrils production. Highpress microfluidizer was used to liberate cellulose nanofibrils from cellulosic residual. Therelationships between enzymatic hydrolysis conditions, cellulosic residual yield, andproperties of cellulose nanofibrils, including degree of polymerization, crystallinity andmechanical performance were investigated.
     The potential of simultaneously recovering cellulosic solid residues and producingcellulose nanocrystals by strong sulfuric acid hydrolysis to achieve near zero cellulose losswas demonstrated in the3rd chapter. A set of slightly milder acid hydrolysis conditions thanthat considered as “optimal” were used to significantly minimize the degradation of celluloseinto soluble sugars that cannot be economically recovered, but resulted in cellulosic solidresidues that is easily recoverable through conventional centrifuge. It was found that thewindow for simultaneous recoveries of cellulosic solid residues and cellulose nanocrystals instrong acid hydrolysis was extremely narrow. The cellulose nanocrystals yield may not bereduced compared with that obtained under the “optimal condition”. The maximal totalcellulosic solid yield can be improved to approximately84%using a bleach eucalyptus pulpwith cellulose content of90%. The resultant cellulosic solid residues contain sulfonate groupsthat facilitate subsequent mechanical nano-fibrillation to nanowhiskers, a potential high valuenanocellulosic material for a variety of applications. The resultant cellulose nanofibrils filmsexhibit excellent optical and mechanical properties.
     Cellulose nanofibrils from a bleached eucalyptus pulp were isolated using a commercialstone grinder. SEM and TEM images were used to reveal morphological development ofcellulose nanofibrils at micro and nano scales, respectively. Two major structures wereidentified:(1) highly kinked, naturally helical, and untwisted fibrils that serve as backbones ofcellulose nanofibrils networks,(2) entangled, less distinctively kinked (or curled) and twistednanofibril “meniscus” structure. These two major structures forme different types of cellulosenanofibrils structures such as “trees”,“net”,“flower”, single fibril, etc. Prolonged fibrillationcan break the nanofibrils into nanowhiskers from the untwisted fibrils with high crystallinity.Energy input for mechanical fibrillation is on the order of20-30kWh/kg. The graduatereduction in network size of cellulose nanofibrils with time is only in a statistical sense whichmay be used to fractionate cellulose nanofibrils.
     The potential utility of wood nanocellulose as a building block of a variety of highlyfunctional and high value materials and products warrants a complete understanding of itsmorphological properties. The last chapter is intended to provide a relatively complete morphological picture of several kinds of wood nanocellulose including cellulose nanocrystalsand cellulose nanofibrils produced using most commonly used processes. TEM imaging aswell as AFM analysis were applied to provide visual examinations of several nanocellulosesamples. It was found that cellulose nanocrystals are mainly rodlike nano-whiskers asexpected and cellulose nanofibrils are fibril network particles. Commercial particle sizinginstruments were evaluated for quick particle sizing of these samples. The results suggest thata centrifuge and a Brownian motion based instruments show good repeatability in particlesizing. Both instruments are well suited for semi-quantitative characterizing non networkparticles even with large aspect ratios such as cellulose nanocrystals, but require further studybefore using for characterizing network particles such as cellulose nanofibrils.
引文
[1] British Petroleum Company. BP Statistical Review of World Energy2011[R]. London:BP plc,2011.
    [2] Balat M., Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J].Appl Energ,2009,86(11):2273-2282.
    [3] Boden, T.A., G. Marland, and R.J. Andres.2009. Global, Regional, and National Fossil-Fuel CO2Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge NationalLaboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi10.3334/CDIAC/00001.
    [4] Streets D., Waldhoff S. Present and future emissions of air pollutants in China::: SO2,NOx, and CO [J]. Atmos Environ,2000,34(3):363-374.
    [5] Kamat P. V. Meeting the clean energy demand: Nanostructure architectures for solarenergy conversion [J]. The Journal of Physical Chemistry C,2007,111(7):2834-2860.
    [6] Sherif S. A., Barbir F., Veziroglu T. Wind energy and the hydrogen economy-review ofthe technology [J]. Sol Energy,2005,78(5):647-660.
    [7] Chalk S. G., Miller J. F. Key challenges and recent progress in batteries, fuel cells, andhydrogen storage for clean energy systems [J]. J Power Sources,2006,159(1):73-80.
    [8] Tilman D., Hill J., Lehman C. Carbon-negative biofuels from low-input high-diversitygrassland biomass [J]. Science,2006,314(5805):1598-1600.
    [9] Perlack R. D., Wright L.L., Turhollow A.F., et al. Biomass as feedstock for a bioenergyand bioproducts industry: the technical feasibility of a billion-ton annual supply [R]. OakRidge National Laboratory. ORNL/TM-2006/66.2005.
    [10] Wyman C. E. What is (and is not) vital to advancing cellulosic ethanol [J]. TrendsBiotechnol,2007,25(4):153-157.
    [11] Chisti Y. Biodiesel from microalgae [J]. Biotechnol Adv,2007,25(3):294-306.
    [12] Levin D. B., Pitt L., Love M. Biohydrogen production: prospects and limitations topractical application [J]. Int J Hydrogen Energ,2004,29(2):173-185.
    [13] Chheda J. N., Huber G. W., Dumesic J. A. Liquid‐Phase Catalytic Processing ofBiomass‐Derived Oxygenated Hydrocarbons to Fuels and Chemicals [J]. AngewandteChemie International Edition,2007,46(38):7164-7183.
    [14] Moran J. L., Alvarez V. A., Cyras V. P., et al. Extraction of cellulose and preparation ofnanocellulose from sisal fibers [J]. Cellulose,2008,15(1):149-159.
    [15] Ragauskas A. J., Williams C. K., Davison B. H., et al. The path forward for biofuels andbiomaterials [J]. Science,2006,311(5760):484-489.
    [16] Mani S., Tabil L. G., Sokhansanj S. Effects of compressive force, particle size andmoisture content on mechanical properties of biomass pellets from grasses [J]. Biomassand Bioenergy,2006,30(7):648-654.
    [17] Devi L., Ptasinski K. J., Janssen F. J. J. G. A review of the primary measures for tarelimination in biomass gasification processes [J]. Biomass and Bioenergy,2003,24(2):125-140.
    [18] Elliott D., Beckman D., Bridgwater A., et al. Developments in direct thermochemicalliquefaction of biomass:1983-1990[J]. Energ Fuel,1991,5(3):399-410.
    [19] Czernik S., Bridgwater A. Overview of applications of biomass fast pyrolysis oil [J].Energ Fuel,2004,18(2):590-598.
    [20] Mohan D., Pittman Jr C. U., Steele P. H. Pyrolysis of wood/biomass for bio-oil: a criticalreview [J]. Energ Fuel,2006,20(3):848-889.
    [21] Mojovi L., Nikoli S., Rakin M., et al. Production of bioethanol from corn mealhydrolyzates [J]. Fuel,2006,85(12):1750-1755.
    [22] Pimentel D., Patzek T. W. Ethanol production using corn, switchgrass, and wood;biodiesel production using soybean and sunflower [J]. Natural Resources Research,2005,14(1):65-76.
    [23] Fatih Demirbas M. Biorefineries for biofuel upgrading: a critical review [J]. Appl Energ,2009,86(0): S151-S161.
    [24] Robertson G. H., Offeman R. D., Cao T. K., et al. Ethanol in biorefining and dehydrationof agricultural materials: energy, capital cost, and product quality implications [J].Biofuels, Bioproducts and Biorefining,2011,5(1):37-53.
    [25] Mosier N., Wyman C., Dale B., et al. Features of promising technologies forpretreatment of lignocellulosic biomass [J]. Bioresource Technol,2005,96(6):673-686.
    [26] Zhao X., Zhang L., Liu D. Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose [J]. Biofuels,Bioproducts and Biorefining,2012, doi:10.1002/bbb.1350.
    [27] Zhao X., Zhang L., Liu D. Biomass recalcitrance. Part I: the chemical compositions andphysical structures affecting the enzymatic hydrolysis of lignocellulose [J]. Biofuels,Bioproducts and Biorefining,2012, doi:10.1002/bbb.1331.
    [28] Galbe M., Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanolproduction [J]. Adv Biochem Eng Biotechnol,2007,108(0):41-65.
    [29] Zhu W., Zhu J. Y., Gleisner R., et al. On energy consumption for size-reduction and yieldfrom subsequent enzymatic sacchrification of pretreated lodgepole pine [J]. BioresourceTechnol,2010,101(8):2782-2792.
    [30] Jeoh T., Ishizawa C. I., Davis M. F., et al. Cellulase digestibility of pretreated biomass islimited by cellulose accessibility [J]. Biotechnol Bioeng,2007,98(1):112-122.
    [31] Kumar L., Chandra R., Saddler J. N. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at lowenzyme loadings.[J]. Biotechnol Bioeng,2011,108(10):2300-2311.
    [32] Zhu J. Y., Pan X. J., Wang G. S., et al. Sulfite Pretreatment (SPORL) for RobustEnzymatic Saccharification of Spruce and Red Pine [J]. Bioresource Technol,2009,100(8):2411-2418.
    [33] Li X., Jiang Y., Shuai L., et al. Sulfonated copolymers with SO3H and COOH groups forthe hydrolysis of polysaccharides [J]. J Mater Chem,2012,22(4):1283-1289.
    [34] Shuai L., Pan X. Hydrolysis of cellulose by cellulase-mimetic solid catalyst [J]. EnergyEnviron Sci,2012,5(5):6889-6894.
    [35] Hou X.-D., Smith T. J., Li N., et al. Novel renewable ionic liquids as highly effectivesolvents for pretreatment of rice straw biomass by selective removal of lignin [J].Biotechnol Bioeng,2012, doi:10.1002/bit.24522.
    [36] Ohkuma M. Termite symbiotic systems: efficient bio-recycling of lignocellulose [J].Appl Microbiol Biotechnol,2003,61(1):1-9.
    [37] Scharf M. E., Karl Z. J., Sethi A., et al. Multiple levels of synergistic collaboration intermite lignocellulose digestion [J]. PloS one,2011,6(7): e21709.
    [38] Ke J., Laskar D. D., Gao D., et al. Advanced biorefinery in lower termite-effect ofcombined pretreatment during the chewing process [J]. Biotechnol Biofuels,2012,5(1):11.
    [39] Menon V., Rao M. Trends in bioconversion of lignocellulose: Biofuels, platformchemicals&biorefinery concept [J]. Prog Energ Combust,2012,38(4):522-550.
    [40] Wang Q. Q., He Z., Zhu Z., et al. Evaluations of cellulose accessibilities oflignocelluloses by solute exclusion and protein adsorption techniques [J]. BiotechnolBioeng,2012,109(2):381-389.
    [41] Tu M., Zhang X., Paice M., et al. The potential of enzyme recycling during thehydrolysis of a mixed softwood feedstock [J]. Bioresource Technol,2009,100(24):6407-6415.
    [42] Liu H., Zhu J. Y., Chai X. S. In situ, rapid, and temporally resolved measurements ofcellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry.[J].Langmuir,2011,27(1):272-278.
    [43] Wang Q. Q., Zhu J. Y., Hunt C. G., et al. Kinetics of adsorption, desorption, and re-adsorption of a commercial endoglucanase in lignocellulosic suspensions [J]. BiotechnolBioeng,2012,109(8):1965-1975.
    [44] Carrard G., Koivula A., Soderlund H., et al. Cellulose-binding domains promotehydrolysis of different sites on crystalline cellulose [J]. Proc Natl Acad Sci U S A,2000,97(19):10342-10347.
    [45] Irwin D. C., Spezio M., Walker L. P., et al. Activity studies of eight purified cellulases:specificity, synergism, and binding domain effects [J]. Biotechnol Bioeng,1993,42(8):1002-1013.
    [46] Din N., Gilkes N. R., Tekant B., et al. Non–hydrolytic disruption of cellulose fibres bythe binding domain of a bacterial cellulase [J]. Nat Biotechnol,1991,9(11):1096-1099.
    [47] Zhang Y. H., Lynd L. R. Toward an aggregated understanding of enzymatic hydrolysisof cellulose: noncomplexed cellulase systems [J]. Biotechnol Bioeng,2004,88(7):797-824.
    [48] Lu Y., Yang B., Gregg D., et al. Cellulase adsorption and an evaluation of enzymerecycle during hydrolysis of steam-exploded softwood residues [J]. Appl BiochemBiotech,2002,98(1):641-654.
    [49] Tu M., Pan X., Saddler J. N. Adsorption of cellulase on cellulolytic enzyme lignin fromlodgepole pine [J]. J Agric Food Chem,2009,57(17):7771-7778.
    [50] Tu M., Chandra R. P., Saddler J. N. Recycling cellulases during the hydrolysis of steamexploded and ethanol pretreated Lodgepole pine [J]. Biotechnol Prog,2007,23(5):1130-1137.
    [51] Tu M., Chandra R. P., Saddler J. N. Evaluating the distribution of cellulases and therecycling of free cellulases during the hydrolysis of lignocellulosic substrates [J].Biotechnol Prog,2007,23(2):398-406.
    [52] Ooshima H., Burns D. S., Converse A. O. Adsorption of cellulase from Trichodermareesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid withexplosive decompression [J]. Biotechnol Bioeng,1990,36(5):446-452.
    [53] Gao D., Chundawat S. P. S., Uppugundla N., et al. Binding characteristics ofTrichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), anddilute-acid pretreated lignocellulosic biomass [J]. Biotechnol Bioeng,2011,108(8):1788-1800.
    [54] Qi B., Chen X., Su Y., et al. Enzyme adsorption and recycling during hydrolysis of wheatstraw lignocellulose [J]. Bioresource Technol,2011,102(3):2881-2889.
    [55] Du R., Su R., Li X., et al. Controlled adsorption of cellulase onto pretreated corncob bypH adjustment [J]. Cellulose,2012,19(2):371-380.
    [56] D.Y.Ryu D., Kim C., Mandels M. Competitive adsorption of cellulase components andits significance in a synergistic mechanism [J]. Biotechnol Bioeng,1984,26(5):488-496.
    [57] Ohgren K., Bura R., Saddler J., et al. Effect of hemicellulose and lignin removal onenzymatic hydrolysis of steam pretreated corn stover [J]. Bioresource Technol,2007,98(13):2503-2510.
    [58] Lynd L. R., Weimer P. J., van Zyl W. H., et al. Microbial Cellulose Utilization:Fundamentals and Biotechnology [J]. Microbiol Mol Biol R,2002,66(3):506-577.
    [59] Jung H., Wilson D. B., Walker L. P. Binding and reversibility of Thermobifida fuscaCel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterialmicrocrystalline cellulose [J]. Biotechnol Bioeng,2003,84(2):151-159.
    [60] Tomme P., Warren R., Gilkes N. Cellulose hydrolysis by bacteria and fungi [J]. AdvMicrob Physiol,1995,37(0):1-81.
    [61] Tomme P., Tilbeurgh H., Pettersson G., et al. Studies of the cellulolytic system ofTrichoderma reesei QM9414[J]. Eur J Biochem,1988,170(3):575-581.
    [62] Teeri T. T., Reinikainen T., Ruohonen L., et al. Domain function in Trichoderma reeseicellobiohydrolases [J]. J Biotechnol,1992,24(2):169-176.
    [63] Kristensen J. B., Thygesen L. G., Felby C., et al. Cell-wall structural changes in wheatstraw pretreated for bioethanol production [J]. Biotechnol Biofuels,2008,1(5):1-9.
    [64] Rollin J. A., Zhu Z., Sathitsuksanoh N., et al. Increasing cellulose accessibility is moreimportant than removing lignin: A comparison of cellulose solvent-based lignocellulosefractionation and soaking in aqueous ammonia.[J]. Biotechnology and Bioenerineering,2011,108(1):22-30.
    [65] Yan B.X., Sun Y.Q. Circular Dichroism Studies on Conformation of Cellobiohydrolaseand Endoglucanase from Trichoderma pseudokiningii S-38: Effects of pH and LigandBinding [J]. J Protein Chem,1997,16(2):107-111.
    [66] Pingali S. V., O'Neill H. M., McGaughey J., et al. Small angle neutron scattering revealspH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I:implications for enzymatic activity [J]. J Biol Chem,2011,286(37):32801-32809.
    [67] Tarkow H., Feist W. C. A mechanism for improving the digestibility of lignocellulosicmaterials with dilute alkali and liquid ammonia [J]. Adv Chem Ser,1969,95(1):197-218.
    [68] Kim D., Hong Y. Ionic strength effect on adsorption of cellobiohydrolases I and II onmicrocrystalline cellulose [J]. Biotechnol Lett,2000,22(16):1337-1342.
    [69] Otter D. E., Munro P. A., Scott G. K., et al. Desorption of Trichoderma reesei cellulasefrom cellulose by a range of desorbents [J]. Biotechnol Bioeng,1989,34(3):291-298.
    [70] Zhu Z., Sathitsuksanoh N., Percival Zhang Y. H. Direct quantitative determination ofadsorbed cellulase on lignocellulosic biomass with its application to study cellulasedesorption for potential recycling [J]. Analyst,2009,134(11):2267-2272.
    [71] Yang B., Wyman C. E. BSA treatment to enhance enzymatic hydrolysis of cellulose inlignin containing substrates [J]. Biotechnol Bioeng,2006,94(4):611-617.
    [72] Liu H., Zhu J. Y., Fu S. Effects of lignin-metal complexation on enzymatic hydrolysis ofcellulose [J]. J Agric Food Chem,2010,58(12):7233-7238.
    [73] Liu H., Zhu J. Y. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate inunwashed sulfite-pretreated aspen using metal salts [J]. Bioresource Technol,2010,101(23):9120-9127.
    [74] Girard D. J., Converse A. O. Recovery of cellulase from lignaceous hydrolysis residue[J]. Appl Biochem Biotech,1993,39(1):521-533.
    [75] Linder M., Teeri T. T. The cellulose-binding domain of the major cellobiohydrolase ofTrichoderma reesei exhibits true reversibility and a high exchange rate on crystallinecellulose [J]. Proceedings of the National Academy of Sciences,1996,93(22):12251-12255.
    [76] Moran-Mirabal J. M., Bolewski J. C., Walker L. P. Reversibility and binding kinetics ofThermobifida fusca cellulases studied through fluorescence recovery afterphotobleaching microscopy [J]. Biophys Chem,2011,155(1):20-28.
    [77] Otter D., Munro P., Scott G., et al. Elution of Trichoderma reesei cellulase from celluloseby pH adjustment with sodium hydroxide [J]. Biotechnol Lett,1984,6(6):369-374.
    [78] Rodrigues A. C., Leit o A. F., Moreira S., et al. Recycling of cellulases in lignocellulosichydrolysates using alkaline elution [J]. Bioresource Technol,2012,110(8):526-533.
    [79] Rad B. L., Yazdanparast R. Desorption of the cellulase systems of Trichoderma reeseiand a Botrytis sp. from Avicel [J]. Biotechnol Tech,1998,12(9):693-696.
    [80] Seo D.-J., Fujita H., Sakoda A. Effects of a non-ionic surfactant, Tween20, onadsorption/desorption of saccharification enzymes onto/from lignocelluloses andsaccharification rate [J]. Adsorption,2011,17(5):813-822.
    [81] Huber G. W., Chheda J. N., Barrett C. J., et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates [J]. Science,2005,308(5727):1446-1450.
    [82] Syverud K., Chinga-Carrasco G., Toledo J., et al. A comparative study of Eucalyptus andPinus radiata pulp fibres as raw materials for production of cellulose nanofibrils [J].Carbohyd Polym,2011,84(3):1033-1038.
    [83] Iwamoto S., Abe K., Yano H. The effect of hemicelluloses on wood pulp nanofibrillationand nanofiber network characteristics [J]. Biomacromolecules,2008,9(3):1022-1026.
    [84] Nakagaito A. N., Yano H. The effect of morphological changes from pulp fiber towardsnano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiberbased composites [J]. Applied Physics A: Materials Science and Processing,2004,78(4):547-552.
    [85] Uetani K., Yano H. Nanofibrillation of Wood Pulp Using a High-Speed Blender [J].Biomacromolecules,2011,12(2):348–353.
    [86] Stelte W., Sanadi A. R. Preparation and characterization of cellulose nanofibers from twocommercial hardwood and softwood pulps [J]. Ind Eng Chem Res,2009,48(24):11211-11219.
    [87] Okita Y., Saito T., Isogai A. TEMPO-mediated oxidation of softwood thermomechanicalpulp [J]. Holzforschung,2009,63(5):529-535.
    [88] Besbes I., Vilar M. R., Boufi S. Nanofibrillated cellulose from Alfa, Eucalyptus and Pinefibres: Preparation, characteristics and reinforcing potential [J]. Carbohyd Polym,2011,86(3):1198-1206.
    [89] Hassan M. L., Hassan E. A., Oksman K. N. Effect of pretreatment of bagasse fibers onthe properties of chitosan/microfibrillated cellulose nanocomposites [J]. J Mater Sci,2010,46(6):1732-1740.
    [90] Hassan M. L., Mathew A. P., Hassan E. A., et al. Effect of pretreatment of bagasse pulpon properties of isolated nanofibers and nanopaper sheets [J]. Wood Fiber Sci,2010,42(3):362-376.
    [91] Hassan E. A., Hassan M. L., Oksman K. Improving Bagasse Pulp Paper Sheet Propertieswith Microfibrillated Cellulose Isolated from Xylanase-Treated Bagasse [J]. Wood FiberSci,2011,43(1):76-82.
    [92] Hassan M. L., Mathew A. P., Hassan E. A., et al. Nanofibers from bagasse and rice straw:process optimization and properties [J]. Wood Sci Technol,2010,46(1-3):193-205.
    [93] Alemdar A., Sain M. Isolation and characterization of nanofibers from agriculturalresidues-Wheat straw and soy hulls [J]. Bioresource Technol,2008,99(6):1664-1671.
    [94] Montano-Leyva B., Rodriguez-Felix F., Torres-Chavez P., et al. Preparation andcharacterization of durum wheat (Triticum durum) straw cellulose nanofibers byelectrospinning [J]. J Agric Food Chem,2011,59(3):870-875.
    [95] Siqueira G., Tapin-Lingua S., Bras J., et al. Morphological investigation of nanoparticlesobtained from combined mechanical shearing, and enzymatic and acid hydrolysis ofsisal fibers [J]. Cellulose,2010,17(6):1147-1158.
    [96] Jonoobi M., Harun J., Tahir P. M., et al. Physicochemical characterization of pulp andnanofibers from kenaf stem [J]. Mater Lett,2011,65(7):1098-1100.
    [97] Ifuku S., Nogi M., Abe K., et al. Preparation of chitin nanofibers with a uniform width asalpha-chitin from crab shells [J]. Biomacromolecules,2009,10(6):1584-1588.
    [98] Fan Y., Saito T., Isogai A. Preparation of chitin nanofibers from squid pen beta-chitin bysimple mechanical treatment under acid conditions [J]. Biomacromolecules,2008,9(7):1919-1923.
    [99] Iwamoto S., Kai W., Isogai A., et al. Elastic modulus of single cellulose microfibrilsfrom tunicate measured by atomic force microscopy [J]. Biomacromolecules,2009,10(9):2571-2576.
    [100] Postek M. T., Vladár A., Dagata J., et al. Development of the metrology and imaging ofcellulose nanocrystals [J]. Measurement Science and Technology,2011,22(2):024005.
    [101] Olsson R., Samir M. A. S. A., Salazar-Alvarez G., et al. Making flexible magneticaerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates [J].Nature nanotechnology,2010,5(8):584-588.
    [102] Habibi Y., Lucia L. A., Rojas O. J. Cellulose nanocrystals: Chemistry, self-assembly,and applications [J]. Chem Rev,2010,110(6):3479-3500.
    [103] Siró I., Plackett D. Microfibrillated cellulose and new nanocomposite materials: areview [J]. Cellulose,2010,17(3):459-494.
    [104] Moon R. J., Martini A., Nairn J., et al. Cellulose nanomaterials review: structure,properties and nanocomposites [J]. Chem Soc Rev,2011,40(7):3941-3994.
    [105] Xhanari K., Syverud K., Chinga-Carrasco G., et al. Reduction of water wettability ofnanofibrillated cellulose by adsorption of cationic surfactants [J]. Cellulose,2010,18(2):257-270.
    [106] Nogi M., Iwamoto S., Nakagaito A. N., et al. Optically Transparent Nanofiber Paper [J].Adv Mater,2009,21(16):1595-1598.
    [107] Siró I., Plackett D., Hedenqvist M., et al. Highly transparent films fromcarboxymethylated microfibrillated cellulose: The effect of multiple homogenizationsteps on key properties [J]. J Appl Polym Sci,2011,119(5):2652-2660.
    [108] Liu A., Walther A., Ikkala O., et al. Clay nanopaper with tough cellulose nanofibermatrix for fire retardancy and gas barrier functions [J]. Biomacromolecules,2011,12(3):633-641.
    [109] Jin H., Kettunen M., Laiho A., et al. Superhydrophobic and SuperoleophobicNanocellulose Aerogel Membranes as Bioinspired Cargo Carriers on Water and Oil [J].Langmuir,2011,27(5):1930-1934.
    [110] Wu C. N., Saito T., Fujisawa S., et al. Ultrastrong and High Gas-BarrierNanocellulose/Clay Layered Composites [J]. Biomacromolecules,2012,16(3):1927-1932.
    [111] Peng Y., Gardner D. J., Han Y. Drying cellulose nanofibrils: in search of a suitablemethod [J]. Cellulose,2011,19(1):91-102.
    [112] Beck S., Bouchard J., Berry R. Dispersibility in water of dried nanocrystalline cellulose[J]. Biomacromolecules,2012,13(5):1486-1494.
    [113] Kolakovic R., Laaksonen T., Peltonen L., et al. Spray-dried nanofibrillar cellulosemicroparticles for sustained drug release [J]. Int J Pharm,2012,430(1-2):47-55.
    [114] Kolakovic R., Peltonen L., Laaksonen T., et al. Spray-dried cellulose nanofibers asnovel tablet excipient [J]. AAPS Pharm SciTech,2011,12(4):1366-1373.
    [115] Eyholzer C., Bordeanu N., Lopez-Suevos F., et al. Preparation and characterization ofwater-redispersible nanofibrillated cellulose in powder form [J]. Cellulose,2009,17(1):19-30.
    [116] Zhao X., Zhou Y., Liu D. Kinetic model for glycan hydrolysis and formation ofmonosaccharides during dilute acid hydrolysis of sugarcane bagasse [J]. BioresourceTechnol,2011,105(3):160–168.
    [117] Oksman K., Etang J. A., Mathew A. P., et al. Cellulose nanowhiskers separated from abio-residue from wood bioethanol production [J]. Biomass and Bioenergy,2011,35(1):146-152.
    [118] Laine C., Wang X., Tenkanen M., et al. Changes in the fiber wall during refining ofbleached pine kraft pulp [J]. Holzforschung,2004,58(3):233-240.
    [119] Dong X. M., Revol J., Gray D. G. Effect of microcrystallite preparation conditions onthe formation of colloid crystals of cellulose [J]. Cellulose,1998,5(1):19-32.
    [120] Mielenz J. R. Ethanol production from biomass: technology and commercializationstatus [J]. Curr Opin Microbiol,2001,4(3):324-329.
    [121] Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: areview [J]. Bioresour Technol,2002,83(1):1-11.
    [122] Lynd L. R., Laser M. S., Bransby D., et al. How biotech can transform biofuels.[J]. NatBiotechnol,2008,26(0):169-172.
    [123] Luo X., Zhu J. Y. Effects of drying-induced fiber hornification on enzymaticsaccharification of lignocelluloses.[J]. Enzyme Microb Tech,2011,48(1):92-99.
    [124] Li T. Q., Haggkvist M., Odberg L. Porous structure of cellulose fibers studied by Q-space NMR imaging.[J]. Langmuir,1997,13(13):3570-3574.
    [125] Maloney T. C., Stenius P., Paulapuro H. Hydroation and swelling of pulp fibersmeasured by differential scanning calorimetry.[J]. Nordic Pulp Paper Research J,1998,13(1):31-36.
    [126] Felby C., Thygesen L. G., Kristensen J. B., et al. Cellulose-water interactions duringenzymatic hydrolysis as studied by time domain NMR.[J]. Cellulose,2008,15(5):703-710.
    [127] Stone J. E., Scallan A. M. The effect of component removal upon the porous structureof the cell wall of wood. II. Swelling in water and the fiber saturation point [J]. Tappi J,1967,50(10):496-501.
    [128] Hui L., Liu Z., Ni Y. Characterization of high-yield pulp (HYP) by the solute exclusiontechnique [J]. Bioresource Technol,2009,100(24):6630-6634.
    [129] Beecher J. F., Hunt C. G., Zhu J. Y. Tools for the characterization of biomass at thenanometer scale.[M] Lucia L A, Rojas O J. The Nanoscience and Technology ofRenewable Biomaterials. Singapore; Blackwell Publishing.2009:61-80.
    [130] Brunauer S., Emmet P. H., Teller E. Adsorption of gases in multimolecular layers.[J]. JAm Chem Soc,1938,60(2):309-319.
    [131] Chen Y., Wang Y., Wan J., et al. Crystal and pore structure of wheat straw cellulosefiber during recycling.[J]. Cellulose,2010,17(2):329-338.
    [132] Esteghlalian A. R., Bilodeau M., Mansfield S. D., et al. Do enzymatic hydrolyzabilityand Simons' stain reflect the changes in the accessibility of lignocellulosic substrates tocellulase enzymes?[J]. Biotechnol Prog,2001,17(6):1049-1054.
    [133] Chandra R., Ewanick S., Hsieh C., et al. The characterization of pretreatedlignocellulosic substrates prior to enzymatic hydrolysis, part1: a modified Simons'staining technique [J]. Biotechnol Prog,2008,24(5):1178-1185.
    [134] Hong J., Ye X., Zhang Y. H. P. Quantitative determination of cellulose accessibility tocellulase based on adsorption of a nonhydrolytic fusion protein containing CBM andGFP with its applications [J]. Langmuir,2007,23(25):12535-12540.
    [135] Zhu Z., Sathitsuksanoh N., Vinzant T., et al. Comparative study of corn stoverpretreated by dilute acid and cellulose solvent-based lignocellulose fractionation:Enzymatic hydrolysis, supramolecular structure, and substrate accessibility [J].Biotechnol Bioeng,2009,103(4):715-724.
    [136] Luo X. L., Zhu J. Y., Gleisner R., et al. Effect of Wet Pressing-induced FiberHornification on Enzymatic Saccharification of Lignocelluloses.[J]. Cellulose,2011,18(4):1055-1062.
    [137] Sewalt V. J. H., Ni W. T., Jung H. G., et al. Lignin impact on fiber degradation:Increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum)stems reduced in lignin content [J]. J Agr Food Chem,1997,45(5):1977-1983.
    [138] Mansfield S. D., Mooney C., Saddler J. N. Substrate and enzyme characteristics thatlimit cellulose hydrolysis [J]. Biotechnol Progr,1999,15(5):804-816.
    [139] Qing Q., Yang B., Wyman C. E. Xylooligomers are strong inhibitors of cellulosehydrolysis by enzymes.[J]. Bioresource Technol,2010,101(24):9624-9630.
    [140] Eriksson T., B rjesson J., Tjerneld F. Mechanism of surfactant effect in enzymatichydrolysis of lignocellulose [J]. Enzyme Microb Tech,2002,31(3):353-364.
    [141] Zheng Y., Pan Z., Zhang R., et al. Non-ionic surfactants and non-catalytic proteintreatment on enzymatic hydrolysis of pretreated creeping wild ryegrass [J]. ApplBiochem Biotech,2008,146(1):231-248.
    [142] Liao H., Zhang X. Z., Rollin J. A., et al. A minimal set of bacterial cellulases forconsolidated bioprocessing of lignocellulose [J]. Biotechnology Journal,2011,6(11):1409-1418.
    [143] Hong J., Ye X, Wang Y., et al. Bioseparation of recombinant cellulose binding module-protein by affinity adsorption on an ultra-high-capacity cellulosic adsorbent [J]. AnalChim Acta,2008,621(2):193-199.
    [144] Jayme G. Milkro-quellungsmessungen an Zellstoffenn [J]. Papier-Fabr/WochblPapierfabr,1944,6:187-194.
    [145] Stone J. E., Scallan A. M. Influence of drying on the pore structures of the cell wall;proceedings of the3rd Fundamental Research Symposium, Cambridge, UK, F,1965
    [C]. Pulp and Paper Fundamental Research Society.
    [146] Laivins G. V., Scallan A. M. The mechanism of hornification of wood pulps;proceedings of the10th Fundamental Research Sympsoium, Oxford, UK, F,1993[C].Pulp and Paper Fundamental Research Society.
    [147] Fernandes Diniz J. M. B., Gil M. H., Castro J. A. A. M. Hornification-Its origin andinterpretation in wood pulps [J]. Wood Sci Technol,2004,37(6):489-494.
    [148] Cowling E. B., Kirk T. K. Properties of cellulose and lignocellulosic materials assubstrates for enzymatic conversion processes.[C]. Biotechnology and BioengineeringSymposium,1976,(6):95-123.
    [149] Zhu J. Y., Pan X. J. Woody Biomass Pretreatment for Cellulosic Ethanol Production:Technology and Energy Consumption Evaluation [J]. Bioresource Technol,2010,101(13):4992-5002.
    [150] Hart P. W., Waite D. M., Thibault L., et al. Refining energy reduction and pulpcharacteristic modification of alkaline peorxide mechanical pulp (APMP) throughenzyme application.[J]. Tappi J,2009,9(5):19-25.
    [151] Henriksson M., Henriksson G., Berglund L. A., et al. An environmentally friendlymethod for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers[J]. Eur Polym J,2007,43(8):3434-3441.
    [152] P kk M., Ankerfors M., Kosonen H., et al. Enzymatic Hydrolysis Combined withMechanical Shearing and High-Pressure Homogenization for Nanoscale CelluloseFibrils and Strong Gels [J]. Biomacromolecules,2007,8(6):1934-1941.
    [153] Sabourin M. J., Hart P. W. Enhanced Fiber Quality of Black Spruce (Picea mariana)Thermomechanical Pulp Fiber Through Selective Enzyme Application.[J]. Ind EngChem Res,2010,49(12):5945-5951.
    [154] Spence K. L., Venditti R. A., Rojas O. J., et al. A comparative study of energyconsumption and physical properties of microfibrillated cellulose produced by differentprocessing methods [J]. Cellulose,2011,18(4):1097-1111.
    [155] Zhu J. Y., Sabo R., Luo X. Integrated production of nano-fibrillated cellulose andcellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers [J]. Green Chem,2011,13(5):1339-1344.
    [156] Mes Hartree M., Hogan C., Saddler J. Recycle of enzymes and substrate followingenzymatic hydrolysis of steam pretreated aspen wood [J]. Biotechnol Bioeng,1987,30(4):558-564.
    [157] Wu J. C., Ng K. R., Chong J., et al. Recovery of cellulases by adsorption/desorptionusing cation exchange resins [J]. Korean J Chem Eng,2010,27(2):469-473.
    [158] Zhu J. Y., Gleisner R., Scott C. T., et al. High titer ethanol production fromsimultaneous enzymatic saccharification and fermentation of aspen at high solids: Acomparison between SPORL and dilute acid pretreatments.[J]. Bioresource Technol,2011,102(19):8921-8929.
    [159] Kalia S., Vashistha S. Surface Modification of Sisal Fibers (Agave sisalana) UsingBacterial Cellulase and Methyl Methacrylate [J]. J Polym Environ,2011,20(1):142-151.
    [160] Hilden L., Valjamae P., Johansson G. Surface character of pulp fibres studied usingendoglucanases [J]. J Biotechnol,2005,118(4):386-397.
    [161] Gehmayr V., Sixta H. Pulp properties and their influence on enzymatic degradability [J].Biomacromolecules,2012,13(3):645-651.
    [162] Lee J. M., Heitmann J. A., Pawlak J. J. Local morphological and dimensional changesof enzyme-degraded cellulose materials measured by atomic force microscopy [J].Cellulose,2007,14(6):643-653.
    [163] K pcke V., Ibarra D., Ek M. Increasing accessibility and reactivity of paper grade pulpby enzymatic treatment for use as dissolving pulp [J]. Nord Pulp Pap Res J,2008,23(4):363-368.
    [164] Janardhnan S., Sain M. Bio-Treatment of Natural Fibers in Isolation of CelluloseNanofibres: Impact of Pre-Refining of Fibers on Bio-Treatment Efficiency andNanofiber Yield [J]. J Polym Environ,2011,19(3):615-621.
    [165] Hayashi N., Kondo T., Ishihara M. Enzymatically produced nano-ordered shortelements containing cellulose Iβ crystalline domains [J]. Carbohyd Polym,2005,61(2):191-197.
    [166] Janardhnan S., Sain M. M. Targeted disruption of hydroxyl chemistry and crystallinityin natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment [J].BioResources,2011,6(2):1242-1250.
    [167] Satyamurthy P., Jain P., Balasubramanya R. H., et al. Preparation and characterizationof cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis [J].Carbohyd Polym,2011,83(1):122-129.
    [168] Janardhnan S., Sain M. Isolation of cellulose microfibrils-An enzymatic approach [J].BioResources,2006,1(2):176-188.
    [169] Mazumder B. B., Ohtani Y., Cheng Z., et al. Combination treatment of kenaf bast fiberfor high viscosity pulp [J]. J Wood Sci,2000,46(5):364-370.
    [170] Alexander W., Goldschmid O., Mitchell R. Relation of intrinsic viscosity to cellulosechain length. Degree of polymerization range below400[J]. Industrial&EngineeringChemistry,1957,49(8):1303-1306.
    [171] Agarwal U. P., Reiner R. S., Ralph S. A. Cellulose I crystallinity determination usingFT–Raman spectroscopy: univariate and multivariate methods [J]. Cellulose,2010,17(4):721-733.
    [172] Wegner T. H., Jones E. P. A fundamental review of the relationships betweennanotechnology and lignocellulosic biomass [M] Lucia L A, Rojas O J. TheNanoscience and Technology of Renewable Biomaterials. John Wiley and Sons.2009:1-41.
    [173] Eichhorn S. J., Dufresne A., Aranguren M., et al. Review: Current international researchinto cellulose nanofibres and nanocomposites.[J]. J Mater Sci,2010,45(1):1-33.
    [174] Klemm D., Kramer F., Moritz S., et al. Nanocelluloses: A New Family of Nature-BasedMaterials [J]. Angewandte Chemie International Edition,2011,50(24):5438-5466.
    [175] Abe K., Iwamoto S., Yano H. Obtaining cellulose nanofibers with a uniform width of15nm from wood [J]. Biomacromolecules,2007,8(10):3276-3278.
    [176] Chakraborty A., Sain M., Kortschot M. Cellulose microfibrils: A novel method ofpreparation using high shear refining and cryocrushing [J]. Holzforschung,2005,59(1):102-107.
    [177] Chen W., Yu H., Liu Y., et al. Individualization of cellulose nanofibers from woodusing high-intensity ultrasonication combined with chemical pretreatments [J].Carbohyd Polym,2011,83(4):1804-1811.
    [178] Saito T., Hirota M., Tamura N., et al. Individualization of nano-sized plant cellulosefibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions[J]. Biomacromolecules,2009,10(7):1992-1996.
    [179] Krishnamachari P., Hashaikeh R., Tiner M. Modified cellulose morphologies and itscomposites; SEM and TEM analysis [J]. Micron,2011,42(8):751-761.
    [180] Bai W., Holbery J., Li K. A technique for production of nanocrystalline cellulose with anarrow size distribution [J]. Cellulose,2009,16(3):455-465.
    [181] Brown A. M. Nonlinear regression analysis of data using a spreadsheet [J]. AmericanBiotechnology Laboratory,2001,19(11):58-60.
    [182] Fine S. Sonic sheet testing: its use in the paper industry [J]. Tappi J,1990,73(7):169-172.
    [183] Stamm A. J. Wood and Cellulose Science [M]. New York: The Ronald Press Company,1964.
    [184] Catesson A.-M. Specific characters of vessel primary walls during the early stages ofwood differentiation.[J]. Biol Cell,1989,67(2):221-226.
    [185] Iwamoto S., Nakagaito A. N., Yano H. Nano-fibrillation of pulp fibers for theprocessing of transparent nanocomposites [J]. Applied Physics A,2007,89(2):461-466.
    [186] Battista O. A. Hydrolysis and crystallization of cellulose.[J]. Industry and EngineeringChemistry,1950,42(3):502-507.
    [187] Mukherjee S. M., Woods H. J. X-ray and electron microscope studies of the degradationof cellulose by sulphuric acid.[J]. Biochimica et Biophysica Acta,1953,10(4):499-511.
    [188] Nickerson R. F., Habrle J. A. Cellulose Intercrystalline Structure [J]. Ind Eng Chem,1947,39(11):1507-1512.
    [189] R nby B. G. The colloidal properties of cellulose micelles.[J]. Discussions Faraday Soc,1951,11(0):158-164.
    [190] Bondeson D., Mathew A., Oksman K. Optimization of the isolation of nanocrystalsfrom microcrystalline cellulose by acid hydrolysis [J]. Cellulose,2006,13(2):171-180.
    [191] Chen Y., Liu C., Chang P. R., et al. Bionanocomposites based on pea starch andcellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time [J].Carbohyd Polym,2009,76(4):607-615.
    [192] Araki J., Wada M., Kuga S., et al. Flow properties of microcrystalline cellulosesuspension prepared by acid treatment of native cellulose.[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,142(1):75-82.
    [193] Marchessault R. H., Morehead F. F., Koch M. J. Some hydrodynamic properties ofneutral suspensions of cellulose crystallites as realted to size and shape.[J]. J ColloidSci,1961,16(4):327-344.
    [194] Revol J. F., Bradford H., Giasson J., et al. Helicoidal self-ordering of cellulosemicrofibrils in aqueous suspension [J]. Int J Biol Macromol,1992,14(3):170-172.
    [195] Beck-Candanedo S., Roman M., Gray D. G. Effect of reaction conditions on theproperties and behavior of wood cellulose nanocrystal suspensions.[J].Biomacromolecules,2006,6(2):1048-1054.
    [196] Hamad W. Y. Development and properties of nanocrystalline cellulose (NCC).[M] ZhuJ Y, Zhang X, Pan X J. Sustainable Production of Fuels, Chemicals, and Fibers fromForest Biomass. Washington, DC; American Chemical Society.2011:301-321.
    [197] Hamad W. Y., Hu T. Q. Structure–process–yield interrelations in nanocrystallinecellulose extraction.[J]. The Canadian J Chemical Engineering,2010,88(3):392-402.
    [198] Lacerda T. M., de Paula M. P., Zambon M. D., et al. Saccharification of Brazilian sisalpulp: evaluating the impact of mercerization on non-hydrolyzed pulp and hydrolysisproducts [J]. Cellulose,2012,19(2):1-12.
    [199] Chum H. L., Johnson D. K., Black S. K., et al. Pretreatment-catalyst effects of thecombined severity parameter [J]. Appl Biochem Biotech,1990,24/25(1):1-14.
    [200] Zhu W., Houtman C. J., Zhu J. Y., et al. Quantitative predictions of bioconversion ofaspen by dilute acid and SPORL pretreatments using a unified combined hydrolysisfactor (CHF).[J]. Process Biochem,2012,47(5):785-791.
    [201] Saeman J. F. Kinetics of wood saccharification-hydrolysis of cellulose anddecomposition of sugars in dilute acid at high temperature [J]. Industrial&EngineeringChemistry,1945,37(1):43-52.
    [202] Camacho F., Gonzalez-Tello P., Jurado E., et al. Microcrystalline-cellulose hydrolysiswith concentrated sulphuric acid [J]. J Chem Technol Biot,1996,67(4):350-356.
    [203] Samir M. A. S. A., Alloin F., Dufresne A. Review of recent research into cellulosicwhiskers, their properties and their application in nanocomposite field [J].Biomacromolecules,2005,6(2):612-626.
    [204] de Souza Lima M. M., Borsali R. Rodlike cellulose microcrystals: structure, properties,and applications.[J]. Macromol Rapid Commun,2004,25(7):771-787.
    [205] Revol J.-F., Godbout L., Dong X.-M., et al. Chiral nematic suspensions of cellulosecrystallites; phase separation and magnetic field orientation.[J]. Liq Cryst,1994,16(1):127-134.
    [206] Roman M., Gray D. G. Parabolic Focal Conics in Self-Assembled Solid Films ofCellulose Nanocrystals [J]. Langmuir,2005,21(12):5555-5561.
    [207] Andresen M., Johansson L.-S., Tanem B. S., et al. Properties and characterization ofhydrophobized microfibrillated cellulose [J]. Cellulose,2006,13(6):665-677.
    [208] Saito T., Kimura S., Nishiyama Y., et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose [J]. Biomacromolecules,2007,8(8):2485-2491.
    [209] Saito T., Isogai A. TEMPO-mediated oxidation of native cellulose. The effect ofoxidation conditions on chemical and crystal structures of the water-insoluble fractions[J]. Biomacromolecules,2004,5(5):1983-1989.
    [210] Lahiji R. R., Xu X., Reifenberger R., et al. Atomic force microscopy characterization ofcellulose nanocrystals [J]. Langmuir,2010,26(6):4480-4488.
    [211] Yildiz M. E., Prud'homme R. K., Robb I., et al. Formation and characterization ofpolymersomes made by a solvent injection method [J]. Polym Advan Technol,2007,18(6):427-432.
    [212] Nadler M., Mahrholz T., Riedel U., et al. Preparation of colloidal carbon nanotubedispersions and their characterisation using a disc centrifuge [J]. Carbon,2008,46(11):1384-1392.
    [213] Montes-Burgos I., Walczyk D., Hole P., et al. Characterisation of nanoparticle size andstate prior to nanotoxicological studies [J]. Journal of Nanoparticle Research,2009,12(1):47-53.
    [214] Filipe V., Hawe A., Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis(NTA) by NanoSight for the measurement of nanoparticles and protein aggregates [J].Pharm Res,2010,27(5):796-810.
    [215] Fielding L. A., Mykhaylyk O. O., Armes S. P., et al. Correcting for a densitydistribution: particle size analysis of core-shell nanocomposite particles using diskcentrifuge photosedimentometry [J]. Langmuir,2012,28(5):2536-2544.
    [216] DeLuca T., Kaszuba M., Mattison K. Optimizing silicone emulsion stability using zetapotential [J]. American Laboratory News,2006,38(13):14-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700