用户名: 密码: 验证码:
不对称N,N'-双取代草酰胺化合物与DNA相互作用及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子化合物与生物大分子DNA的相互作用的研究是化学生物学领域重要的研究课题。DNA是生物体中最重要的遗传物质,它在遗传信息的储存、复制及转录中都具有非常重要的作用。一方面,DNA靶向化合物成为很重要的核酸探针选择对象;另一方面,临床上使用的许多抗癌药物都是以DNA为作用靶点。为了进一步探索和认识DNA的性质、结构、行为、形态,揭示生命的奥秘,人们研究了大量的小分子特别是过渡金属配合物与DNA之间的作用。小分子与DNA的相互作用的研究不仅有利于探索和开发新的核酸探针,而且有助于从分子水平上了解抗癌药物的作用机理,为设计临床上更为有效的抗癌药物提供理论指导。本文采用紫外光谱、荧光光谱、粘度法、电化学方法等研究了一系列草酰胺化合物与DNA的相互作用,总结了化合物与DNA相互作用的构效关系,并在此基础上采用SRB法研究了化合物的体外抗肿瘤活性。
     本论文主要包括以下四个方面的工作:
     一、设计并合成了4个结构新颖的不对称草酰胺配体,N-(2-羟基苯基)-N′-(3-二甲氨丙基)草酰胺(H3pdmapo) (L1)、N-(2-羟基苯基)-N′-(2-二甲氨乙基)草酰胺(H3pdmaeo) (L2)、N-(2-羟基苯基)-N′-(3-氨丙基)草酰胺(H3papo) (L3)、N-(2-二甲氨乙基)-N’-(3-二甲氨丙基)草酰胺(H2dmaepoxd) (L4),采用质谱、核磁、红外、元素分析等对其结构进行了表征,均为新化合物。
     二、由已合成的草酰胺配体做桥联配体,通过变换合成方法,调控金属离子的种类、端基配体、抗衡阴离子、溶剂等条件实现了配合物种类、结构和配位方式的多样性,成功的合成了16个配合物: [Cu_2(pdmapo)(phen)(H_2O)](ClO_4) (1)、[Cu_2(pdmapo)(bpy)(CH_3OH)](ClO_4) (2)、[Cu_2(pdmapo)(dabt)](CH_3OH)(ClO_4) (3)、[Cu_2(pdmaeo)(phen)(H_2O)](CH_3OH)(ClO_4) (4)、[Cu_2(pdmaeo)(dabt)](CH_3OH)(ClO_4) (5)、[Cu_2(papo)(bpy)(H_2O)](ClO_4) (6)、[Cu_2(papo)(dmbpy)(CH_3OH)_0.5(H_2O)_0.5]- (H_2O)_0.5(ClO_4) (7)、[Cu_2(dmapoxd)(phen)_2](ClO_4)_2 (8)、[Cu_2(dmapoxd)(bpy)_2](ClO_4)_2 (9)、[Ni_2(dmapoxd)(bpy)_2(H_2O)_2](ClO_4)_2 (10)、[Cu_2(dmaepoxd)(N_3)_2]_n (11)、[Cu_2(dmaepoxd)(CH_3CH_2OH)(SCN)_2]_2n (12)、[Cu_2(dmaepoxd)(CH_3OH)(SCN)_2]_2n(13)、[Cu_2(dmaepoxd)(NO_2)_2]_n (14)、[Cu_2(dmaepoxd)(pic)_2]_n?nCH_3OH (15)、[Cu_2(dmaepoxd)(pma)]_n (16)。采用不同的培养方法分别得到了质量较好的单晶,解析了化合物的单晶结构,确定了化合物中金属原子的配位环境,研究了氢键、芳环堆积等弱相互作用在构筑化合物晶体结构中发挥的重要作用。
     三、采用紫外光谱、荧光光谱、粘度法及电化学方法等研究了上述化合物与小牛胸腺DNA(CT-DNA)的相互作用,判断了化合物与DNA之间相互作用的模式并确定了它们相互作用的强度。研究表明,配体L1~L4及配合物(11)~(14)与DNA以沟槽模式相结合,而配合物(1)~(10)、(15)~(16)与DNA之间存在插入作用模式。在此基础上,分析了化合物自身结构和化合物与DNA相互作用模式及强度间的联系,总结了化合物与DNA相互作用的构效关系。
     四、采用SRB法分别对不对称草酰胺配体L1~L4及多核金属配合物(1)~(16)进行了体外细胞毒活性测试,研究结果表明,部分化合物对人肝癌细胞(SMMC-7721)和人肺腺癌细胞(A549)表现出较强抑制活性,其中配合物(8)的活性最强,对两种肿瘤细胞株的半数抑制浓度(IC50)分别为20和16 ng/mL。
     上述工作不仅丰富了无机药物化学的研究内容,而且为高效、低毒的无机抗癌药物的设计与合成提供了非常有价值的参考信息。
Studies on DNA interaction of organic and inorganic small molecules have gotten more and more interests in the recent years. Deoxyribonucleic acid (DNA) is an important genetic substance in organism. As the basis of genetic expression, it plays an important role in the process of storing, copying and transmitting germ messages. The recognition of DNA for natural and artificial molecules in the inhibition of cellular disorders and in therapy of certain diseases is very paramount importance in inorganic biochemistry. The binding of small molecules, especially transition metal complexes, to DNA and molecular identification are very important in life science. It can provide useful information to design novel and efficient drugs for disease diagnosis and chemotherapeutic agents. The main purpose of this article is to study the structure-activity relationship of the oxamide compounds and DNA. The DNA-binding properties of these oxamide compounds have been examined using electronic absorption, fluorescence, viscometry and electrochemical technique, and their antitumor activities have also been studied in vitro by SRB assay.
     1. Four novel dissymmetrical N,N’-bis(substituent)oxamide ligand, N-phenolato- N’-(3-dimethylaminopropyl)oxamide (H3pdmapo) (L1), N-phenolato-N’-(2-dimethyl- aminoethyl)oxamide (H3pdmaeo) (L2), N-phenolato-N’-(3-aminopropyl)oxamide (H3papo) (L3) and N-2-(dimethylamino)ethyl-N’-3-(dimethylamino)propyl oxamide (H2dmaepoxd) (L4) have been synthesized and characterized by MS, 1H NMR, IR and elemental analyses.
     2. Sixteen complexes with these dissymmetrical N,N’-bis(substituent)oxamides as ligands, [Cu_2(pdmapo)(phen)(H_2O)](ClO4) (1), [Cu_2(pdmapo)(bpy)(CH_3OH)](ClO_4) (2), [Cu_2(pdmapo)(dabt)](CH_3OH)(ClO_4) (3), [Cu_2(pdmaeo)(phen)(H_2O)](CH_3OH)- (ClO_4) (4), [Cu_2(pdmaeo)(dabt)](CH_3OH)(ClO_4) (5), [Cu_2(papo)(bpy)(H_2O)](ClO_4) (6), [Cu_2(papo)(dmbpy)(CH_3OH)_0.5(H_2O)0.5](H_2O)0.5(ClO_4) (7), [Cu_2(dmapoxd)- (phen)_2](ClO_4)_2 (8), [Cu_2(dmapoxd)(bpy)_2](ClO_4)_2 (9), [Ni_2(dmapoxd)(bpy)_2(H_2O)_2]- (ClO_4)_2 (10), [Cu_2(dmaepoxd)(N_3)_2]_n (11), [Cu_2(dmaepoxd)(CH_3CH_2OH)(SCN)_2]_2n (12), [Cu_2(dmaepoxd)(CH3OH)(SCN)2]2n (13), [Cu_2(dmaepoxd)(NO2)2]n (14), [Cu_2(dmaepoxd)(pic)_2]n?nCH_3OH (15) and [Cu_2(dmaepoxd)(pma)]n (16), have been synthesized and characterized by X-ray single crystal diffraction. The coordination environments of the metal atoms in the complexes are explored. Hydrogen bonds andπ-πstacking interactions which stabilize the crystal structure in these complexes are also discussed.
     3. The DNA-binding properties of the compounds have been studied by electronic absorption, fluorescence, viscometry and electrochemical technique. The results suggest that the ligands L1~L4 and complexes (11)~(14) bind to DNA via a groove binding mode while complexes (1)~(10) and (15)~(16) bind intercalatively to DNA. The structure-activity relationship of these oxamide compounds binding to DNA has been examined.
     4. The cytotoxicities of ligands L1~L4 and its complexes (1)~(16) are examined in vitro by SRB assay. The results indicate that some compounds showed different cytotoxic activities against SMMC-7721 and A549 cell lines. Among these compounds, complex (8) has the strongest effects, with IC50 values 20 and 16 ng/mL in the two human tumor cell lines, respectively.
     The researches of the paper not only enriched the content of inorganic medicinal chemistry, but also supplied valuable information for design and synthesis of inorganic antitumor medicinal with high activity and low toxicity.
引文
[1]王夔,无机药物的复兴,中国处方药, 2003年10月,第十期: 48-51.
    [2] B. Rosenberg, Naturwissenschaften, 1973, 60: 399-406.
    [3] M. J. Clarke, Coor. Chem. Rev., 2003, 236: 209-233.
    [4] J. Liu, W. J. Mei, A. W. Xu, C. P. Tan , L. N. Ji, Transition Metal. Chem., 2003, 28: 500-505.
    [5] E. Wong, C. M. Giandomenico, Chem. Rev., 1999, 99: 2451-2466.
    [6] J. D. Watson, F. Crick, Nature, 1953, 171: 737-738.
    [7] G. V. Wheeler, A. Laigle, L. Chinsky, Biomolecular Structure & Dynamics, 1997, 15: 107-117.
    [8] P. C. Wilkins, R. G. Wilkins. Inorganic Chemistry in Biology. Oxford: Oxford University Press, 1997.
    [9] M. J. Abrams, B. A. Murrer, Science, 1993, 261: 725-730.
    [10] E. Kikuta, R. Matsubara, N. Katsube, T. Koike, E. Kimura, J. Inorg. Biochem., 2000, 82: 239-249.
    [11]孙红哲,,陈嵘,支志明,金属在生物和医学中的应用,化学进展, 2002年7月,第14卷,第4期: 257-262.
    [12] L. G. Marzilli, D. L. Banville, G. Zon, J. Am. Chem. Soc., 1986, 108: 4188-4192.
    [13] P. Linconln, E. Tuite, B. Norden, J. Am. Chem. Soc., 1997, 119: 1454-1455.
    [14]曹凯鸣,李碧羽,彭泽国,核酸化学导论,上海,复旦大学出版社, 1991: 1.
    [15] G. V. Wheeler, A. Laigle, L. Chinsky, Biomolecular Structure & Dynamics, 1997, 15: 107-117.
    [16] L. G. Marzilli, D. L. Banville, G. Zon, J. Am. Chem. Soc., 1986, 108: 4188-4192.
    [17] P. Linconln, E. Tuite, B. Norden, J. Am. Chem. Soc., 1997, 119: 1454-1455.
    [18]张蓉颖,庞代文,蔡汝秀, DNA与其靶向分子相互研究进展,高等化学学报, 1999, 20(8): 1210-1217。
    [19] Q. X. Zhen, B. H. Ye, Q. L. Zhang, J. Inorg. Biochem., 1999, 76(1): 47-53.
    [20]叶勇,胡继明,陈建, 2-氯代甲醛丙酸希夫碱类抗癌药物对DNA作用的研究,无机化学学报, 1998, 14(1): 84-91.
    [21] W. D. Dixon, Inorg. Chem., 1999, 38(24): 5526-5534.
    [22] K. Sorasaenee, R. K. Dunbar, Chemitracts., 1999, 12(12): 870-883.
    [23] B. Oenfelt, J. Am. Chem. Soc., 1999, 121(46): 10846-10847.
    [24] N. L. Mollegaard, et al, Biochemistry., 2000, 39(31): 9502-9507.
    [25] R. Lakowicz Joseph, Murtaza Zakir, J. Photochem. Photobiol. A., 1994, 80(1-3), 283-288.
    [26] J. Pearson, J. J. Hwang, J. Org. Chem., 2000, 65(11): 3466-3472.
    [27] J. G. Liu, Q. X. Zhen, Chem. Lett., 1999, (10): 1085-1086.
    [28] W. B. Bezerra Cicero, Inorg. Chem., 1999, 38 (25): 5660-5667.
    [29] M. Zhao, M. J. Clarke, J. Biol. Inorg. Chem., 1999, 4(3): 325-340.
    [30] L. Jr. Que, Y. H. Dong., Acc. Chem. Res., 1996, 29: 190.
    [31] J. R. Fisher, P. A. Aristoff, Drug. Res, 1988, 32: 411-498.
    [32] H. Kohn, V. S. Li, M. S. Tang, J. Arn. Chem. Soc., 1992, 114: 5501-5509.
    [33] S. J. Brown, P. J. Kellett, S. J. Lippard, Science, 1993, 261: 603-605.
    [34] J. Reedijk, Chem. Commun., 1996, 801-806.
    [35] J. A. R. Navarro, J. M. Salas, M. J. Romera, Med. Chern., 1998, 41: 332-338.
    [36] P. M. Takahara, A. C. Rosenzweig, C. A. Frederick, Nature, 1995, 377: 649-652.
    [37] Habtemariam, P. J. Sadler, Chem. Commun.., 1996, 785: 1786.
    [38] Z. Shakked, G. Guzikevieh-Guerstein, F. Frolow, et al., Nature, 1994, 368 (6470): 469-473.
    [39] M. L. Kopka, C. Yoon, D. Goodell, Proc. Nat. Acad. Sci. USA., 1985, 82: 1376-1382.
    [40] H. G.. Anneheim, R. M. Pewee, Tetrahedron Lett., 1993, 34: 7263-7266.
    [41] S. Frau, J. Bernadou, B. Meunier, Bioconjugate Chem., 1997, 8(2): 222-231.
    [42] T. J. Dougherty, Nalt Cancer Inst., 1975, 55: 115-121.
    [43] C. A. Frederick, L. D. Williams, C. Ughetto, Biochemistry, 1990, 29: 2538-2549.
    [44] C. Powis, Free Rad. Biol. Med., 1989, 6: 63-101.
    [45] G. V. Wheeler, A. Laigle, L. Chinsky, J.Biomolecular Structure & Dynamics, 1997, 15: 107-117.
    [46] K. Praseuth, A. Gaudemer, J. B. Verlhac, Photochemistry & Photobiology, 1986, 44: 717-724.
    [47] T. J. Dougherty, Nalt Cancer Inst., 1975, 55: 115-121.
    [48] L. A. Lipscomb, F. X. Zhou, S. R. Presnell, R. J. Woo, M. E. Peek, R. R. Plaskon, L. D. Willianms, Biochemistry, 1996, 35: 2818-2832.
    [49] F. Arjmand, B. Mohani, S. Ahmad, Eur. J. Med. Chem., 2005, 40: 1103-1110.
    [50]杨频,郭茂林,化学学报, 1996, 1: 6.
    [51]计亮年,张黔玲,刘劲刚,中国科学(B辑), 2001, 31: 193.
    [52] Z. G. Zhang, P. Yang, M. L. Guo, Transit. Met. Chem., 1996, 21: 322.
    [53] D. E. Vanderwall, S. M. Liu, W. Wu, et al. Chem. & Biochem., 1997, 4: 373.
    [54]沈同,王镜岩,生物化学(第二版),高等教育出版社, 1990.
    [55]凌连生,杨洗,何治柯等,分析科学学报, 2001, 17(1): 11.
    [56] R. Breslow, I. E. Overman, J. Am. Chem. Soc., 1970, 92(4): 1075-1077.
    [57] P. F. Pastemack, F. J. Gibbs, J. Villatrnaca, Biochem., 1983, 22: 2406.
    [58] C. V. Kumar, R. S. Turner, E. H. Asuncion, Photochem. Photobiol. A: Chem., 1993, 74: 231.
    [59] M. V. Pattarkine, K. N. Ganesh, Biochem. Biophys. Res. Commun., 1999, 263: 41.
    [60] Y. Xiong, X. F. He, X. H. Zou, J. Z. Wu, J. Chem. Soc., Dalton Trans., 1999, 19-24.
    [61]陈国珍,黄贤智,许金钩等,荧光分析法,科学出版社, 1990.
    [62]宋玉民等,钴(III)配合物与DNA作用的研究,无机化学学报, 2000 ,16(1): 53-57.
    [63] S. J. Lippard, Acc. Chem. Res., 1978, 11: 211-217.
    [64] J. B. Lepecq, C. Paoletti, J. Mol. Biol., 1967, 27: 87-106.
    [65] M. R. Efink, C. A. Ghiron, Anal. Biochem., 1981, 114: 199-227.
    [66] G. Scatchard, Ann. NY Acad. Sci., 1949, 51: 660-672.
    [67] G. M. Howe, K. C. Wu, W. R. Bauer, Biochemistry, 1976, 15(19): 4339-4346.
    [68]李志良,陈建华,张开诚等, Preliminary Screening of Non-platinum Complexes of Schiff Bases as Antitumour Agents Using Fluorimetry,中国科学(B)辑, 1993, 2: 214-224.
    [69] R. F. Pastermack, A. Giannetto, J. Am. Chem. Soc., 1991, 113: 7799-7800.
    [70]张蓉颖,庞代文,蔡汝秀. DNA与其靶向分子相互作用研究进展,高等学校化学学报, 1999, 20(8): 1210-1217.
    [71] J. G. Liu, B. H. Ye, L. N. Ji, J. Bio. Inorg. Chem., 2000, 5: 119-128.
    [72] W. D. Wilson, Intercalation Chemistry. New York: Academic Press, 1982, 445-501.
    [73]计亮年,黄锦汪,莫庭焕等,生物无机化学导论,广州,中山大学出版社, 2001, 9-15.
    [74] C. G. Coates, L. Jacquet, S. E. Bell, Resonance raman probing of the interaction between dipyridophenazine complexes of Ru(II) and DNA, J. Chem. Soc., 1997, 119: 7130-7136.
    [75] K. Gisselfalt, P. Lincoln, B. Norden, J. Phys. Chem. B, 2000, 104: 3651.
    [76]罗济文,张敏,张蓉颖等,抗癌药物的电化学研究道诺霉素在DNA修饰石磨粉末微电极上的电化学行为及分析应用,分析科学学报, 2002, 18(1): 1-5.
    [77] Q. Lu, D. W. Pang, S. Hu, Scinece in China (Series B), 1999, 42(4): 425-432.
    [78] X. H. Xu, A. J. Bard, J.Am.Chem.Soc., 1995, 117(9): 2627-2671.
    [79]王素芬,彭图治,李建平,电化学方法研究DNA与不可逆靶向分子的相互作用,化学学报, 2002, 60(2): 310-316.
    [80] M. T. Carter, M. Rodriguez, A. J. Bard, J. Am. Chem. Soc., 1989, 111(24): 8901-8911.
    [81] X. H. Xu, A. J. Bard, J. Am. Chem. Soc., 1995, 117(9): 2627.
    [82] Y. Jenkins, A. E. Friedman, N. J. Turro, Biochemistry, 1992, 31: 10809-10861.
    [83] S. Satyanarayana, J. C. Dabrowiak, J. B. Chairs, Biochemistry, 1993, 32: 2573-2584.
    [84] L. Jin, P. Yang, J. Inorg. Biochem., 1997, 68: 79.
    [85] J. L. Butour, Biochim. Biophys. Acta, 1981, 653: 305-315.
    [86] X. H. Zou, B. H. Ye, H. Li, J. G. Liu, Y. Xiong, L. N. Ji, J. Chem. Soc., Dalton Trans., 1999, 1423-1428.
    [87] D. S. Sigman, A. Mazumder, D. M. Perrin, Chemical nucleases, Chem. Rev., 1993, 93: 2295-2316.
    [88] G. Cohen, H. Eisenberg, Biopolymers, 1969, 8: 45-55.
    [89]何忠效,张树政,电泳,科学出版社, 1999, 2: 11.
    [90] J. M. Kelly, A. B. Tossi, K. J. McConnell, C. Ohvigin, Nucl. Acids Res., 1985, 13: 6017-6034.
    [91] J. P. Rehmann, J. K. Barton, Biochemistry, 1990, 29: 1701-1709.
    [92] J. G. Collins, T. P. Shields, J. K. Barton, J. Am. Chem. Soc., 1994, 116: 9840-9846.
    [93] Greguric, J. R. Wright, J. G. Collins, J. Am. Chem. Soc., 1997, 119: 3621-3622.
    [94] G. Collins, A. D. Sleeman, J. R. Wright, I. Greguric, Inorg. Chem., 1998, 37: 3133-3141.
    [95] C. M. Dupureur, J. K. Barton, Inorg. Chem., 1997, 36: 33-43.
    [96]居学海,张琪,戴乾圜,北京工业大学学报, 2000, 26 (2): 49.
    [97] S. Shigeru, Y. Kentaro, Tetrohedron Lett, 2003, 44 (16): 3341.
    [98] M. Fuente, R. Navarro, Mol Struct, 2004, 687(1-3): 7.
    [99]高小玲, LS.巴特勒, R.克莱默,激光生物学报, 1998, 7(2): 142.
    [100]赵小杰,江山,陆冬生等,生物化学杂志, 1994, 10(3): 325.
    [101]刘美琴,卢存福,尹维伦,北京工业大学学报, 2003, 25(3):117.
    [102]章平,梅兵,钱民等,上海医学检验杂志, 2000, 15(2): 108.
    [103] D. Vladislav, A. H. Lawrence, A. S. Deborah, Neurobiol Aging, 2003.
    [104] P. Lu, M. L. Zhu, P. Yang, Inorg Biochem, 2003, 95(1): 1.
    [105] G. Golomb, I. Fishbein, S. Banai, A therosclerossis, 1996, 125(2): 171-182.
    [106] H. Ben-Bassat, D. V. V ardi, A. Gazit, Exp. Dermatol, 1995, 4(2): 82-84.
    [107] N. Farrell, T. T. B. Ha, J. P. Souchard, J. Med. Chem. 1989. 32 (10): 2240-2241.
    [108] V. Besichem, N. Farell, Ino rg. Chem., 1992, 31: 634-639.
    [109] Coluccia, A. Nassi, F. Loseto, J. Med. Chem., 1993, 36: 510-512.
    [110] J. J. Roberts, F. Friedlos, Cancer Res, 1987, 47(1): 31-36.
    [111] Eastman, M. A. Barry, Biochemist ry, 1987, 26(12): 3303-3307.
    [112] S. F. Bellon, J. H. Coleman, S. J. Lippard, Biochemist ry, 1991, 30(32): 8026-8035.
    [113] C. M. Giandomenico, M. J. Abrams, B. A. Murrer, Inorg. Chem., 1995, 34(5): 1015-1021.
    [114] J. Kraker, J. D. Hoeschele, W. L. Elliott, J. Med. Chem., 1992, 35: 4526-4532.
    [115]徐刚,崔玉波,崔凯,苟少华,化学进展, 2006, 18(1): 107-113.
    [116]王联红,刘芸,尤启冬,苟少华,化学进展, 2004, 16 (3): 456-461.
    [117] S. J. Lippard, P. Pil, Encyclopedia of Cancer, Cis-platin and Related Drugs. San Diego, California: Academic Press , 1997, 392-410.
    [118] E. Wong, C. M. Giandomenico, Chem. Rev., 1999, 99: 2451-2466.
    [119] B. K. Keppler, C. Friesen, H. G. Moritz, Struct. Bonding, 1991, 78: 97-127.
    [120] J. Clarke, F. Zhu, D. R. Frasca, Chem. Rev., 1999, 99: 2511-2534.
    [121] T. Schilling, B. K. Keppler, M. E.Heim, Invest. New. Drugs., 1995/1996, 13(4): 327-332.
    [122] F. Caruso, M. Rossi, Mini-Rev. Med. Chem., 2004, 4: 159-165.
    [123] R. Valaplana, M. G. Basallote, C. Ruiz-Valero, J . Chem. Soc., Chem. Comm, 1991, 2: 100-101.
    [124] G. Sava, E. Alessio, E. Bergamo, G. Mestroni, Top. Biol. Inorg. Chem., 1999, 1: 143-170.
    [125] K. Asai, Okikawa H. JP 4627, 690, 1971.
    [126] H. Okikawa, N. Kakimoto, JP 4621, 855, 1971.
    [127] B. J. Foster, K. Ciaggett-Carr, D. Hoth, B. Leyland-Jones, Cancer Treat. Rep., 1986, 70: 1311-1319.
    [128] M. M. Hart, R. H. Adamson, Proc. Natl. Acad. Sci. USA, 1971, 68: 1623-1626.
    [129] E. Krause, Ber., 1929, 82: 135.
    [130] J. Crowe, Metal Complexes in Cancer Chemotherapy (ed. Keppler B). VCH: Weinheim, 1993.
    [131] M. Boualam, R. Willem, M. Biesemans, Appl. Organomet. Chem., 1991, 5: 497-506.
    [132]赵喜荣,莫简,解放军药学学报, 2002, 17(3): 137-139.
    [133]韦捷敏,田华,王麟生,化学世界, 2003, 11: 602-605.
    [134] G. D. Geromichalos, G. A. Katsoulos, C. C. Hadjikostas, Anticancer Drugs, 1996, 7(4): 469-475.
    [135] M. B. Ferrari, F. Bisceglie, G. Pelosi, J. Inorg. Biochem, 2001, 83(2-3): 169-179.
    [136] F. M. Belicchi, F. Bisceglie, G. Pelosi, J. Inorg. Biochem., 2002 , 90(3-4): 113-126.
    [137]程鹏,廖代正,大学化学, 1994, 9: 6-11.
    [138]刘斌,廖代正,化学通报, 1997, 7: 29-34.
    [139] Q. Q. Zhang, F. Zhang, W. G. Wang, X. L. Wang, J. Inorg. Biochem., 2006, 100: 1344.
    [140] V. Brabe, J. Kasparkova, Biochemistry, 1999, 38 (21), 6781-6790.
    [141]刘伟平,高文桂,普绍平,谌喜珠,何键,杨一昆,药学进展, 2001, 25(1): 27-31.
    [142]孙献茹,程晴,廖代正等,化学通报, 1997, 4, 45.
    [143] M. Kato, Y. Muto, H. B. Jonassen. Bull. Chem. Soc. Jpn., 1968, 41: 1864.
    [144] J. Tercero, C. Diaz, J. Ribas, J. Mahia, M. Maestro, Chem. Commun., 2002, 21(4): 364-365.
    [145] J. Tercero, C. Diaz, J. Ribas, E. Ruiz, J. Mahia, M. Maestro, Inorg. Chem., 2002, 41: 6780-6789.
    [146] F. Lloret, M. Julve, J. Faus, R. Ruiz, I. Castro, M. Mollar, M. Philoche-Levisalles. Inorg. Chem., 1992, 31: 784.
    [147] Z. N. Chen, H. X. Zhang, K. B. Yu, K. C. Zheng, H. Cai, B. S. Kang. J. Chem. Soc., Dalton. Trans., 1998, 1133.
    [148] J. M. Dominguez-vera, N. G. Galvez, E. Colacio, R. Cuesta, J. P. Costes, J. P. Laurent. J. Chem. Soc., Dalton. Trans., 1996, 861.
    [149] Y. Pei, K. Nakatani, O.Kahn, J. Sletten, J. P. Renard, Inorg. Chem., 1989, 28(16): 3170-3175.
    [150] Y. Pei, O. Kahn, K. Nakatani, E. Codjovi, C. Mathoniere, J. Sletten, J. Am. Chem. Soc., 1991, 113(17): 6558-6564.
    [151]陶偌偈,王庆伦,应用化学, 2002, 19(12): 1158-1161.
    [152] S. Q. Zang, R. J. Tao, Q. L. Wang, N. H. Hu, Y. X. Cheng, J. Y. Niu, D. Z. Liao, Inorg. Chem., 2003, 42(3): 761-766.
    [1] J. A. Real, R. Ruiz, J. Faus, F. Lloret, M. Julve, Y. Journaux, M. Philoche-levisalles, C. Bois, J. Chem. Soc., Dalton Trans., 1994, 3769.
    [2] J. L. Sanz, B. Cervera, R. Ruiz, C. Bois, J. Faus, F. Lloret, M. Julve, J. Chem. Soc., Dalton Trans., 1996, 1359.
    [3] Y. Pei, O. Kahn, K. Nakatani, E. Codjovi, C. Mathonière, J. Sltten, J. Am. Chem. Soc., 1991, 113: 6558.
    [4] S. Q. Zang, R. J. Tao, Q. L. Wang, N. H. Hu, Y. X. Cheng, J. Y. Niu, D. Z. Liao, Inorg. Chem., 2003, 42: 761.
    [5] Abickes, et al., J. Prakt. Chem., 1931, 102: 169.
    [6] F. J. Martínez-Martínez, I. I. Padilla-Martínez, M. A. Brito, E. D. Geniz, R. C. Rojas, J. B. R. Saavedra, H. H?pfl, M. Tlahuextl, R. Contreras, J. Chem. Soc., Perkin Trans., 1998, 2: 401.
    [7] H. Ojima, K. Nonoyama, Coord. Chem. Rev. 1988, 92: 85-111.
    [8] W. Radecka-Paryzek. Inorg. Chim. Acta., 1979, 34: 5-8.
    [9] G. M. Sheldrick, Program for Empirical Absorption Correction of Area Detector Data. University of G?ttingen, 1996.
    [10] G. M. Sheldrick, SHELXTL, Version 6.10, Bruker Analytical X-ray Systems, Madison, WI, USA, 2001.
    [11] R. J. Tao, S. Q. Zang, N. H. Hu, Q. L. Wang, Y. X. Cheng, J. Y. Niu, D. Z. Liao, Inorg. Chim. Acta., 2003, 353: 325-331.
    [12] J. K. Tang, Y. Ou-Yang, H. B. Zhou, Cryst. Growth Des. 2005, 5(2), 813.
    [13] J. Marmur, J. Mol. Biol., 1961, 3, 208-218.
    [14] M. E. Reichmann, S. A. Rice, C. A. Thomas, P. J. Doty, J. Am. Chem. Soc., 1954, 76: 3047-3053.
    [15] A. Wolfe, G. H. Shimer, T. Meehan, Biochemistry, 1987, 26: 6392-6396.
    [16] J. R. Lakowicz, G. Weber, Biochemistry, 1973, 12: 4161-4170.
    [17] G. Cohen and H. Eisenberg, Biopolymers, 1969, 8: 45-55.
    [18] S. A. Tysoe,R. J. Morgan, A. D. Baker, T. C. Strekas, J. Phys. Chem., 1993, 97: 1707.
    [19] J. K. Barton, J. M. Goldberg, C. V. Kumar, N. J. Turro, J. Am. Chem. Soc., 1986, 108.
    [20] S. Mahadevan, M. Palaniyandavar, Inorg. Chem., 1998, 37: 693.
    [21] L. F. Tan, X. H. Liu, H. Chao, L. N. Ji, J. Inorg. Biochem., 2007, 101: 56-63.
    [22] H. Deng, J. Li, K. C. Zheng, Y. Yang, H. Chao, Liang N. Ji, Inorg. Chim. Acta., 2005, 358: 3430.
    [23] J. L. Tian, L. Feng, W. Gu, G. J. Xu, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng, J. Inorg. Biochem., 2007, 101: 196
    [24] R. Indumathy, S. Radhika, M. Kanthimathi, T. Weyhermuller, B.U. Nair, J. Inorg. Biochem., 2007, 101: 434-443.
    [25] C. V. Kumar, J. K. Barton, N. J. Turro, J. Am. Chem. Soc., 1985, 107: 5518-5523.
    [26] C. S. Liu, H. Zhang, R. Chen, X. S. Shi, X. H. Bu, M. Yang, Chem. Pharm. Bull. 2007, 55: 996.
    [27] M. Selim, S. R. Chowdhury, K. K. Mukherjea, Int. J. Biol. Macromol. 2007, 41(5): 579.
    [28] V. G. Vaidyanathan, B. U. Nair, Eur. J. Inorg. Chem. 2004, 2004: 1840-1846.
    [1] T. Ohmura, W. Mori, M. Hasegawa, T. Takei, T. Lkeda, E. Hasegawa, Bull. Chem. 524 Soc. Jpn., 2003, 76: 1387-1395.
    [2] H. Ojima, K. Nonoyama, Coord. Chem. Rev. 1988, 92: 85-111.
    [3] W. Radecka-Paryzek. Inorg. Chim. Acta., 1979, 34: 5-8.
    [4] R. J. Tao, S. Q. Zang, N. H. Hu, Q. L. Wang, Y. X. Cheng, J. Y. Niu, D. Z. Liao, Inorg. Chim. Acta, 2003, 353: 325-331.
    [5] Tang, J. K.; Ou-Yang, Y.; Zhou, H. B.; Cryst. Growth Des., 2005, 5(2): 813.
    [6] S. A. Tysoe,R. J. Morgan, A. D. Baker, T. C. Strekas, J. Phys. Chem., 1993, 97: 1707.
    [7] S. Mahadevan, M. Palaniyandavar, Inorg. Chem., 1998, 37: 693.
    [8] A. Wolfe, G. H. Shimer, T. Meehan, Biochemistry, 1987, 26: 6392.
    [9] L. F. Tan, X. H. Liu, H. Chao, L. N. Ji, J. Inorg. Biochem., 2007, 101: 56-63.
    [10] H. Deng, H. Xu, Y. Yang, H. Li, H. Zou, L.H. Qu, L.N. Ji, J. Inorg. Biochem., 2003, 97: 207.
    [11] J. R. Lakowicz, G. Weber, Biochemistry, 1973, 12: 4161.
    [12] J. L. Tian, L. Feng, W. Gu, G. J. Xu, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng, J. Inorg. Biochem., 2007, 101: 196
    [13] R. Indumathy, S. Radhika, M. Kanthimathi, T. Weyhermuller, B.U. Nair, J. Inorg. Biochem., 2007, 101: 434-443.
    [14] C. V. Kumar, J. K. Barton, N. J. Turro, J. Am. Chem. Soc., 1985, 107: 5518-5523.
    [15] C. S. Liu, H. Zhang, R. Chen, X. S. Shi, X. H. Bu, M. Yang, Chem. Pharm. Bull., 2007, 55: 996.
    [16] A. M. Thomas, G. Neelakanta, S. Mahadevan, M. Nethaji, A. R. Chakravarty, Eur. J. Inorg. Chem., 2002, 10: 2720.
    [17] S. Satyanarayana, J. C. Dabrowiak, J. B. Chairs, Biochemistry, 1993, 32: 2573-2584.
    [18] J. L. Butour, et al, Biochim. Biophys. Acta, 1981, 653: 305-315.
    [19] X. H. Zou, B. H. Ye, H. Li, J. G. Liu, Y. Xiong and L. N. Ji, J. Chem. Soc., Dalton Trans., 1999, 1423-1428.
    [20] D. S. Sigman, A. Mazumder, D. M. Perrin, Chemical nucleases, Chem. Rev., 1993, 93: 2295-2316.
    [21] G. Cohen, H. Eisenberg, Biopolymers, 1969, 8: 45-55.
    [22] V. G. Vaidyanathan, B. U. Nair, Eur. J. Inorg. Chem. 2004, 2004: 1840-1846.
    [1] H. Ojima, K. Nonoyama, Coord. Chem. Rev. 1988, 92: 85-111.
    [2] W. Radecka-Paryzek. Inorg. Chim. Acta. 1979, 34: 5-8.
    [3] S. Mahadevan, M. Palaniyandavar, Inorg. Chem., 1998, 37: 693.
    [4] D. W. Pang, H. D. Abruna, Anal. Chem., 1998, 70: 3162.
    [5] A. Wolfe, G. H. Shimer, T. Meehan, Biochemistry, 1987, 26: 6392-6396.
    [6] R. Chen, C. S. Liu, H. Zhang, Y. Guo, X. H. Bu, M. Yang, J. Inorg. Biochem, 2007, 101: 412-421.
    [7] Q. Q. Zhang, F. Zhang, W. G. Wang, X. L. Wang, J. Inorg. Biochem., 2006, 100: 1344-1352.
    [8]李红,乐学义,吴建中,刘捷,计亮年,蒋雄,李伟善,徐政和,铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA相互作用的研究,化学学报, 2003, 61(2): 245-250.
    [9] J. R. Lakowicz, G. Weber, Biochemistry, 1973, 12: 4161-4170.
    [10] A. M. Thomas, G. Neelakanta, S. Mahadevan, M. Nethaji, A. R. Chakravarty, Eur. J. Inorg. Chem. 2002, 10: 2720.
    [11] S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry, 1992 , 31: 9319.
    [12] L. Jin, P. Yang, J. Inorg. Biochem., 1997, 68: 79.
    [13] C. S. Liu, H. Zhang, R. Chen, X. S. Shi, X. H. Bu, M. Yang, Chem. Pharm. Bull., 2007, 55: 996.
    [14] M. Selim, S. R. Chowdhury, K. K. Mukherjea, Int. J. Biol. Macromol., 2007, 41: 579.
    [1] Y. Pei, K. Nakatani, O. Kahn, J. Sletten, J. P. Renart, Inorg. Chem., 1989, 28: 3170.
    [2] J. Larionova, S. A. Chavan, J. V. Yakhmi, Inorg. Chem., 1997, 36: 6374.
    [3] Y. Pei, O. Kahn, K. Nakatani, E. Codjovi, C. Mathonière, J. Sltten, J. Am. Chem. Soc., 1991, 113: 6558.
    [4] S. Q. Zang, R. J. Tao, Q. L. Wang, N. H. Hu, Y. X. Cheng, J. Y. Niu, D. Z. Liao, Inorg. Chem., 2003, 42: 761.
    [5]臧双全,梅崇珍,陶偌偈,草酰胺(酸)桥联配合物研究进展,化学研究,2004, 15(1): 66-70。
    [6] H. Ojima, K. Nonoyama. Coord. Chem. Rev., 1988, 92: 85.
    [7] D. Z. Liao, L. C. Li, Z. H. Jiang, S. P. Yan, G. L. Wang. Transition Met. Chem., 1992, 17: 356.
    [8] Z. M. Liu, D. Z. Liao, Z. H. Jiang, G. L. Wang. Synth. React. Inorg. Met.-Org. Chem., 1991, 21: 289.
    [9] R. J. Tao, S. Q. Zang, N. H. Hu, Q. L. Wang, Y. X. Cheng, J. Y. Niu, D. Z. Liao, Inorg. Chim. Acta, 2003, 353: 325-331.
    [10] J. K. Tang, Y. Ou-Yang, H. B. Zhou, Cryst. Growth Des., 2005, 5(2): 813.
    [11] K. E. Berg, Y. Pellegrin, G. Blondin, X. Ottenwaelder, Y. Journaux, M. M. Canovas, T. Mallah, S. Parsons, A. Aukauloo, Eur. J. Inorg. Chem., 2002, 2: 323.
    [12] F. S. Delgado, N. Kerbellec, C. Ruiz-Perez, J. Cano, F. Lloret, M. Julve. Inorg. chem., 2006, 45: 1012.
    [13] C. P. Nash, W. P. Schaefer. J. Am. Chem. Soc., 1969, 91: 1319.
    [14] F. Lloret, M. Julve, J. A. Real, J. Faus, R. Ruiz, M. Mollar, I. Castro, C. Bois. Inorg. Chem., 1992, 31: 2956.
    [15] Z. N. Chen, W. X. Tang, K. B. Yu. Polyhedron, 1994, 13: 783.
    [16] L. F. Tan, X. H. Liu, H. Chao, L. N. Ji, J. Inorg. Biochem., 2007, 101: 56.
    [17] A. Wolfe, G. H. Shimer, T. Meehan, Biochemistry, 1987, 26: 6392.
    [18] H. Deng, J. Li, K. E. Zheng, Y. Yang, H. Chao, Liang N. Ji, Inorg. Chim. Acta, 2005, 358: 3430.
    [19] S. Mahadevan, M. Palaniyandavar, Inorg. Chem., 1998, 37, 693.
    [20] H. Deng, H. Xu, Y. Yang, H. Li, H. Zou, L. H. Qu, L. N. Ji, J. Inorg. Biochem., 2003, 97: 207.
    [21] J. R. Lakowicz, G. Webber, Biochemistry, 1973, 12(21): 4161-4170.
    [22] J. L. Tian, L. Feng, W. Gu, G. J. Xu, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng, J. Inorg. Biochem., 2007, 101: 196
    [23] R. Indumathy, S. Radhika, M. Kanthimathi, T. Weyhermuller, B.U. Nair, J. Inorg. Biochem., 2007, 101: 434-443.
    [24] C. V. Kumar, J. K. Barton, N. J. Turro, J. Am. Chem. Soc., 1985, 107: 5518-5523.
    [25] C. S. Liu, H. Zhang, R. Chen, X. S. Shi, X. H. Bu, M. Yang, Chem. Pharm. Bull., 2007, 55: 996.
    [26] C. S. Liu, H. Zhang, R. Chen, X. S. Shi, X. H. Bu, M. Yang, Chem. Pharm. Bull., 2007, 55: 996.
    [27] M. Selim, S. R. Chowdhury, K. K. Mukherjea, Int. J. Biol. Macromol., 2007, 41(5): 579.
    [1] R. S. Kumar, S. Arunachalam, Polyhedron, 2006, 25: 3113-3117.
    [2] M. Shakir, S. Parveen, P. Chingsubam, K. Aoki, S. N. Khan, A. U. Khan, Polyhedron, 2006, 25: 2929-2934.
    [3] P. H. M. Kroneck, W. G. Zumft, Bioinorganic. New York: Plenum Press, 1990, 1-20.
    [4] J. W. Godden, S. Turley, K. C. Teller, Science, 1991, 253(5018): 438-442.
    [5] M. J. Begley, P. Hubberstey, J. Stroud, J. Chem. Soc. Dalton. Trans., 1996, 22: 4295-4302.
    [6] D. Worden, D. W. Ball, J. Phys. Chem., 1992, 96(18): 7167-7169.
    [7] C. Vinckier, T. Verhaeghe, I. Vanhees, J. Chem. Soc. Faraday. Trans., 1994, 90(14): 2003-2007.
    [8] L. Santiago, V. Branchadell, M. Sodupe, J. Chem. Phys., 1995, 103(22): 9738-9743.
    [9] L. Rodriguez-Santiago, M. Sodupe, V. Branchadell, J. Chem. Phys., 1996, 105(22): 9966-9971.
    [10] L. Santiago, M. Sodupe, et al., Inorg. Chem., 1998, 37(18): 4512-4517.
    [11] H. Ojima, K. Nonoyama. Coord. Chem. Rev., 1988, 92: 85.
    [12] P. Chaudhuri, K. Oder, K. Wieghart, B. Nuber, J. Weiss, Inorg. Chem., 1986, 25: 2818.
    [13] I. Bkouche-Waksman, M. L. Boillot, O. Kahn, S. Sikorav, Inorg. Chem., 1984, 23: 4454.
    [14] I. Bkouche-Waksman, S. Sikorav, O. Kahn, J. Cryslallogr. Specirosc. Res., 1983, 13: 303.
    [15] J. Commarmond, P. Plumere, J. M. Lehn, Y. Agnus, R. Louis, R. Weiss, O. Kahn, I. Morgenstern-Badarau, J. Am. Chem. Soc., 1982, 104: 6330.
    [16] T. R. Felthoure, D. N. Hendrickson, Inorg. Chem., 1978, 17: 444.
    [17] W. R. Scheidt, Y. Ja. Lee, D. K. Geiger, K. Taylor, K. Hatano. J. Am. Chem. Soc., 1982, 104: 3367.
    [18] A. Wolf, G. H. Shimer, T. Meehan, Biochemistry, 1987, 26(20): 6392-6396.
    [19] J. R. Lakowicz, G. Webber, Biochemistry, 1973, 12(21): 4161-4170.
    [20] J. L. Tian, L. Feng, W. Gu, G. J. Xu, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng, J. Inorg. Biochem., 2007, 101: 196.
    [21] C. S. Liu, H. Zhang, R. Chen, X. S. Shi, X. H. Bu, M. Yang, Chem. Pharm. Bull., 2007, 55: 996.
    [22] M. Selim, S. R. Chowdhury, K. K. Mukherjea, Int. J. Biol. Macromol., 2007, 41: 579.
    [23] D. H. Johnston, H. H. Thorp, J. Am. Chem. Soc., 1995, 117: 8933.
    [24] M. T. Carter, D. R. Bard, J. Am. Chem. Soc., 1987, 109: 7528.
    [25] M. Rodriguez, A. J. Bard, Anal. Chem., 1990, 62: 2658.
    [26] J. Sun, D. K. Y. Solaiman, J. Inorg. Biochem., 1990, 40: 271.
    [1] B. M. Ji, Z. X. Zhou, K. L. Ding, Y. Z. Li, Polyhedron, 1998, 17: 4327-4330.
    [2] H. M. M. Shearer, J. Chem. Soc., 1959: 1394.
    [3] K. Anitha, B. Sridhar, R. K. Rajaram, Acta. Crystallogr., Sect. E, 2004, 60: 1530.
    [4] N. Vembu, M. Nallu, J. Garrison, W. J. Youngs, Acta. Crystallogr., Sect. E, 2003, 59: 913.
    [5] A. Wolfe, G.H. Shimer, T. Meehan, Biochemistry, 1987, 26: 6392-6396.
    [6] H. Deng, J. Li, K. C. Zheng, Y. Yang, H. Chao, Liang N. Ji, Inorg. Chim. Acta., 2005, 358: 3430.
    [7] J. R. Lakowicz, G. Weber, Biochemistry, 1973, 12: 4161-4170.
    [8] M. Selim, S. R. Chowdhury, K. K. Mukherjea, Int. J. Biol. Macromol., 2007, 41(5): 579.
    [9] C. S. Liu, H. Zhang, R. Chen, X. S. Shi, X. H. Bu, M. Yang, Chem. Pharm. Bull., 2007, 55: 996.
    [10] M. Rodriguez, A. J. Bard, Anal. Chem., 1990, 62: 2658.
    [11] J. Sun, D. K. Y. Solaiman, J. Inorg. Biochem., 1990, 40: 271.
    [1] B. Rosenberg, Naturwissenschaften, 1973, 60: 399-406.
    [2] E. I. Solomon, D. E. Eilcox., Magneto-Structure Coorelations in Bioinorganic Chemistry. Magneto-structral Coorelations in Exchange Coupled Systems. Dordrecht, Netherlands: R. D. Willett, et al. (eds.), 1985, 463.
    [3] R. H. Holm, Pure & Appl. Chem., 1995, 67: 217.
    [4]吴建中,无机化学学报, 2000, 16 (5): 697.
    [5] L. Messori, J. Shaw, M. Camalli, P. Mura, G. Marcon. Inorg. Chem., 2003, 42: 6166.
    [6] N. Ferrara, K. J. Hillan, H. P. Gerber et a1., Nat. Rev. Durg. Discov., 2004, 3: 391-400.
    [7] J. M. Wood, G. Bold, E. Buchduger et a1., Cancer Res., 2000, 60: 2178-2189.
    [8] L. Messori, J. Shaw, M. Camalli, P. Mura, G. Marcon. Inorg. Chem., 2003, 42: 6166.
    [9] M. Larry et al., J. Natl. Cancer. Inst., 1992, 84: 466-469.
    [10]黄培堂等译,《细胞实验指南》科学出版社,北京, 2001, p108-109.
    [11]张均田主编,《现代药理实验方法》北京医科大学中国协和医科大学联合出版社,北京, 1998, p930.
    [12]韩锐主编,《抗癌药物研究与实验技术》北京医科大学和中国协和医科大学联合出版社,北京, 1996, p286.
    [13] L. J. Zou, J. Li, X. R. Li, Z. Dong, J. Dalian Med. University, 2000, 22: 251.
    [14] J. Y. Zhang, Q. Liu, C. Y. Duan et a1., J. Chem. Soc. Dalton Trans., 2002, 1120: 591-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700