用户名: 密码: 验证码:
寡雄腐霉RCU1菌株及寡雄蛋白诱导番茄抗病性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寡雄腐霉Pythium oligandrum Drechsler是一种土壤习居型腐生菌,它能在多种农作物根围定殖,能拮抗或寄生20多种植物病原菌,拮抗机制主要包括真菌寄生、抗生作用和诱导抗性等。寡雄腐霉对植物无毒性,对环境安全。寡雄蛋白(oligandrin)是寡雄腐霉产生的一种拟激发素蛋白,对番茄植株本身无毒性,不会引起番茄产生过敏性反应坏死斑,能诱导番茄对多种蔬菜重要病害产生系统获得抗性。本文在温室生产环境下,在番茄根部施用寡雄蛋白,系统地研究了寡雄蛋白诱导番茄叶片对灰霉病的抗性及其机理,进一步应用荧光定量PCR的方法探明经寡雄蛋白诱导番茄植株产生系统获得抗性与病程相关蛋白的关系,以及诱导抗性的信号转导途径;并制备了寡雄蛋白的多克隆抗体,应用免疫胶体金标记技术对寡雄蛋白在植株中的传递途径、作用位点等进行了亚细胞定位,主要研究结果如下:
     1、寡雄腐霉菌株RCUl及其分泌物的抑菌作用及对番茄灰霉病的防效
     应用玻璃纸法和生长速率法测定了寡雄腐霉菌株RCUl分泌物对9种植物病原真菌菌丝生长的抑制作用。结果表明,该分泌物对供试的9种植物病原真菌菌丝生长均有抑制作用;分子量小于8KD的寡雄腐霉分泌物能强烈抑制森禾腐霉、灰葡萄孢、黄色镰刀菌的菌丝生长,抑菌率分别达到88.9%、86.7%和84.6%,对供试的四种腐霉以及尖孢镰刀菌的4个专化型的抑菌率均达显著性差异。在扫描电镜下可见,经寡雄腐霉分泌物处理的灰葡萄孢,菌丝细胞破裂、穿孔、干瘪,且菌丝分化出的分生孢子梗少,产孢量明显下降。温室盆栽试验表明,寡雄腐霉滤液对番茄灰霉病具有显著的预防保护作用和治疗作用,其预防保护作用与杀菌剂50%多菌灵可湿性粉剂1000倍液的防治效果达到同一显著水平。
     2、寡雄蛋白诱导番茄苗对灰霉病的抗性及机理研究
     温室盆栽实验表明,寡雄蛋白(10μg/mL)处理番茄苗根系能够诱导番茄叶片对灰霉病的抗性,诱抗效果对供试品种合作903和凯特2号无显著差异。寡雄蛋白番茄根部诱导24h后接种灰葡萄孢,保护作用达61.3%,治疗效果可达51.8%;应用荧光定量PCR的方法研究了寡雄蛋白对番茄叶片基因表达量的影响,结果表明,寡雄蛋白根部处理24h,诱导番茄叶片病程相关蛋白几丁质酶和β-1,3葡聚糖酶基因表达量分别比对照增强4.7倍和3.1倍。
     寡雄蛋白处理番茄根系24h后接种灰葡萄孢,处理后3d及5d木质素含量比接种灰葡萄孢对照分别升高18.5%和34.4%(合作903),22.3%和27.6%(凯特2号);番茄叶片POD、PPO、PAL活性均明显高于接种灰葡萄孢对照,峰值较对照高20.0%,32.6%,57.1%(合作903),43.9%、32.6%、41.5%(凯特2号)。诱导番茄植株防御酶活性的提高,调控体内次生物质代谢,诱导病程相关蛋白基因表达量的上调,可能是寡雄蛋白诱导番茄叶片抵御灰霉病的主要机理。
     3、寡雄蛋白诱导番茄抗灰霉病的信号转导途径
     应用荧光定量PCR的方法研究了寡雄蛋白对番茄叶片的基因表达量的影响,结果表明,寡雄蛋白根部处理可诱导番茄叶片乙烯反应因子ERF2和茉莉酸(JA)相关因子PR6基因表达量分别比对照增强6.6倍和3.6倍,寡雄蛋白诱导对番茄灰霉病的系统抗性依赖于ISR中的JA和ET信号转导途径;寡雄蛋白根部处理24h,诱导番茄叶片病程相关蛋白几丁质酶和β-1,3葡聚糖酶基因表达量分别比对照增强4.7倍和3.1倍,表明寡雄蛋白诱导番茄对灰霉病的抗性同时具有ISR和SAR的部分特征。寡雄蛋白可能是通过水杨酸(SA)协同JA/乙烯信号转导途径诱导番茄对灰霉病的抗性。
     4、寡雄蛋白诱导番茄果实对灰霉病的抗性及机理研究
     寡雄蛋白(10μg/mL)处理番茄果蒂处24h后在番茄果肩处接种灰葡萄孢,常温下寡雄蛋白处理的番茄果实腐烂率比对照降低了49.5%。常温贮藏结束时,寡雄蛋白处理番茄的细胞质膜相对透性比对照低63%;MDA产生量比对照降低31%。寡雄蛋白处理番茄果实PAL、PPO和POD活性峰值比接种处理高18.8%,20.0%和22.7%。应用荧光定量PCR的方法研究了寡雄蛋白对番茄果实基因表达量的影响,结果表明,寡雄蛋白处理的番茄果实PR-2a和PR-3a基因表达量比对照升高2.7倍和3.6倍。诱导番茄防御酶活性的提高,维持细胞结构的完整性,诱导PR-2a和PR-3a基因表达量的升高,是寡雄蛋白诱导番茄果实抵御灰霉病的关键。
     5、寡雄蛋白与寄主植物互作的细胞化学定位
     制备了寡雄蛋白的多克隆抗体,应用免疫胶体金标记技术对寡雄蛋白在寡雄腐霉菌丝中、寡雄腐霉在番茄根部定殖以及寡雄蛋白在番茄叶片中的移动进行亚细胞定位,结果表明,PDA平板或液体培养基中培养的寡雄腐霉菌丝中,寡雄蛋白主要积累在菌丝细胞壁,可以分泌到寡雄腐霉细胞外,表明寡雄蛋白是一种外泌蛋白。
     免疫胶体金标记结果表明,寡雄腐霉在番茄根部定殖4h即可在番茄根部细胞中检测到寡雄蛋白,随着时间的推移,寡雄蛋白的量逐渐增加,在根组织细胞的细胞壁、叶绿体等处聚集。菌丝中合成的寡雄蛋白主要束缚在菌丝壁上,而菌丝内部较少,说明寡雄蛋白合成后很快分泌出去,而不是在成熟的菌丝中积累。寡雄腐霉接种24h即可在番茄根组织细胞内检测到大量寡雄蛋白,表明番茄是寡雄腐霉的适宜寄主,寡雄腐霉可以大量在番茄根部定殖,分泌寡雄蛋白诱导番茄系统获得抗性。
     寡雄蛋白处理番茄中部叶片,免疫胶体金标记结果表明,4h后番茄上、中、下部叶片细胞壁和细胞核中均有大量寡雄蛋白存在,表明寡雄蛋白可在植物体内进行上下转运。寡雄蛋白可能是从侵入部位传导到植物其他部位并激发系统获得抗性反应的信号,其信号受体可能定位在细胞膜上,在细胞核中的特异性积累可能对植物防卫反应具有调节效应,从而提高植物的抗病能力。
Pythium oligandrum Drechsler is one kind of saprophyte living in soil. It has been shown to colonize the rhizosphere of a wide range of agriculturally important crops. It is antagonistic to and parasitic on more than twenty important pathogenic fungi or other oomycetes. It is Non-pathogenic, harmless to plant and environment. Its antagonistic mechanisms include mycoparasitism, antibiosis and induce resistance. Oligandrin, the elicitin-like protein produced by P. oligandrum, induces systemic resistance in tomato plants, but cause no hypersensitive response (HR). In this study, we applied oligandin to roots to study the effects and mechanism of anti-stress by oligandrin to induce resistance of tomato seedling against B. cinerea in greenhouse. We also researched the mechanisms of the interactions between oligandrin and pathogens or host plant.
     The main results were obtained as followings:
     1. Inhibitory of the secretion of Pythium oligandrum strain RCU1 on plant pathogenic fungi and the control effect against tomato gray mould in greenhouse.
     The inhibition effect of the molecular weight less than 8 kD secretion of P. oligandrum on total 16 isolates of plant pathogenic fungi belonging to 9 species was tested on Petri dishes with cellophane paper and growth rate methods. The secretion of P. oligandrum distinctly depressed the mycelial growth of P. sylvaticum, Botrytis cinerea, and Fusarium culmorum with inhibition rates of 88.9%,86.7% and 84.6%, respectively. The inhibition rates of four Pythium species and four formae speciales of F. oxysporum were significantly differet (P=0.05), respectively. The morphology of B. cinerea treated with the secretion of P. oligandrum was abnormal under scanning electron microscope with mycelia shriveled, small spores appeared in the cell wall and reduced spore output significantly. In the greenhouse trial, the filtrate of P. oligandrum had significantly protective and curative effect against tomato gray mould, and the protective effect of the filtrate was equivalent strong with that of the trearment by using carbendazim.
     2. Defense responses in tomato leaves against Botrytis cinerea induced by application of oligandrin to roots
     In the greenhouse trial, the root treatment with oligandrin (10μg/mL) had significantly protective and curative effect against tomato gray mould in tomato leaves with efficiency of 61.3% and 51.8%, respectively. Furthermore, the expression of the pathogenesis-related proteins (PRs) genes,β-1,3-glucanase and chitinase were upregulated in the leaves of treated tomato plant 4.7 fold and 3.1 fold, respectively.
     The oligandrin treatment increased contents of lignin with 18.5% and 34.4% on cultivar Hezuo-903,22.3% and 27.6% on cultivar Kaite-2 than that in control at the peak stage, respectively, 3d and 5d after inoculation. The results from bio-assay indicated that the oligandrin treatment stimulated the activity of the defense related enzymes, peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL). Their activity in the oligandrin-treated plant was about 20.0%,32.6%,57.1% (Hezuo-903),43.9%、32.6%、41.5%(Kaite-2) higher than that in control at the peak stage after inoculation, respectively. We conclude that antioxidant enzyme activities and pathogenesis-related proteins (PRs) genes upregulated were two crucial targets of oligandrin in tomato leaves during the establishment of defense responses.
     3. Signal pathway induced by oligandrin against Botrytis cinerea in tomato plant
     Oligandrin (10μg/mL) treatment of tomato root induced the expression of ethylene (ET) -related transcription factor (ERF2) genes and the jasmonic acid (JA)-responsive gene for the basic PR-6 proein up-regulated 6.6 fold and 3.6 fold in tomato plants, respectively. These results indicated that the JA/ET signaling pathway is required for oligandrin induced resistance against B. cinerea in tomato. Furthermore, the expression of the pathogenesis-related proteins (PRs) genes, β-1,3-glucanase and chitinase are upregulated in the leaves of treated tomato plant 4.7 fold and 3.1 fold, respectively. Defense responses in tomato leaves against B. cinerea induced by oligandrin have the features both ISR and SAR. Oligandrin perhaps induced SA and JA/ET Signal pathway together.
     4. Defense responses in tomato fruit induced by oligandrin against Botrytis cinerea
     Oligandrin (10μg/mL) treated tomoto fruit tampuk (20μl) significantly reduced incidence and severity of gray mould (Botrytis cinerea). After artificial inoculation the severity of body rots was decreased by 49.5%. Vc contants was increased 36.1%. The results from bio-assay indicated that the treatment stimulated the activity of the defense related enzymes, phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD) activity in the oligandrin-treated fruit was about 18.8%,20.0%,22.7% higher than that in control on the 3rd day after the inoculation, respectively. Furthermore, increased expression of genes encoding pathogenesis -related proteins (PRs), such as PR-2a (extracellularβ-1,3 -glucanase) and PR-3a (extracellular chitinase) at mRNA level in tomato fruit was about 2.7-fold and 3.6-fold above that in the control plant at the peak stage. These results suggest that the defense responses of tomato fruit induced by oligandrin against gray mould might be attributed to systemic acquired resistance (SAR). Antioxidant enzyme activities and pathogenesis-related proteins (PRs) genes upregulated are two crucial targets of oligandrin in tomato leaves during the establishment of defense responses.
     5. Cytology of the interactions between oligandrin and host plant
     The analysis of hyphae of P. oligandrum, tomato roots and leaves by electron microscopy immunogold labeling with polyclonal antibodies against oligandrin confirmed that oligandrin was distributed on the cell wall of the mycelia and secreted outside. During the infection and colonization process P. oligandrum secreted oligandrin, the antigen sites were found in the tomato plant cell wall and the cell nucleus which maybe contacted the induced resistance. Tomato is a good host for P. oligandrum. Spraying oligandrin to tomato leaves, the antigen sites were found in the plant cell wall, chloroplast, and the cell nucleus. Oligandrin can translocated throughout the plant. Even though the exact mechanisms by which oligandrin operates to trigger resistance in tomato are not fully elucidated, the present results demonstrate that oligandrin maybe a signal for triggering synthesis and accumulation of defense gene products, thus increased the disease resistance in tomato.
引文
陈安良,何军,廉应江等.2006,4种戊烷脒同系物对灰霉病的防治效果.植物保护学报.33(1):68-72.
    陈吴健.2007,大豆豆荚炭疽病的病原鉴定及其防治.浙江大学硕士学位论文.
    冯杰.1991,棉株体内几种生化物质与抗枯萎病之间的关系的初步研究.植物病理学报,21(4):291-297.
    高克祥,刘晓光,郭润芳等.2002,木霉菌对五种植物病原真菌的重寄生作用.山东农业大学学报(自然科学版).33(1):37-42.
    贺水山,张炳欣,葛起新.1992,寡雄腐霉重寄生作用的研究.植物病理学报.22(2):77-81.
    胡小倩.2007,多花筋骨草黑胫病病原菌鉴定及其生物学特性.浙江大学硕士学位论文.
    惠勒著.沈崇尧译.1979,植物病程[M].北京:科学出版社.
    康振生.1995,植物病原真菌的超微结构[M].北京:中国科学技术出版社.
    李冠.1993,瓜类刺盘孢诱导物对新疆甜瓜抗病相关酶活性的影响.植物学报.35(4):300-303.
    李洪连,王守正.1993,黄瓜对炭疽病诱导抗性的初步研究Ⅱ.诱导抗病性机制的研究.植物病理学报.23(4):327-330.
    李靖,利容千,袁文静.1991,黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报.21(4):277-282.
    李淼,谭根甲,承河元等.2002,植物抗病性研究现状与前景展望.江西农业大学学报(自然科学版).24(5):731-736.
    李艳琴,赵春贵,梁丽锡等.2000,能产生植物抗性诱导蛋白harpin的自生固氮工程菌的构建.高技术通讯.10(7):20-23.
    李振歧.1995,植物免疫学[M].北京:中国农业出版社.
    林钗.2008,寡雄腐霉的拮抗作用及寡雄蛋白的诱导抗性研究.浙江大学硕士学位论文.
    刘西莉,李建强,刘鹏飞等.2000,浸种专用型水稻种衣剂对水稻秧苗生长及 抗病性相关酶活性的影响.农药学学报.6(2):41-46.
    楼兵干,张炳欣.2005,无致病性腐霉的生防作用和诱导防卫反应.植物保护学报.32(1):94-96.
    寿森炎,冯壮志,陈旭艇等.2005,壳聚糖诱导番茄抗青枯病的作用.植物保护学报.32(2):120-124.
    宋凤鸣.1993,氟乐灵诱发棉苗对枯萎病的诱导抗性机制.植物病理学报.23(2):114-117.
    宋水山.2006,酰基高丝氨酸内酯—细菌与真核生物之间信息交流的介导分子.自然科学通报.18:933-937.
    孙延忠,曾洪梅,石义萍等.2004,武夷菌素对灰霉菌的抑制作用及对番茄抗病相关酶活性的影响.植物保护.30(6):45-48.
    陶金华,陈发河,冯作山.2006,诱导抗性在果蔬采后病害防治中的应用.植物生理学通讯.12(2):361-366.
    王爱英,楼兵干,徐同.2007,寡雄腐霉分泌物对植物病原真菌的抑制作用及其对番茄灰霉病的防治效果.植物保护学报.34(1):57-60.
    王宝增,赵可夫.2006,低浓度Nacl对玉米生长的效应.植物生理学通讯.42(4):628-632.
    王树桐,胡同乐,张凤巧等.2006,中药细辛提取物对番茄灰霉病菌的抑菌作用及防病效果研究.河北农业大学学报,29(1):59-62.
    许琰丹.2008,浙江淡竹黑腐病病原菌的鉴定及其防治研究.浙江大学硕士学位论文.
    杨家书.1986,植物苯丙氨酸类代谢与小麦对白粉病抗性的关系.植物病理学报,16(3):169-173.
    余朝阁,李天来,杜妍妍等.2008,植物诱导抗病信号传导途径.植物保护,34(1):1-8.
    翟彩霞,马春红等.2004,植物诱导抗病性的常规鉴定-相关酶活性变化与诱导抗病性的关系.中国农学通报,20(5):222-224.
    张世民.1989,高等植物几丁质酶研究进展.植物生理学通讯.25(1):8-13.
    曾凯芳,姜微波.2005,水杨酸处理对采后绿熟芒果炭疽病抗病性的诱导.中 国农业大学学报,10(2):36-40.
    Al-Rawahi A. K., Hancock J. G. 1998. Parasitism and Biological Control of Verti-cillium dahliae by Pythium oligandrum. Plant Dis.82(10):1100-1106.
    Al-Rawahi A. K., Hancock J. G. 1997. Rhizosphere competence of Pythium oliga-ndrum. Phytopathology.87:951-959.
    Antoniw J. F., Ritter C. E., Pierpoint W. S., et al.1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J. Gen. Virol.47:79-87.
    Arras G., de Cicco V., Arru S., et al.1998. Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichiaguilliermondi. Hortic Sci Biotechnol.73(3):413~418.
    Askary H., Benhamou N., Brodeur J. 1999. Ultrastructural and cytochemical characterization of aphid invasion by the hyphomycete Verticillium lecanii. J. Invertebr. Pathol.74:1-13.
    Askary H., Benhamou N., Brodeur J. 1997. Ultrastructural and cytochemical investing- ations of the antagonistic effect of Verticillium lecanii on cucumber powdery mildew. Phytopathology.87:359-368.
    Assis J.S., Maldonado R., Munoz T., et al. 2001. Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biol. Technol. 23:33-39.
    Audenaert K., Pattery T., Cornelis P. 2002. Induction of systemic resistance to Botrytis cinereain tomato by Pseudomonas aeruginosa 7NSK2:Role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Inter..15(11):1147-1156.
    Baker P. A., Ran H. M., Pieterse L. X. 2003. Under-standing the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Canadian J. Plant Pathol.25:5-9.
    Benhamou N., Belanger R. R., Paulitz T. C.1996. Induction of differential host responses by Pseudomonas fluorescensin Ri T-DNA-transformed pea roots after challengewith Fusarium oxysporum.f sp. pisi and Pythium ultimum. Phytopatho-logy.86:1174-1185.
    Benhamou N., Belanger R. R., Rey P. 2001. Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiology Biochemistry. 39:681-698
    Benhamou N., Brodeur J. 2000. Evidence for antibiosis and induced host defense reactions in the interaction between Verticillium lecanii and Penicillium digitatum, the causal agent of green mold. Phytopathology. 90:932-943.
    Benhamou N., Chamberland H., Ouellette G. B.1987. Ultrastructural localization of β-1,4-D-glucans in two pathogenic fungi and in their host tissues by means of an exoglucanase-gold complex. Can. J. Microbiol. 33:405-417.
    Benhamou N., Chet Ⅰ. 1997. Cellular and molecular mechanisms involved in the interaction between Trichoderma harzianum and Pythium ultimum. Appl. Environ. Microbiol.63:2095-2099.
    Benhamou N., Chet Ⅰ. 1993. Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani: Ultrastructure and gold cytochemistry of the mycop-arasitic process. Phytopathology.83:1062-1071.
    Benhamou N., Chet Ⅰ. 1996. Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum:Ultrastructural and cytochemical aspects of the interaction. Phytopathology.86:405-416.
    Benhamou N., Garand C., Goulet A. 2002. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl. Environ. Microbiol.68:4044-4060.
    Benhamou N., Garand C. 2001. Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by nonpathogenic Fusarium oxysporum Fo47. Phytopathology.91:730-740.
    Benhamou N., Kloepper J. W., Quadt-Hallman A.1996. Induction of defense related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol.112:919-929.
    Benhamou N., Kloepper J. W., Tuzun S.1998. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta.204: 153-168
    Benhamou N., Rey P., Cherif M.1997. Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 87:108-122.
    Benhamou N., Rey P., Picard K., et al. 1999. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology.89:506-517.
    Benhamou N.2004. Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: a comparison with the effect of chitosan. Phytopathology.94:693-705.
    Benhamou N. 2001. Brodeur Pre-inoculation of Ri TDNA trans-formed cucumber roots with the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum infection. Physiol. Mol. Plant Pathol. 58:133-146.
    Bezier A., Lambert B., Baillieual F. 2002. Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur. J. Plant Pathol. 108:111-120.
    Bhatia Y., Misra S., Bisaria V. S.2002. Microbial glucosidases:cloning, properties and applications. Crit rev Biotch.22:375-407.
    Bonnet P., Bourdon E., Ponchet M., et al. 1996. Acquired resistance triggered by elicitins in tobacco and other plants. Europe Journal Plant Pathol. 102:181-192
    Bradshwa-smith R. P., Whalley W. M., Craig G. D. 1991. Interactions between Pythium oligandrum and the fungal footrot pathogens of peas. Mycological Research.95:861-865.
    Brozova J. 2002. Exploitation of the mycoparasitic fungus Pythium oligandrum in plant protection. Plant Protection Sci. 38:29-35.
    Compant S., Duffy B., Nowak J. 2005. Use of plant growth promoting bacteria for biocontrol of plant diseases:Principles, mechanisms of action, and future prospects. Appl. Envir. Microbiol.71(9):4951-4959.
    Campos-Vargas R., Saltveit M. E. 2002. Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol. Plant.114:73-84.
    Chen C. B., Dickman M. B.2005. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum. Mol. Microbiol.55(1):299-311
    Cherif M., Benhamou N.1990. Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology. 80:1406-1414.
    Cohen Y.1994. Local and systemic control of Phytophthora infestans in tomato plants by DL-3-Amino-n-butanoic acids. Phytopathology.84:55-59.
    Colson-Hanks E. S., Deverall B. J. 2000. Effects of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. Plant Pathol. 49:441-456.
    Compant S., Duffy B., Nowak J. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases:Principles, mechanisms of action, and future prospects. Appl. Envir. Microbiol. 71 (9):4951-4959.
    Dangl J. L., Jones J. D. G. 2001. Plant pathogens and integrated defense response to infection. Nature.411:826-833.
    De Mayer G., Audenaert K., Hfte M. 1999. Pseudomonas aeruginosa 7NSK2 induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1 aexpression. Eur. J. Plant Pathol. 105:513-517.
    De Mayer G., Capiau K., Audenaert K. 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway on bean. Mol. Plant-Microbe Inter.12: 450-459.
    Dixon R. A., Paiva N. L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell.7:1085-1097.
    Droby S., Vinokur V., Weiss B.2001. Induction of resistance to Penicillium digitatum in grape fruit by the yeast biocontrol agent Candida oleophila. Phytopathology.92:393-399.
    Duijff B. J., Poulain D., Olivain C. 1998. Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur. J. Plant Pathol.104:903-910.
    Eckert J. W., Ogawa J. M.1988. The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annu. Rev. Phytopathol. 26:433-469.
    Edreva A.2005. Pathogenesis-related proteins:research progress in the last 15 years. Gen. Appl. Plant Physiol.31:105-124.
    Elad Y, Chet I., Boyle P.1983. Parasitism of Trichoderma harzianum spp. on Rhizoctonia solani and Sclerotium rolfsii:Scanning microscopy and fluorescence microscopy. Phytopathology.73:85-88.
    El-Ghaouth A., Wilson C. L., Wisniewski M. 1998. Ultrastructural and cytoche-mical aspects of the biological control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology.88: 282-291.
    Epple P., Apel K., Bohlmann H. 1995. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol.109:813-820.
    Escande A. R., Echandi E.1991. Effect of growth media, storage environment, soil temperature and delivery to soil on binucleate Rhizoctonia AG-G for protection of potato from Rhizoctonia canker. Plant Pathol. 40:190-196.
    Farkas G L., Stahmann A. 1996. On the nature of change in peroxidase isoenzymes in bean leave in tomato plants of south bean mosaic virus. Phytopathology. 56:669-667.
    Fletcher J. T., Elliott T. J. 1995. Biology and control of Pythium black compost. Science and cultivation of edible fungi.2:661-667.
    Fuchs J. G., Moenne-Loccoz Y., Defago G. 1997. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium Wilt in tomato. Plant Dis. 81:492-496.
    Fuchs J. G., Moenne-Loccoz Y., Defago G. 1998. Ability of nonpathogenic Fusarium oxysporum Fo47 to protect tomato against Fusarium wilt. Biol. Control. 14:105-110.
    Galeazzi M. A. M., Sgarbieri N. S. M. 1981. Costantinides. Isolation, purification and physiochemical characterization of polyphenol oxidase from dwarf variety of banana (Musa Cavendishii). J. Food Sci.46:150-155.
    Garcia-Olmedo F., Molina A., Segura A., et al.1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol.3:72-74.
    GB/T 17980.28-2000农药田间药效试验准则(一)杀菌剂防治蔬菜灰霉病.
    Gianinazzi-Pearson V., Gollotte A., Cordier C.1996. Root defense responses in relation to cell and tissue invasion by symbiotic microorganisms:Cytological investi-gations//Nicole M, Gianinazzi-Pjearson V, eds. His-tology, Ultrastructure and Molecular Cytology of Plant-Microorganism Interactions. Oxford: Pergamon Press.177-191
    Green T. R., Ryan C. A. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science.175:776-777.
    Haas D., Defago G. 2005. Biological control of soilborne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology.3:1-13.
    Hammerschmidit R., Kuc J. 1982. Lignification as a mechanism for induced systemic resistance in cucumber. Physiology Plant Pathol. 20:61-71.
    Hammerschmidt R., Nuckles E. M., Kuc J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol.20:73-82.
    Hanson L. E., Howell C. R.2004. Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology.94:171-176.
    Hare S. J., Masilamany P., Charest P. M.1994. Increased peroxidase activity in bean seedlings protected from Rhizoctonia solani infection with non-pathogenic binucleate Rhizoctonia species (Abstr.). Phytopathology.84:1083.
    Harman G., Howell C. R., Viterbo A.2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiol.2:43-56.
    Harman G. E., Petzoldt R., Comis A. 2004. Interactions between Trichoderma harzianums train T22 and maize inbred line Mo17 and effects of this interaction on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology.94:147-153.
    Harris A. R., Schisler D. A., Ryder M. H.1993. Binucleate Rhizoctonia isolates control damping-off caused by Pythium ultimum var. sporangii ferum and promote growth in Capsicum and Celosia seedlings in pasteurized potting medium. Soil Biol. Biochem.25:909-914.
    Hase S., Shimizu A., Nakaho K., et al.2006. Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol.55:537-543.
    Hawksworth D. L., Kirk P.M., Sutton B. C. 1997. Ainsworth & Bisby's Dictionary of the Fungi (8th edition). CAB International.
    Herr L. J. 1995. Biocontrol of Rhizoctonia solani by binucleate Rhizoctonia spp. And hypovirulent R. solani agents. Crop Prot.14:179-186.
    Hideki T., Hase S., Yashinori K., et al. 2010. Indetification of a protein that interacts with LeATL6 ubiguitin-protein ligase E3 upregulated in tomato with elicitin-like cell wall protein of Pythium oligandrum. Phytopathology. 158:132-136.
    Howell C. R., Hanson L. E., Stipanovic R. D.2000. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solaniby seed treatment with Trichoderma virens. Phytopathology.90:248-252.
    Hu J. C., Xue D. L., Ma C. X. 2004. Research advances in plantgrowth-promoting rhizobacteria and its application prospects. Chinese Journal of Applied Ecology, 15(10):1963-1966.
    Hu J. C., Xue D. L., Wang S. J. 2002. Obstacles of soybean continuous cropping.Ⅲ. Mechanism of soybean yield increment by marine actinomyces MB297. Chinese Journal of Applied Ecology.13(9):1095-1098.
    Hwang B. K., Heitefuss R. 1982. Induced resistance of spring barley to Erysiphe graminis f.sp.hordei. Phytopathologische Zeitschrift.103:41-47.
    Ippolito A., Elghaouth A., Wilson C. L., et al. 2000. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol. Technol.19: 265-272.
    Jabaji-Hare S. H., Chamberland H., Charest P. M.1994. Cell wall alterations in bean seedlings protected from Rhizoctonia root rot by binucleate Rhizoctonia species, in: Abstr. Book Proc. Int. Congr. Plant Pathol.6th.288.
    Jan S., Janick M., Barbara M. A. et al. 2008. Plant pathogenesis -related (PR) proteins:A focus on PR peptides. Plant Physiol. Biochem.46:941-950.
    Jetiyanon K., Kloepper J. W. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control. 24:285-291.
    Keng S. C., Davinder P. S., Jennifer M. R. 1997. A single precursor protein for Ferro-chelatase-I from A rabidopsis is imported in vitro into both chlorop last and mitochondria. J. Biol. Chem. 272(44):27565-27571.
    Kloepper J. W., Ryu C. M., Zhang S.2004. Induced systemic resistanc and promotion of plant growth by Bacillus spp. Phytopathology.94(11):1259-1266.
    Koukol J., Conn E. E.1961. The metabolism of aromatic and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem.236:2692-2698.
    Lagrimini L. M., Burkhart W., Moyer M., et al.1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. U.S.A. 84:7542-7546.
    Laing S. A. K., Deacon J. W. 1990. Aggressiveness and fungal host ranges of myco- parasitic Pythium species. Soil Biol. Biochem.22:905-911.
    Laing S. A. K., Deacon J. W. 1991. Video microscopical comparison of mycoparasitism by Pythium oligandrum, P.nunn and an unnamed Pythium species. Mycol. Res.95(4):469-479.
    Lavicoli A., Boutet E., Buchala A. 2003. Induced systemic resistance inArabidopsis thalianain response to root inoculation with Pseudomonas fluorescens CHAO. Mol. Plant Micro. Inter.16(10):851-858.
    Leeman M., Van Pelt J. A., DenOuden F. M.1995. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology.85:1021-1027.
    Leeman M., DenOuden F. M., Van Pelt J. A.1996. Iron availability affects induction of systemic resistance against fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology.86:149-155.
    Lewis K., Whipps J. M., Cooke R. C.1989. Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist. In Biotechnology of fungi for improving plant growth (Whipps J M and Lumdsen R D eds.). Cambridge University Press (Cambridge).91-217.
    Lherminier J., Benhamou N., Larrue J.2003. Cytological characterization of elicitin -induced protection in tobacco plants infected by Phytophthora parasitica. or phytoplasma. Phytopathology.93:1308-1319.
    Lifshitz R., Dupler M., Elad Y.1984. Hyphal interactions between a mycoparasite, Pythium nunn, and several soil fungi. Can. J. Microbiol.30:1482-1487.
    Liu H. X., Jiang W. B., Bi Y, et al.2005. Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biol. Technol.35:263-269.
    Liu J., Tian S. P., Meng X. H., et al.2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol.44:300-306.
    Livak K. J., Schmittgen T. D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.25(4): 402-408.
    Long W. W., Wang P., Feng X. M. 2000. Research progress on PGPR /AMF interactions. Chinese Journal of Appiedl Ecology.11(2):311-314.
    Lu Z., Tombolini R., Woo S.2004. In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Envir. Microbiol.70:3073-3081.
    Madsean A. M., Neergaard E. 1999. Interaction between the mycoparasite Pythium oligandrum and sclerotia of the plant pathogen Sclerotinia sclerotiorum. Eur. J. plant pathol.105:761-768.
    Martin F. N., Hancock J. G. 1987. The use of Pythium oligandrum for biological control of pre-emergence damping-off caused by P. ultimum. Phytopathology. 77(7):1013-1020.
    Maurhofer M., Hase C., Meuwly P.1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: Influence of the gac Agene and of pyover-dine production. Phytopathology.84:139-146.
    Mcquilken M. P., Whipps J. M., Cooke R. C.1990. Control of damping-off in cress and sugar beet by commercial seed coating with Pyhium oligandrum. Plant Pathol.39:452-462.
    Mehdy M. C.1994. Active oxygen species in plant defence against pathogens. Plant Physiol.105:467-472.
    Melchers L. S., Apotheker-de M. Groot V., et al.1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity, Plant J.5:469-480.
    Metraux J. P., Streit L., Staub T.1988. A pathogenesis-related protein in cucumber is a chitinase, Physiol. Mol. Plant Pathol.33:1-9.
    Meziane H., van der Sluis I., van Loon L. C. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathol.6(2):177-185.
    Molloy C., Cheah L. H., Koolaard J. P.2004. Induced resistance against Sclerotinia sclerotiorum in carrots treated with enzymatically hydrolysed chitosan. Postharvest Biol. Technol.33:61-65.
    Mulligan D. F. C., Deacon J. W.1992. Detection of presumptive mycoparasites in soil placed on host-colonized agar plates. Mycol. Res.96:605-608.
    Okushima Y., Koizumi N., Kusano T., et al.2000. Secreted proteins of tobacco cultured BY2 cells:identification of a new member of pathogenesis-related proteins. Plant Mol. Biol.42:479-488.
    Ongena M., Duby F., Rossignol F. 2004. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a non pathogenic Pseudomonas strain. Mol.r Plant-Microbe Inter.17:1009-1018.
    O Sullivn D. J., O'Gara F. 1992. Traits of fluoresecent Pseudomonas spp. Involved in supperession of plant root pathogens. Microbiological Review. 56(4):662-676.
    Picard K., Ponchet M., Blein J. P., et al. Oligandrin.2000. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol.124(1): 379-395.
    Picard K., Tirilly Y., Benhamou N. 2000. Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum. Appl. Environ. Microbiol. 66:4305-4314.
    Pirie A., Mullins M. G. 1976. Changes in anthocyanin and phenolic content of grapevine leaf and fruit tissue treated with sucrose, nitrate and abscisic acid. Plant Physiol. 58:472-486.
    Poromarto S. H., Nelson B. D., Freeman T. P. 1998. Association of binucleate Rhizoctonia with soybean and mechanism of biocontrol of Rhizoctonia solani. Phytopathology.88:1056-1067.
    Reitz M., Oger P., Meyer A. 2002. Importance of the O-antigen, core-region and lipid A of rhizobial lipopoly saccharides for the induction of systemic resistance in potato to Globodera pallida. Nematology.4:73-79.
    Rey P., Benhamou N., Wulff J. 1998. Interactions between tomato (Lycopersicon esculentum) root tissues and the mycoparasite Pythium oligandrum. Physiol. Mol. Plant Pathol.53:105-122.
    Robert N., Roche K., Lebeau Y., et al. 2002. Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens. Plant Sci. 162:389-400.
    Rodov V, Ben-Yehoshua S., D'hallewin G. 1994. Accumulation of phytoalexins scoparone and scopoletin in citrus fruits subjected to various postharvest treatments. Acta Hortic.381:517-523.
    Ryals J. A., Neuenschwander U. H., Willits M. G., et al.1996. Systemic acquired resistance. Plant Cell.8:1809-1819.
    Ryu C. M., Farag M. A., Hu C. H. 2004. Bacterial volatiles induced systemic resistance in Arabidopsis. Plant Physiol.134(3):1017-1026.
    Ryu C. M., Murphy J. F., Mysore K.S. 2004. Plant growth-promoting rhizobacteria systemically protection Arabidopsis thaliana against cucumber mosaic virus by salicylic acid and NPR1-independent and jasmonic acid dependent signaling pathway. Plant Journal.39(3):381-392.
    Sarig P., Zahavi T., Zutkhi Y., et al. 1996. Ozone for control of post-harvest decay of table grapes caused by Rhizopus stolonifer. Physiol Mol Plant Pathol. 48(6):403-415.
    Schisler D. A., Slininger P. J., Behle R.W.2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology.94:1267-1271.
    Sela-Buurlage M. B., Ponstein A. S., Bre-Vloemans S. A., et al.1993. Only specific tobacco (Nicotiana tabacum) chitinases and P-1,3-glucanases exhibit antifungal activity. Plant Physiol.101:857-863.
    Shibuya N., Minami E. 2001. Oligosaccharide signalling for defense responses in plant. Physiol. Mol. Plant Pathol. 59:223-233.
    Shigehito T., Hideto T. 2009. Foliar spray of a cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot in sugar beet. J Gen Pathol.75: 340-348
    Shoresh M., Yedidia I., Chet I. 2005. Involvement of jasmonic acid /ethylene signaling pathway in the systematic resistance induced in cucumber by Trichoderma asperellum T-203. Phytopathology.95:76-84.
    Siddiqui I. A., Shaukat S. S.2003. Suppression of root-knotdisease by Pseudo-monas fluorescens CHAO in tomato:Importance of bacterial secondary metabolite,2,4-diacetyl pholoroglucinol. Soil Biology and Biochemistry.35: 1615-1623.
    Siddiqui I. A., Shaukat S. S.2004. Systemic resistance in tomato induced by biocontrol bacteria against the root knotnematode, Meloidogyne javanicais independent of salicylic acid production. J. Phytopathol.152:48-54.
    Sneh B., Humble S. J., Lockwood J. L.1977. Parasitism of oospores of Phyto-phthora spp., Pythium sp., and Aphanomyces euteiches by filamentous fungi, chytrids, actinomycetes and bacteria. Phytopathology.67:622-628.
    Somssich I. E., Schmelzer E., Bollmann J., et al. 1986. Rapid activation by fungal elicitor of genes encoding "pathogenesis-related" proteins in cultured parsley cells. Proc. Natl. Acad. Sci. U.S.A.83:2427-2430.
    Spoel S. H., Koornneef A., Claessens S. M. C.2003. NPR1 modulates cross-talk between salicylate-and jas-monate-dependent defense pathways through a novel function in the cytosol. Plant Cell.15:760-770.
    Sticher L., Mauch-Mani B., Metraux J. P.1997. Systemic acquired resistance. Annu. Rev. Phytopathol.35:235-270.
    Struszyk H.1997. New. Applications of chitin and its derivatives in plant protection. In:Henryk Struszyk(eds). Applications of chitin and chitosan, Lancaster:Technomic Publishing Company.129-139.
    Suzanne P. C., Tan F. C., Nak rieko K. A.2002. Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chlorop last. J. Biol. Chem.277 (7):5562-5569.
    Takenaka S., Nishio Z., Nakamura Y. 2003. Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum. Phytopathology.93:1228-1232.
    Terada M., Watanabe Y., Kunitoma M.1978. Differential rapid analysis of ascorbic acid and ascorbic 2-sulfate by dinitrophenylhy drazine method. Anal. Biochem. 84:604-608.
    Terras F. R., Eggermont K., Kovaleva V., et al. 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell.7:573-588.
    Terry L. A., Joyce D. C.2004. Elicitors of induced disease resistance in harvested horticultural crops:a brief review. Postharvest Biol. Technol.32:1-13.
    Tian S. P., Chan Z. L. 2004. Potential of induced resistance in postharvest diseases control of fruits and vegetables. Acta Phytopathol. Sinica.34:385-394.
    Tian S. P., Fan Q., Xu Y. 2002. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopuss TolonIFEr. Plant Pathology.51:352-358.
    Tian S. P., Wan Y. K., Qin G. Z., et al. 2006. Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Appl. Microbiol. Biotechnol.70:729-734.
    Tjamos S. E., Flemetakis E., Paplomatas E. J. 2005. Induction of resistance to Verticillium dahliaein Arabidopsis thaliana by the biocontrol agent K-165 and patho-genesis-related proteins gene expression. Mol. Plant-Microbe Interac. 18(6):555-561.
    Tripathi P., Dubey N. K. 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol.32:235-245.
    Van Loon L. C., Bakker P. M. 2005. Induced systemic resistance as amechanism of disease suppression by rhi-zobacteria// Siddiqui ZA, ed. PGPR:Biocontrol and Biofertilization. Dordrecht:Springer:39-66.
    Van Loon L. C.1982. Regulation of changes in proteins and enzymes associated with active defense against virus infection, in: R.K.S. Wood (Ed.), Active Defense Mechanisms in Plants. Plenum Press, New York,247-273.
    Van Loon L. C., Bakker P. M., Pieterse C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol.36:453-483.
    Van Peer R., Schippers B.1992. Lipopolysaccharides of plant-growth promoting Pseudomona ssp. Strain WCS417r induce resistance in carnation to fusarium wilt. Netherlands J. Plant Pathol. 98:129-139.
    VanWees S. C., Pieterse C. M., Trijssenaar A. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact.10:716-724.
    Vera P., Conejero V. 1988. Pathogenesis-related proteins of tomato P-69 as an alkaline endoproteinase. Plant Physiol.87:58-63.
    Verhaar M. A., Hijwegen T., Zadoks J. C.1996. Glasshouse experiments on biocontrol of cucumber powdery mildew (Sphaerotheca fuliginea) by the mycoparasites verticillium lecanii and Sporothrix rugulosa. Biol. Control. 6:353-360.
    Vesely D.1979. Use of Pythium oligandrum to protect emerging sugar beet. In Soil-Borne Plant Pathogens (Schippers B and Grams W eds.). Academic Press (London):593-595.
    Villajuan-Abgona R., Kageyama K., Hyakumachi M.1996. Biocontrol of Rhizoctonia damping-off by non-pathogenic binucleate Rhizoctonia. Eur. J. Plant Pathol.102:227-235.
    Viterbo A., Harel M., Horwitz B. A.2005. Tri-choderm amitogen activated protein kinase signaling is involved in induction of plant systemic resistance.. Appl. Environ. Microbiol.71(10):6241-6246.
    Wang F. D., Feng G. H., Chen K. S.2009. Defence responses of harvested tomato fruit to burdock fructooligosaccharide, a novel protential elicitor. Postharvest Biol. Technol.52:110-116.
    Ward E. R., Uknes S. J., Williams S. C., et al.1991. Coordinate gene activity in response to agents those induce systemic acquired resistance. Plant Cell. 3:1085-1094.
    Wei Y., Zhang Z., Andersen C. H., Schmelzer E., et al.1998. Thordal-Christensen, An epidermis /papilla -specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol. Biol. 36:101-112.
    Weller D. M.1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Eur. J. Plant Pathol.26:379-407.
    Weller D. M., Van Pelt J. A., Mavrodi D. V. 2004. Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringaepv. Tomato by 2,4 -diacety lphloro-glucinol (DAPG)-producing Pseudomonas fluorescens. Phytopathology.94: S108.
    Wirsel S. G. R., Leibinger W., Ernst M.. 2001. Genetic diversity of fungi closely associated with common reed. New Phytologist.149:589-598.
    Wulff E G., Pham A. T. H., Cherif M. M. et al. 1998. Inoculation of cucumber roots with zoospores of mycoparasitic and plant pathogenic Pythium species: Differential zoospore ccumulation, colonization ability and plant growth response. Eur. J. Plant Pathol.104:69-76.
    Xu S., Zhuang J. H., Gao Z. G. 2005. Induced resistance to Fusarium oxysporuminmel on treated with combination of Trichoderma viridand endophytic bacteria Bacillus subtilis. Chinese Journal of Biological Control. 21(4):254-259.
    Xu X.B., Qin G. Z., Tian S. P. 2008. Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen. Int. J. Food Microbiol.126:153-158.
    Xue L., Charest P. M., Jabaji-Hare S. H.1998. Systemic induction of peroxidases, β-1,3-glucanases, chitinases, and resistance in bean plants by binucleate Rhizoctonia species. Phytopathology.88:359-365.
    Yang H. L., Sun X. L., Song W.2000. Current development on induced resistance by plantgrowth promoting and endophytic bacteria. Acta Phytopathologica Sinica, 30(2):106-110.
    Yedidia I., Benhamou N., Chet Ⅰ. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appli. Environ. Microbiol.65(3):1061-1070.
    Yedidia I., Benhamou N., Kapulnik Y.2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem.38:863-873.
    Yedidia I., Shoresh M., Kerem Z. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymansin cucumber by Trichoderma asperellum(T-203) and accumulation of phytoalexins. Appli. Environ. Microbiol. 69:7343-7353.
    Yuen G. Y., Craig M. L., Giesler L. J. 1994. Biological control of Rhizoctonia solani on tall fescue using fungal antagonists. Plant Dis.78:118-123.
    Zhang Z., David. B., Collinge, et al. 1995. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J.8:139-145.
    Zhu Q., Dabi T., Bceche A. 1995. Cloning and properties of a rice gene encoding phenylalanine ammoniar lyase. Plant Mol. Biol.29:535-550.
    Zhu Q., Droge L., Dixon R. A., et al. 1996. Transcriptional activation of plant defense genes. Curr. Opin. Gen. Der.6:624-630.
    Zhu Q., Maher E. A., Masoud S., et al.1994. Enhanced protection against fungal attack by constitutive coexpression of chitinase and glucanase genes in transgenic tobacco. Nature Biotechnol.12:807-812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700