用户名: 密码: 验证码:
鸡胚原始生殖细胞发育调控及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家禽常被用作发育生物学研究的动物模型,很多研究致力在更深层次揭示家禽发育的机理,尤其是生殖系统的发育,在内源性调节的基础上试图通过外源性调控,以提高家禽的繁殖性能。本实验以艾维因鸡胚为材料,分离了胚胎期原始生殖细胞(primordial germ cell,PGC),并进行原代和传代培养,研究了表皮生长因子(EGF)、雌激素(17β-estradiol)和人参皂甙对PGC增殖的作用及其胞内信号传导机制,同时还探索了维甲酸(RA)在PGC减数分裂启动过程中的调控作用。为改善家禽繁殖性能的营养调控、转基因家禽的制备提供理论依据和实验平台。
     1.鸡胚PGC的分离、培养及鉴定
     在体视显微镜下用玻璃针分离19期3.5d鸡胚生殖嵴部位(去除头突、心脏、尿囊膜和尾部,取后肠前1/3的背外侧组织)或28期5.5d鸡胚性腺(从中肾中剥离出来),胰蛋白酶+EDTA消化分散组织,用含10%胎牛血清和10 ng/ml白血病抑制因子(LIF)的KO-DMEM培养液体外共培养PGC和体细胞的方式建立原代培养,然后传代培养于鸡胚成纤维细胞饲养层上进行进一步培养。同时我们从13-15期鸡胚血管中分离提取PGC进行原代和饲养层上传代培养。传至3-5代后,分离PGC集落,用碱性磷酸酶(AKP)、过碘酸雪夫氏(PAS)化学反应及c-kit、SSEA-1,3,4、EMA-1等免疫细胞化学鉴定PGC,用BrdU掺入法检测细胞的增殖活性。并采用RT-PCR方法检测干细胞多能性相关基因(Pou5fl, Sox2, Nanog, AP和Tert),生殖细胞特异性基因(c-kit, Vasa和Dazl)和减数分裂标记基因(Stra8和Scyp3)。上述结果表明PGC-体细胞原代共培养再传代于饲养层上培养的模型是可以用于PGC增殖活性调控的研究。
     2.EGF对鸡胚PGC增殖的影响及其机理的研究
     本实验研究了EGF对鸡胚PGC增殖的影响及其相关的信号传递途径。结果表明:经过EGF(10-100 ng/m1)处理后,PGC的克隆数目和面积呈时间和剂量依赖性显著增加。EGF激活蛋白激酶C (PKC),但是这种作用被EGF受体磷酸化抑制剂AG1478及细胞内钙离子螯合剂EGTA所阻断。此外,EGF还能促进细胞核因子NF-κB (p65)核转位及IkBα的降解,但此效应均可被AG1478, EGTA,H7(PKC抑制剂)及SN50(NF-κB特异性抑制剂)所抑制。实验还表明EGF诱导的PGC促增殖作用分别被AG1478, EGTA, H7及SN50显著抑制。EGF能促进细胞周期蛋白Cyclin Dl/周期蛋白依赖激酶CDK6, Cyclin E/CDK2及凋亡抑制因子Bcl-2的表达:同时,下调促凋亡因子Bax的表达,抑制细胞凋亡蛋白酶3/9的活性,并且这些作用都被AG1478, EGTA, H7和SN50阻断。从而说明EGFR, PKC, NF-κB信号通路介导EGF诱导的DNA合成及抗凋亡作用。以上结果表明:在体外培养条件下,EGF能过Ca2+/PKC, NF-κB信号途径促进鸡胚PGC的增殖,揭示EGF信号通路在调控鸡胚胎生殖细胞发育中起着重要的作用。3.雌激素对鸡胚PGC增殖调控机理的研究
     我们研究了17p-雌二醇(E2)对鸡胚PGC增殖的影响,以及GPR30介导的具体的信号转导途径。结果表明,向0日龄鸡蛋卵黄中注射E2,在5天性腺(27期)中我们发现SSEA-1阳性细胞数明显高于对照组(注射DMSO)。在体外培养模型中,我们首次发现第5天性腺PGC表达GPR30,但并不表达传统的雌激素受体ERα和ERβ。1-100 nM E2以剂量依赖和时间依赖模式显著增加PGC克隆团的数量和面积。Western blot分析显示E2能激活PGC中Akt活性,GSK3β和β-连环蛋白的磷酸化水平,这些刺激作用分别被AG1478, LY294002(P13K抑制剂),KP372-1(Akt抑制剂)和GPR30 SiRNA所阻断,但是ER抑制剂ICI182,780并没有明显的抑制作用。我们还发现E2对PGC克隆团数目和面积的正调控作用被AG1478, LY294002, KP372-1和GPR30 SiRNA抑制,但被GPR30激活剂G-1和GSK3β抑制剂BIO所提高。Real-time RT-PCR结果显示,E2显著上调PGC中细胞周期蛋白cyclinDl/E,CDK2/6和原癌基因c-fos, c-myc的mRNA丰度,但是这种上调作用被AG1478、Y294002、KP372-1和GPR30 SiRNA抑制。综上所述,E2通过GPR30, EGFR, PI3K/Akt和GSK3β/β-连环蛋白信号级联反应刺激鸡胚性腺PGC的增殖。这些发现提示,E2/GPR30信号在性腺分化前生殖细胞发育中扮演重要的调控作用。4.人参皂甙对鸡胚PGC增殖的调控及其机制的研究我们就人参皂甙(ginsenosides)对鸡胚PGC的促增殖作用及所涉及的NF-kB信号途径进行研究。从3.5-4天的鸡胚中分离PGC,在添加5%胎牛血清和10 ng/ml的LIF的DMEM培养液中进行原代培养24小时。传代培养于饲养层上的PGC,用人参皂甙单独处理,或联合PKC抑制剂H7或激活剂佛波酯(PMA)处理24h。此外,通过Western blot分析了NF-κB的核转移和IκBα的降解水平。结果表明,1-100μg/ml人参皂甙以剂量依赖方式显著增加了PGC克隆团的数量和面积,但是这种正调控作用明显被10-6M的H7抑制。同时PKC免疫组化结果显示,经过人参皂甙处理后,PGC克隆团中大部分PKC转移到细胞膜上着色,说明PKC已被激活。并且,1-10μg/ml人参皂甙刺激NF-κB (p65)从PGC胞质向细胞核转移。然而,人参皂甙诱导的NF-κB核转移和IκBα降解作用被10-6M的H7显著阻断。以上结果揭示,人参皂甙能通过激活PKC/NF-κB信号途径促进鸡胚PGC的增殖。
     5.维甲酸(RA)对鸡胚PGC减数分裂的影响
     本实验我们以在体外长期培养的血液PGC为研究对象,探索RA在调控鸡胚胎期生殖细胞减数分裂中是否起着保守作用,及其RA能否直接作用于PGC上。结果表明,在27期鸡胚性腺体外培养体系中添加RA能明显使减数分裂相关基因Stra8, Sycp3和Dmcl的mRNA表达水平上调。在血液PGC无饲养层的培养模型中,RA急剧上调雌性和雄性PGC中Stra8, Sycp3和Dmcl的mRNA表达水平。流式分析结果显示,PGC经过RA处理4天后,29.5%雄性PGC和58.7%雌性PGC处于亚G1期(1n),说明此部分细胞已经进入减数分裂期。吉姆萨染色结果表明雄性PGC和雌性PGC在经RA诱导进入减数分裂偶线期和粗线期的能力不一样,雌性PGC在RA的诱导下更易进入偶线期和粗线期。综上所述,我们首次报道了RA能直接作用于PGC上从而刺激PGC进入减数分裂期,其中雌性PGC更易进入减数分裂。
     以上实验结果表明:从不同时期鸡胚分离出来的PGC进行原代共培养,再传代于鸡胚成纤维细胞饲养层上所建立的传代PGC培养模型可用于PGC增殖和分化调控的研究,经AKP、PAS及c-kit和SSEA-1、3、4免疫细胞化学染色等多种方法证实了PGC的原始性。在此模型上发现内源性因子EGF和外源性植物提取物人参皂甙在PGC体外扩增中的有丝分裂原作用及其分子机理;首次报道新型雌激素受体GPR30在鸡胚性腺组织和PGC中的表达情况,及其在雌激素诱导的鸡胚PGC增殖中的介导作用;同时首次证实了RA能直接促进鸡胚胎期生殖细胞进入有丝分裂。这些发现将为提高家禽繁殖性能的营养调控、制备嵌合体和转基因家禽提供理论指导和实验平台。
Poultry species has always been used as animal model for the research in developmental biology for profound elucidation of the mechanisms underlining poultry development, especially the reproductive system. The reproductive performance of poultry could be greatly improved by external manipulation based on endogenous regulating mechanisms. In this study primordial germ cells (PGCs) were isolated from Avian chicken embryo, and then subcultured on feed layer after initial primary culture with somatic cells. In addition, the effect of EGF, E2 and Ginsenosides on proliferation of cultured PGCs were evaluated, together with the underlining mechanisms. Meanwhile, we also investigate the effect of RA on the initiation of meiosis in chicken PGCs. These studies will provide theoretic guidance and experimental platform for improving poultry reproductive performance and preparation of transgenic poultry.
     1. Isolation, culture and identification of chicken PGCs
     PGCs were collected from stage 14 chicken embryonic blood, stage 19 embryonic genital ridges or stage 27 embryonic gonads with a fine glass needle under a microsurgery scope. For primary culture, cell suspension containing both PGCs and somatic cells was seeded onto gelatin-treated 35 mm culture plates at a density of 1×106/well in DMEM supplemented with 5% fetal calf serum (FCS), 10ng/ml leukemia inhibitory factor (LIF),10ng/ml human basic fibroblast growth factor (bFGF), 0.1mmol/L MEM nonessential amino acids, 0.1mmol/L 2-mercaptoethanol, 2mmol/L L-glutamine (GIn), 100U/ml penicillin and 100μg/ml streptomycin. The seeded cells were then maintained at 38.5℃in 5% CO2/95% air with 60%-70% relative humidity until the PGCs colonized as a primary culture. To trace the origin of the colonies, the primary formed colonies were picked up with a fine glass needle, dissociated with 0.25% trypsin-EDTA 5 days after plating and then subjected to RT-PCR analysis for expression of PGC-specific markers. For further subculture, colonies that were positive for PGC markers were picked up and treated with 0.25% trypsin-EDTA to achieve single cell suspension and reseeded onto 6-well dishes. After three passages, staining of periodic acid-Schiff regent (PAS), stage-specific embryonic antigens (SSEA-1, SSEA-3 and SSEA-4) immunocytochemistry, and the expression of the pluripotency-associated genes cPouV, cNanog and Sox2; germ cell-specific genes c-kit, Vasa, Dazl, Stra8 and Scyp3 analysis all confirmed the characteristics of cultured PGC. The above results indicated that the primary and subculture models of PGCs could be used for studies about regulation of PGC proliferation.
     2. Effects of EGF on proliferation of chicken PGCs
     In the present study, the effects of EGF and the EGF-related signaling pathway on proliferation of chicken primordial germ cells (PGC) were investigated. Results showed that EGF (10-100 ng/ml) increased the number and area of PGC colonies in a time and dose-dependent manner. EGF also activated PKC, a process that was inhibited by AG1478 (an EGFR tyrosine kinase inhibitor) and EGTA (an intracellular Ca2+ chelator). In addition, the degradation of IκBαand nuclear factor NF-κB (p65) translocation were observed after EGF treatment, which were significantly blocked by pretreatment with AG1478, EGTA, H7 or SN50 (NF-κB-specific inhibitor). Furthermore, we found that EGF-induced cell proliferation was significantly attenuated by AG1478, EGTA, H7 and SN50, respectively. On the other hand, inhibition of EGFR, Ca2+/PKC or NF-kB abolished the EGF-stimulated increase in the expression of cyclins CCND1 and CCNEI, cyclin-dependent kinase 6 (CDK6), CDK2 and BCL2, and restored the EGF-induced inhibition of BAX expression and caspase3/9 activity, indicating that EGFR, PKC and NF-kB signaling cascades were involved in EGF-stimulated DNA synthesis and anti-apoptosis action. In conclusion, EGF stimulated proliferation of chicken PGCs via activation of Ca2+/PKC involving NF-κB signaling pathway. These observations suggest that EGF signaling is important in regulating germ cell proliferation in the chicken embryonic gonad.
     3. Involvement of GPR30 on E2-induced proliferation of chicken PGCs
     In the present study, The effect of 17β-Estradiol (E2) on chicken primordial germ cells (cPGC) was evaluated and the involvement of GPR30 as well as the underlying signaling pathway were investigated. Results showed that after injection of 100μg/ml E2 into dayO eggs, the percentage of SSEA-1 positive cells in day5.0 embryonic gonad was increased. Using the cPGC culture in vitro system, we first demonstrated that cPGCs express GPR30, however, both ERa and ERβwere not detected. Treatment with (1-100 nM) E2 significantly increased the area and number of cPGC colonies in a time-and dose-dependent manner. E2 also activated Akt, a process that was inhibited by AG1478 (EGFR inhibitor), LY294002 (PI3K inhibitor) or silencing GPR30 expression. However, ER inhibitor ICI182780 had no obvious inhibitory effect on this response. In addition, the phosphorylation of GSK3P and P-catenin translocation were observed after E2 treatment, which were significantly blocked by pretreatment with AG1478, LY294002, KP372-1(Akt inhibitor) and was enhanced by GSK3 inhibitor BIO. Furthermore, we found that E2-induced cell proliferation was significantly attenuated by AG1478, LY294002, KP372-1 or silencing GPR30 and was accelerated by BIO or GPR30 agonist G-1. On the other hand, E2 increased expression of cyclins CCND1 and CCNE1, cyclin-dependent kinase 6 (CDK6), CDK2 and protooncogenes (c-fos and c-myc). Increases of these cell cycle regulators and protooncogenes were abolished by inhibition of GPR30, EGFR, PI3K/Akt, or GSK3β/β-catenin. In conclusion, E2 stimulated proliferation of chicken PGCs via GPR30, EGFR, PI3K/Akt, and GSK3β/β-catenin signaling cascades. These observations suggest that E2/GPR30 signaling might play an important role in regulating germ cell development in the chicken embryonic gonad of early stage.
     4. Effects of ginsenosides on PGC in vitro expansion
     The effect of ginsenosides on proliferation of chicken primordial germ cells (PGCs) was evaluated and involvement of NF-κB in the signaling pathway was investigated. PGCs were isolated from the genital ridge of 3.5-4 day embryos and cultured in DMEM supplemented with 5%FCS and 10 ng/ml LIF. PGCs subcultured on chicken embryonic fibroblast feeder were challenged with ginsenosides alone or in combination with PKC inhibitor H7 or activator phorbol 12-myristate 13-acetate (PMA) for 24h. Moreover, the translocation of NF-κB and degradation level of IκBαwas investigated by Western blotting analysis. Results show that PGCs were identified by periodic acid-Schiff, alkaline phosphatase histochemistry as well as c-kit, SSEA-1 and Oct-4 immunocytochemistry. Treatment with ginsenosides at 1-100μg/ml significantly increased the number and area of PGC colonies in a dose-dependent manner. However, this proliferating effect was obviously attenuated by combined treatment of H7(10-6-10-8M). Similarly, PKC staining of PGC colonies was more intensive after ginsenosides treatment compared with the control group. In addition, treatment with ginsenosides at 1-10μg/ml stimulated the translocation of NF-κB (p65). However, the NF-κB translocation and the degradation of IκBαwere significantly blocked by combined treatment with H7 (10-6M). These results indicated that ginsenosides promote proliferation of chicken PGCs through activation of PKC-involved NF-κB signaling pathway.
     5. Effect of RA on meiosis initiation of chicken PGCs
     Here we used the successful long-term culture of chicken PGCs, to investigate if retinoid acid (RA) play a conserved role in regulating entry into meiosis, and does RA act directly on PGCs or indirectly. Results showed that, using organ culture in vitro, addition of RA in stage 27 chicken gonads of both sexes siginificantly increase the mRNA expression of premeiotic gene Stra8, as well as meiotic markers Sycp3 and Dmcl. Using purified chicken PGCs culture with or without feeder layer, RA dramatically upregulated the Stra8 in both male and female PGCs, in parallel to similar increases in expressions of Dmcl and Sycp3. Flow cytometry analysis showed that, after 4-day RA treatment,29.5% male PGCs and 58.37% female PGCs were at sub G1 phase, indicating cells had entered meiosis. Statistatical analysis of giemsa stained cells showed the difference between female and male PGCs in the capability to enter into meiosis induced by RA and reach the zygotene/pachytene stage, male PGCs appeared lower capability to progress beyond zygotene/pachytene. In conclusion, we reported here for the first time that RA could induced chicken PGCs of both sexes to enter meiosis, and female PGCs respond more intensively to RA.
     The above results indicated that the primary and subculture models of PGCs from chicken embryos of different stages could be used to study the effects of endogenous and exogenous factors on proliferation and differentiation of cultured PGCs. PGCs were characterized by staining of AKP, PAS, c-kit and SSEA-1,3,4 immunocytochemistry. The pluripotency of PGCs was also demonstrated. EGF and GS were found to promote PGC proliferation through PKC-NF-κB signaling pathway. We first reported the involvement of the novel estrogenic receptor,GPR30 in the E2-induced proliferation of chicken PGC. We also first demonstrated the onset of meiosis in chicken PGC induced by RA. These findings provide theoretic guidance and experimental platform for improving poultry reproductive performance and preparation of chimeras and transgenic poultry.
引文
Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V, Carpino, Oprea TI, Prossnitz ER, Musti AM, Ando S, Maggiolini M. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 2007; 67:1859-1866.
    Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA 2008; 105:14976-14980.
    Anish AS, Philip WL. Regulation of stem cell maintenance and transit amplifying cell proliferation by TGF-β signaling in Drosophila spermatogenesis. Current Biol 2003; 13:2065-2072.
    Attele AS, Wu JA, Yuan CS. Ginseng pharmacology:multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693.
    Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001; 21:7194-7202.
    Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2007; 25:500-510.
    Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 2006; 38:1430-1434.
    Banan A, Fields JZ, Zhang Y, Keshavarzian A. Key role of PKC and Ca2+ in EGF protection of microtubules and intestinal barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 2001; 280:828-843.
    Banzi M, Aguiari G, Trimi V, Mangolini A, Pinton P, Witzgall R, Rizzuto R, Senno L. Polycystin-1 promotes PKCa-mediated NF-κB activation in kidney cells. Biochem Biophys Res Com 2006; 349:987-994.
    Bednarczyk M, Lakota P, Slomski R, et al. Reconstitution of a chicken breed by interse mating of germline chimeric birds. Poult Sci 2002; 81:1347-1353
    Berg C, Halldin K, Fridolfsson A K, et al. The avain egg as a test system for endocrine disrupters: effects of diethylstilbestrol and ethynylestradiol on sex organ development. Sci Total Environ 1999; 233:57-66.
    Besson, A, Dowdy, SF, Roberts, JM. CDK inhibitors:cell cycle regulators and beyond. Development Cell 2008; 14:159-169.
    Blyszczuk P, Czyz J, Kania C, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. PNAS 2003; 100:998-1003.
    Birkenfeld HP, Mclnntyre BS, Briski KP, Sylvester PW. Role of protein kinase C in modulating epidermal growth factor-and phorbol ester-induced mammary epithelial cell growth in vitro. Exp Cell Res 1996; 223:183-191.
    Biswas DK, Cruz AP, Gansberger E, Pardee AB. Epidermal growth factor-induced nuclear factor κB activation:A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA 2000; 97:8542-8547.
    Brazolot CL, petite JN, etches RJ, et al. Efficient transfection of chicken cells by lipofection, and introduction of transfected blastodermal cells into the embryo. Mol Repro and Development 1991; 30:304-312.
    Bruggeman V, Van As P, Decuypere E. Developmental endocrinology of the reproductive axis in the chicken embryo. Comp Biochem Physiol A Mol Integr Physiol 2002; 131:839-46.
    Boccellino M, Giuberti G, Quagliuolo L, Marra M, D' Alessandro AM, Fujita H, Giovane A, Abbruzzese A, Caraglia M. Apoptosis induced by interferon-alpha and antagonized by EGF is regulated by caspase3-mediated cleavage of gelsolin in human epidermoid cancer cells. J Cell Physiol 2004; 201:71-83.
    Bouillet, P., Qulad-Abdelghani, M., Vicaire, S., Gamier, J. M., Schuhbaur, B., Dolle, P. and Chambon, P. Efficient cloning of cDNAs of retinoic acidresponsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene, Stral (mouse LERK-2/Eplg2). Dev Biol 1995; 170:420-433.
    Boulogne B, Levacher C, Durand P and Habert R. Retinoic acid receptors and retinoid X receptors in the rat testis during fetal and postnatal development:immunolocalization and implication in the control of the number of gonocytes. Biol Reprod 1999; 61:1548-1557.
    Bowles J, Knight D, Smith C, Wilhelm D, Richman JM, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson M J, Rossant J, Hamada H, Koopman P. Sex-specific regulation of retinoic acid levels in developing mouse gonads determines germ cell fate. Science 2006; 312:596-600.
    Bowles J, Koopman P. Retinoic acid, meiosis and germ cell fate in mammals.Development 2007; 134:3401-3411.
    Bruggeman V, Pieter V A, Decuypere E. Developmental endocrinology of the reproductive axis in the chicken embryo. Comp Biochem Physiol Part A 2002; 131:839-846.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15:269-290.
    Buehr M, Mclaren A, Bartley A, Darling S. Proliferation and migration of primordial germ cells in We/We mouse embryos. Dev Dyn 1993; 198:182-189.
    Centyrione L, Di Giulio C, Santavenere E, Cacchio M, SabatiniN, Rapino C, Bianchi G, Rapino M, Bosco D, Antonucci A, Cataldi A. Protein kinase C zeta regulation of hypertrophic and apoptotic events occurring during rat neonatal heart development and growth. Int J Immunopathol Pharmacol 2005; 18:49-58.
    Chamber I, Colby D, Robertson M, et al. Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cell. Cell 2003; 113:643-655.
    Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J 1996; 10:940-954.
    Cherny R A, Merei J. Evidence for pluripotency of bovine primordial germ cell derived cell lines initiated in long-term culture. Theriogenoiogy 1994; 4:175.
    Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH. Reciprocal Transcriptional Regulation of Pou5fl and Sox2 via the Oct4/Sox2 Complex in Embryonic Stem Cells. Mol. Cell. Biol 2005; 25:6031-6046.
    Chibazakura T. Cyclin proteolysis and CDK inhibitors. Cell Cycle 2004; 31:243-245.
    Chiquoine AD. The identification, origin, and migration of the primordial germ cells. Anatomical Record 1954; 118:135-145.
    Claswon RC and Domm LV. Developmental changes in glycogen content of primordial germ cells in chick embryo. Proc of the Society For Experi Biol Med 1963; 112:533-537.
    Chang IK, Tajima A, Chikamune T, Ohno T. Proliferation of chick primordial germ cells
    stroma cells from the germinal ridge. Cell Biol Int 1995; 19:143-149.
    Choi S, Lee JH, Kim YI, Kang MJ, Rhim H, Lee SM, Nah SY. Effects of ginsenoside on G protein-coupled inwardly rectifying K+ channel activity expressed in Xenopus oocytes. Eur J Pharmacol 2003; 468:83-92.
    Chuma, S., Nakatsuji, N. Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signalling. Dev Biol 2001; 229:468-479.
    Courtois G. The NF-kappaB signaling pathway in human genetic diseases. Cell Mol Life Sci 2005; 62:1682-1691.
    Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, Korach KS. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 1999; 286:2328-2331
    Couse JF, Korach KS. Estrogen receptor null mice:what have we learned and where will they lead us?Endocr Rev 1999; 20:358-417.
    Coussens M, Yamazaki Y, Moisyadi S, Suganuma R, Yanagimachi R, Allsopp R.Regulation and effects of modulation of telomerase reverse transcriptase expression in primordial germ cells during development. Biology of Reproduction 2006; 75:785-791.
    Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA. International Union of Pharmacology. LXⅣ. Estrogen receptors. Pharmacol Rev 2006; 58:773-781.
    Danielle MM, James LR. Continuing primordial germ cell differentiation in mouse embryo is a cell-intrinsic program sensitive to DNA methylation. Dev Biol 2003; 201-208.
    Dardik A, Schultz RM. Blastocoel expansion in the preimplantation mouse embryo:stimulatory effect of TGF-α and EGF. Development 1991; 113:919-930.
    De Felici M, McLaren A. Isolation of mouse primordial germ cells. Exp Cell Res 1982; 142: 476-482.
    De Felici M, Susanna D, Maurizio Pesce. Proliferation of mouse primordial germ cells in vitro:A role for cAMP. Dev Biol 1993; 157:277-280.
    De Miguel Mp, Cheng L, Holland EC, Federspiel MJ, Donovan PJ.Dissection of the c-kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Pro Natal Acad Sci USA 2002; 99:10458-10463.
    Deroo BJ, Korach KS.Estrogen receptors and human disease. J Clin Invest 2006; 116:561-570.
    Divecha N, Irvine RF. Phospholipid signaling. Cell 1995; 80:269-278.
    Doitsidou M, Reichman-Fried M, Stebler J, et al. Raz E:Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 2002; 111:647-659.
    Dolci S, Williams DE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Lyman SD, Boswell HS, Donovan PJ:Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 1991; 352:809-811.
    Edward J. Filardo, Jeffrey A. Quinn, Kirby I. Bland1 and A. Raymond Frackelton Jr. Estrogen-induced activation of Erk-1 and Erk-2 requires the G Protein-Coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Molecular Endocrinology 2000; 14:1649-1660.
    Eihachiro Kawase, Hiroshi Yamamoto. Tumor necrosis factor-α (TNF-α) stimulates proliferation of mouse primordial germ cells in culture. Dev Biol 1994; 161:91-95.
    Elbrecht A, Smith RG. Aromatase enzyme activity and sex determination in chickens. Science 1992; 255:467-70.
    Etches RJ, Gibbins AMV. Manipulation of Avian Genome. CRC Press (Boca Raton) 1993; 322.
    Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154-156.
    Eyal-Giladi H, Ginsburg M and Farbarov A. Avian primordial germ cells are of epiblast origin. J of Embryo and Experi Morpho 1981; 63:139-147.
    Farini D, Scaldaferri ML, Iona S, La Sala G, De Felici M. Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Dev Biol 2005; 285:49-56.
    Feng LX, Chen Y, Dettin L. Generation and in vitro differentiation of a spermatogonia cell line. Science 2002; 297:392-395.
    Ffrench-Constant C, Hollingsworth A, Heasman J. Response to fibronectin of mouse primordial germ cells before, during and after migration. Development 1991; 113:1365.
    Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30:a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol 2002; 80:231-238.
    Filardo EJ, Quinn JA, Bland KI, Frackelton Jr AR.Estrogen induced activation of Erk-1 and Erk-2 requires the G proteincoupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000; 14: 1649-1660.
    Fong H, Hohenstein KA, Donovan PJ. Regulation of Self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 2008; 26:1931-938.
    Fujikura J, Yamato E, Yonemura S, et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 2002; 16:784-789.
    Fujimoto T, Ukeshima A, Kiyofuji R. The origin, migration and morphology of the primordial germ cells in the chick embryo. Anat Rec1976; 185:139-145.
    Fujimito T, Ukeshima A, and Kivofuji R. The origin, migration and morphology of the primordial germ cells in the chick embryos. Anatomical Record 1976; 185:139-154.
    Fujimoto T, Ninomiya T. Ukeshima A. Observations of the primordial germ cells in blood samples from the chick embryo. Dev Biol 1976; 49:278-282.
    Ge CT, Zhang CQ, Ye J, Tang XY, Wu YQ. Ginsenosides promote proliferation of chicken primordial germ cells via PKC-involved activation of NF-κB. Cell Biol Int 2007; 31:1251-1256.
    Gilboa L, Lehmann R. Soma-germline interactions coordinate homeostasisand and growth in the Drosophila gonad. Nature 2006; 443:97-100.
    Ginsburg M, Eyal-Giladi H. Primordial germ cells of the young chick blastoderm originate from the central zone of the area pellucida irrespective of the embryo-forming process. Development 1987; 101:209-219.
    Ginsburg M and Eyal-Giladi H. Temporal and spatial aspects of the gradual migration of primordial germ cells from epiblast into the germinal crescent in the avian embryo. Embryo Experi Morpho 1986; 95:53-71
    Ginsburg M., Primordial germ cell formation in birds [A]. In:J Marsh and J Goode. Germline development, Ciba Foundation Symposium 182 [R]. London.1994; 52-61.
    Glabowski W, Kurzawa R, Wiszniewska B, Baczkowski T, Marchlewicz M, Brelik P. Growth factors effects on preimplantation development of mouse embryos exposed to tumor necrosis factor alpha. Reprod Biol 2005; 5:83-99.
    Goodsell DS. The molecular perspective:epidermal growth factor. Stem Cells 2003; 21:702-703.
    Gomperts M, Garcia Castro M, Wylie C, et al. Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 1994; 120:135-141.
    Grosse R, Roelle S, Herrlich A, Hohn J, Gudermann T. Epidermal growth factor receptor tyrosine kinase mediates Ras activation by gonadotropin-releasing hormone. J Biol Chem 2000; 275:12251-12260.
    Grossoni VC, Falbo KB, Kazanietz MQ de Kier Joffe ED, Urtreqer AJ. Protein kinase C delta enhances proliferation and survival of murine mammary cells. Mol Carcinog 2007; 46:381-390.
    Gu Y, Runyan Ch, Shoemaker A, Surani A, Wylie Chris. Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development 2009; 136:1295-1303.
    Habib AA, Hognason T, Ren J, Stefansson K, Ratan RR. The epidermal growth factor receptor associates with and recruits phosphatidylinositol 3-kinase to the platelet-derived growth factor beta receptor. J Biol Chem 1998; 273:6885-6891.
    Hart AH, Hartley H, Ibrahim M, et al. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 2004;230:187-198.
    Haussler U, von Wichert G, Schmid RM, Keller F, Schneider G. Epidermal growth factor activates nuclear factor kappa B in human proximal tubule cells. Am J Physiol Renal Physiol 2005; 289:808-815.
    Heilig R, Muraskowsky R, Mandel JL. The ovalbumin gene family the 5'end rigion of the X and Ygenes. J Mol Biol 1982; 156:1-19.
    Heldin CH, Miyazono K, Ten Dijke P. TGF-beta signaling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390:465-471.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA. Estrogen receptors:how do they signal and what are their targets. Physiol Rev 2007; 87:905-931.
    Heo JS, Lee YJ, Han HJ. EGF stimulates proliferation of mouse embryonic stem cells: involvement of Ca2+ influx and p44/42 MAPKs. Am J Physiol Cell-Physiol 2006; 290:123-133.
    Hinz M, Krappmann D, Eichten A, Heder A, Scheidreit C, Strauss M. NF-kappa B function in growth control:regulation of CCND1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 1999; 19:2690-2698.
    Hiroyuki H, Airo T,Yusuke Y, Hikaru H, Mari O, Takashi N, Masayoshi A, Tsuyoshi K, Sachiko A, Norihisa N, Naoko M, Shuichi F, Haruo M. Chicken Leukemia Inhibitory Factor Maintains Chicken Embryonic Stem Cells in the Undifferentiated State. J Biol Chem 2004; 23:24514-24520.
    Horuk R. Chemokine receptors. Cytokine Growth Factor Rev.2001; 12:313-335.
    Hsieh HL, Wu CY, Hwang TL, Yen MH, Parker P, Yang CM. BK-induced cytosolic phospholipase A2 expression via sequential PKC-d, p42/p44 MAPK, and NFKB1 activation in rat brain astrocytes. J Cell Physiol 2006; 206:246-254.
    Hua C, Martn M, Matzuk M. Smad5 is required for mouse primordial germ cells development. Mechanism of Development 2001; 104:61-67.
    James LR, Mariastela O, Jonathan RK, Peter JD. Role of fibroblast growth factors and their receptor in mouse primordial germ cell growth. Biol of Reprod 1998; 59:1224-1229.
    Jeong DK, Hong YH, Han JY. Simple separation of chicken gonadal primordial germ cells with and without foreign genes. Cell Biol Int 2002; 26:647-651.
    Johnson MH, Day ML. Egg timers:how is developmental time measured in the early vertebrate embryo? Bioessays 2000; 22:57-63.
    Jung JG, Kim DK, Park TS, Lee SD, Lim JM, Han JY. Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells 2005; 23:689-698.
    Kanda N, Watanabe S.17 beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression. Invest Dermatl 2004; 123:319-328.
    Kanut H, Werz C, Geisler R, Nusslein-Volhard C. A zebrafish homologue of the chemokine receptor CXCR4 is a germ cell guidance receptor. Nature 2003; 421:279-282.
    Karagenc L, Cinnamon Y, Ginsgurg M, Petitte JN. Origin of primordial germ cells in the prestreak chicken embryo. Dev Genet 1996; 19:290-301.
    Karagenc L, Petitte JN. Soluble factors and the emergence of chick primordial germ cells in vitro. Poult Sci 2000; 79:80-85.
    Keshet E, Lyman SD, Williams DE, et al. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J 1991,10:2425-2435.
    Kikuchi A. Regulation of β-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 2000; 268:2432-2438.
    Kim DS, Woo ER, Chae SW, Ha KC, Lee GH, Hong ST, Kwon DY, Kim MS, Jung YK, Kim HM, Kim HK, Kim HR, Chae HJ. Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-κB activation. Life Sci 2007; 80:314-323.
    Kim MA, Park TS. Production of quail germline chimeras by transfer of gonadal primordial germ cells into recipient embryos. Theriogeneology 2005; 63:774-782.
    Kim YH, Han HJ. High-glucose-induced prostaglandin E(2) and peroxisome proliferator-activated receptor delta promote mouse embryonic stem cell proliferation. Stem Cells.2008; 26:745-755.
    Koshimizu U, Watanabe M, Nakatsuji N. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. Dev Bio 1995; 168:683.
    Koubova J, Mencke DB, Zhou Q, Capel B, Griswold MD, Page, DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 2006; 103:2474-2479.
    Kuhholzer B, Baguisi A, Overstrom EW. Long-term culture and characterization of goat primordial germ cells.2000; 53:1071-1079.
    Kunwar PS, Starz-Gaiano M, Bainton RJ. Trel, a G-protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLOS Biol 2003; 1:80.
    Kuwana T and Fujimoto T. locomotion and scanning electron microscopic observation of primordial germ cells from embryonic chick blood in vitro. Anat Rec 1984; 209:337-343.
    Lan L, Wong NS. Phosphatidylinositol 3-kinase and protein kinase C are required for the inhibition of caspase activity by epidermal growth factor. FEBS Lett 1999; 444:90-96.
    Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Dovis AM, Wright CV, Korving JP, Hogan BL. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999; 13:424-436.
    Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 2003; 42:139-148.
    Lee ES, Fukui Y. Effects of various growth factors in a defined culture medium on in vitro development of bovine embryos mature and fertilized in vitro. Theriogenology 1995; 44:71-83.
    Lee MY, Heo JS, Han HJ. Dopamine regulates cell cycle regulatory proteins via cAMP, Ca2+/PKC, MAPKs, and NFKB1 in mouse embryonic stem cells. J Cell Physiol 2006; 208:399-406.
    Li, H. and Kim, K. H. Retinoic acid inhibits rat XY gonad development by blocking mesonephric cell migration and decreasing the number of gonocytes. Biol Reprod 2004; 70:687-693.
    Lin Y, Gill ME, Koubova J, Page DC. Germ cell-intrinsic and-extrinsic factors govern meiotic initiation in mouse embryos. Science 2008; 322:1685-1687.
    Liu GH, Chang IK, Sasse J. Xenogenic oogenesis of chicken female primordial germ cells in germline chimeric quail ovary. Animal Reproduction Science 2007; 101:344-350.
    Liu HY, Zhang CQ. Ginsenosides promote proliferation of cultured ovarian germ cells involving protein kinase c-mediated system in embryonic chickens. Asian-Aust J Anim Sci 2006; 19:958-963.
    Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, Montanaro D, Musti AM, Picard D, Ando'S (2004) The G protein-coupled receptor GPR30 mediates c-fos up-regulation by17b-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 279: 27009-27016
    Manzati E, Aguiari G, Banzi M, Manzati M, Selvatici R, Falzarano S, Maestri I, Pinton P, Rizzuto R, Senno LD. The cytoplasmic C-terminus of polycystin-1 increases cell proliferation in kidney epithelial cells through serum-activated and Ca (2+)-dependent pathway(s). Exp Cell Res 2005; 304:391-406.
    Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors:lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 2006; 46:451-480.
    Mark M, Jacobs H, Oulad-Abdelghani M, Dennefeld C, Feret B, Vernet N, Codreanu CA, Chambon P, Ghyselinck NB. STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. J Cell Sci 2008; 121:3233-3242.
    Marie-Cecile, van de Lavior, Chrostine Mather-Love. High-grade transgene somatic chimeras from chicken embryonic stem cells. Mechanism of Development 2006; 123:34-41.
    Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is require for maintenance of pluripotency in mouse epiblast and ES cells.Cell 2003; 113:631-642.
    Massague J. TGF-β signal transduction. Ann Rev Bioche 1998; 67:753-791.
    Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992; 70:841-847.
    Matsui Y, Zsebo KM Hogan BL. Embryonic expression of a haematopoetic growth factor encoded by the Sl locus and the ligand for c-kit. Nature 1990; 347:667-669.
    Mattsson A, Olsson JA, and Brunstrom B. Selective estrogen receptor{alpha} activation disrupts sex organ differentiation and induces expression of vitellogenin Ⅱ and very low-density apolipoprotein Ⅱ in Japanese quail embryos. Reproduction 2008; 136:175-186.
    Michele Boiani, Hans R.Scholer. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Bio 2005; 6:872-886.
    Mika G. Primordial germ cell development in avian. Poultry Science 1997; 76:91-95.
    Min JK, Kim JH, Cho YL, Maeng YS, Lee SJ.20(S)-Ginsenoside Rg3 prevents endothelial cell apoptosis via inhibition of a mitochondrial caspase pathway. Biochem Biophys Res Com. 2006; 349:987-994.
    Mitani T, Takahashi N, Kawase E. Proliferation of alkaline phosphatase-positive cells from cultured primordial germ cells in rat. Theriogenology 1994; 41:336.
    Miura T, Miura C, Ohta T, Nader MR, Todo T, Yamauchi K. Estradiol-17beta stimulates the renewal of spermatogonial stem cells in males. Biochem Biophys Res Commun.1999; 14: 230-234.
    Moe-Behrens GH, Klinger FG, Eskild W, Grotmol T, Haugen TB, De Felici M. Akt/PTEN signaling mediates estrogen-dependent proliferation of primordial germ cells in vitro. Mol Endocrinol 2003; 17:2630-2638.
    Moghal N, Sternberg PW. Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol 1999; 11:190-196.
    Molais SS, Hacker A, Harley V, et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genet 1996; 14:62-67.
    Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O'Brien W, Raz E, Littman D, Wylie C, ehmann R. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 2003; 130:4279-4286.
    Monick MM, Carter AB, Robeff PK, Flaherty DM, Peterson MW, Hunninghake GW. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J Immunol 2001; 166:4713-4720.
    Mozdziak PE, Angerman-Stewart J, Rushton B, Pardue SL, Petitte JN. Isolation of chicken primordial germ cells using fluorescence-activated cell sorting. Poult Sci 2005; 84:594-600.
    Moynagh PN. The NF-kappaB pathway. J Cell Sci 2005; 118:4589-4592.
    Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of Human Embryonic Stem Cells to Cardiomyocytes. Circulation 2003; 107:2733-2740.
    Musallam L, Ethier C, Haddad PS, Bilodeau M. EGF mediates protection against Fas-induced apoptosis by depleting and oxidizing intracellular GSH stocks. J Cell Physiol 2004; 198:62-72.
    Nachtigal M W, Hirokawa Y, Enyeart-VanHouten D L, et al. Wilm's tumor and Dax-1 modulate the orphan nuclear receptor Sf-1 in sex-specific gene expression. Cell 1998; 93:445-454.
    Nakamura M, Kuwana T, Myiayama Y, Fujimoto T. Extragonadal distribution primordial germ cells in the early chick embryo. Anat Rec 1988; 222:90-94.
    Nakao S, Yamaguchi M, Shiobara S, Yokoi T, Miyawaki T, Taniguchi T, Matsuda T. Interferon gamma gene expression in unstimulated bone marrow mononuclear cells predicts a response to cyclosporine therapy in aplastic anema. Blood 1992; 79:2532-2535.
    Naito M, Tajima A, Tagami T, Yasuda Y, Kuwana T. Preservation of chick primordial germ cells in lipid nitrogen and subsequent production of viable offspring. J Reprod Fertil 1994; 102: 321-325.
    Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct-4. Cell 1998; 95:379-391.
    Nishikimi H, Kansaku N, Saito N, et al. Sex differentiation and mRNA expression of P450c17, P450arom and AMH in gonads of the chicken. Mol Reprod Dev 2000; 55:20-30
    Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995; 9:484-496.
    Niwa H, Miyazaki J, Smith A G. Quantitative expression of Oct3/4 defines differentiation,
    dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24:372-376.
    Nobumichi Matsubara, Yoshihiko Takahashi, Yukio Nishina. A receptor tyrosine kinase, sky and its ligand Gas6 are expressed in gonads and support primordial germ cells growth or survival in culture. Dev Biol 1996; 180:499-510.
    Nowak G. Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatininduced apoptosis in renal cells. J Biol Chem 2002; 277:43377-43388.
    Obata H, Biro S, Arima N, Kaieda H, Kihara T, Eto H. NF-kappaB is induced in the nuclei of cultured rat aortic smooth muscle cells by stimulation of various growth factors. Biochem Biophys Res Commun 1996; 224:27-32.
    Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. Ⅱ. The absorption, distribution and excretion of ginsenoside Rgl in the rat.Chem Pharm Bull 1983; 31:292-298.\
    O'Neill M, Binder M, Simth C. ASW:a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev Genes Evol 2000; 210:243-249.
    Ono T, Machida Y. Immunomagnetic purification of viable primordialgerm cells of Japanese quail (Coturnix japonica). Comp Biochem Physiol A Mol Integr Physiol 1999; 122:255-259.
    Oulad-Abdelghani, M., Bouillet, P., Decimo, D., Gansmuller, A., Heyberger, S., Dolle, P., Bronner, S., Lutz, Y. and Chambon, P. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol 1996; 135:469-477.
    Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J, Etches RJ. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 1996; 122:2339-2348.
    Park TS, Han JY. Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol Reprod Dev 2000; 56:475-482.
    Paria BC, Das SK, Mead RA, Dey SK. Expression of epidermal growth factor receptor in the preimplantation uterus and blastocyst of the western spotted skunk. Biol Reprod 1994; 51:205-213.
    Pesce M, Canipari R, Ferri QF, Siracusa G, De Felici M. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates adenylate cyclase and promotes proliferation of mouse primordial germ cells. Development 1996; 122:215-221.
    Petitte JN, Kegelmeyer AE. Rapid sex determination of chick embryos using the polymerase chain reaction. Anim biotechnol 1995; 6:119-130.
    Petitte JN, Liu G, Yang Z. Avian pluripotent stem cells. Mech Dev 2004; 121:1159-1168.
    Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembraneGprotein-coupled receptor GPR30. Annu Rev Physiol 2008; 70: 165-190.
    Prossnitz ER, Sklar LA, Oprea TI, Arterburn JB. GPR30:a novel therapeutic target in estrogen-related disease. Trends Pharmacol Sci 2008; 29:116-123.
    Raff M. The mystery of intracellular developmental programmes and timers. Biochemical Society 2006; 34:663-670.
    Ramkissoon Y, Goodfellow P. Early steps in mammalian sex determination. Curr Opin Genet Dev 1996; 6:316-321.
    Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 2004; 275:269-286.
    Rashedi M, Maraud R, Stoll R. Development of the testes in female domestic fowls submitted to an experimental sex reversal during embryonic life. Biol Reprod 1983; 29:1221-1227.
    Raymond C S, Kettlewell J R, Hirsch B, et al. Expression of Dmrt-1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 1999; 215:208-220.
    Raz E. Guidance of primordial germ cell migration. Current Opinion in Cell Biology 2004; 16:169-173.
    Reichman-Fried M, Minina S, Raz E. Autonomous odes of behavior in primordialgerm cell migration. Developmental cell 2004; 6:589-596.
    Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science.2005; 11:1625-30.
    Richards AJ, Enders GC, Resnick JL. Activin and TGF-β limit murine primoridal germ cell proliferation. Dev Biol 1999; 207:470-475.
    Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of Nanog by OCT4 and SOX2. J. Biol. Chem 2005; 280:24731-24737.
    Rodriguez-Leon J, Rodriguez Esteban C, Marti M, Santiago-Josefat B, Dubova I, Rubiralta X, Izpisua Belmonte JC. Pitx2 regulates gonad morphogenesis. Proc Natl Acad Sci USA 2008; 105:11242-11247.
    Rucker EB, Dierisseau P, Wagner KU, Garrett L, Wynshaw-Boris A, Flaws JA, Hennighausen L. Bcl-x and BAX regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol 2000; 14:1038-1052.
    Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004; 10:55-63.
    Scheib D. Effects and role of estrogens in avian gonadal differentiation. Differentiation 1983; 23 Suppl:S87-92.
    Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103:211-225.
    Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y, Saitou M:Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordialgermcells inmice. Development 2007; 134:2627-2638.
    Sherr CJ. G1 phase progression:cyclin on cue. Cell 1994; 79:551-555.
    Shim H, Gutierrez-Adan A, Chen LR, BonDurant RH, Behboodi E, Anderson GB. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 1997; 57:1089-1095.
    Sirianni R, Chimento A, Ruggiero C, De Luca A, Lappano R, Ando S, Maggiolini M, Pezzi V. the
    novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects
    induced by 17 beta-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology.2008; 149:5043-5051.
    Smith AG, Heath J K, Donaldson D D, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988; 336:688-690.
    Smith CA, Roeszler KN, Bowles J, Koopman P, Sinclair AH. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol 2008; 8:85.
    Sonenshein GE. Rel/NF-kappa B transcription factors and the control of apoptosis. Semin Cancer Biol 1997; 8:113-119.
    Sorrentino E, Nazzicone V, Farini D, Campagnolo L, De Felici M. Comparative transcript profiles
    of cell cycle-related genes in mouse primordial germ cells, embryonic stem cells and embryonic germ cells. Gene Expression Patterns 2007; 7:714-721.
    Speed RM. Meiosis in the foetal mouse ovary. Chromosoma 1982; 85:427-437.
    Speksnijder G, Ivarie R. A modified method of shell windowing for producing somatic or germline chimeras in fertilized chicken eggs. Poult Sci 2000; 79:1430-1433.
    Stebler J, Spieler D, Slanchev K, et al. Primordial germ cell migration in the chick and mouse embryo:the role of the chemokine SDF-1/CXCL12. Developmental Biology 2004; 272: 351-361.
    Stefn Rose-John. GP130 stimulation and the maintenance of stem cells. Rrends in Biotech 2002; 20:417-419.
    Stewart CL, Gadi L, Bhatt H. Stem cells from primordial germ cells can reeter the germ line. Dev.Biol 1994; 161:626-628.
    Susan C. Chapman AL, William C. Ubiquitous GFP expression in transgenic chicken using a lentiviral vector. Development 2005; 132:925-940.
    Sutasurya LA. Appearance of primordial germ cells in young chick blastoderm cultured in vitro. Development Growth and Differentiation 1983; 25:517-521
    Suzuki A, Saga Y:Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev 2008; 22:430-435.
    Swift, C. H. Origin and early history of the primordial germ-cells in the chick. Am J Anat 1914; 15: 483-516.
    Tagami T, Kagami H, Matsubara Y, Harumi T, Naito M, Takeda K, Hanada H, Nirasawa K.
    Differentiation of female primordial germ cells in the male testes of chicken (Gallus gallus domesticus). Mol Reprod Dev 2007; 74:68-75.
    Takahiko H, Kazuhiro T, Maria P. De Miguel. Distinct role of oncostatin M and leukemia inhibitory factory in the development of primordial germ cells and sertoli cells in mice. Dev Biol 1993; 201:144-153.
    Tam PPL, Snow MHL. Proliferation and migration of mouse primordial germ cells during compensatory growth in mouse embryo J. Embryol Exp Morphol 1981; 64:133-147.
    Tamama K, Fan VH, Griffith LG., Blair HC, Wells A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24:686-695.
    Tang XY, Zhang CQ, Jin YM, Ge CT, Wu YQ. Pro-proliferating effect of homologous somatic cells on chicken primordial germ cells. Cell Biol Int 2007; 31:1016-1021.
    Tang XY, Zhang CQ, Zeng WD, Mi YL and Liu HY. Proliferating effects of the flavonoids daidzein and quercetin on cultured chicken primordial germ cells through antioxidant action. Cell Biol Int 2006; 30:445-451.
    Tang XY, Zhang CQ. Activation of protein kinases A and C promoted proliferation of chicken primordial germ cells. Anim Reprod Sci 2007; 101:295-303.
    Tatsukawa Y, Bowolaksono A, Nishimura R, Komiyama J, Acosta TJ, Okuda K. Possible roles of intracellular cyclic AMP, protein kinase C and calcium ion in the apoptotic signaling pathway in bovine luteal cells. J Reprod Dev 2006; 52:517-22.
    Thomas P, Pang Y, Filardo EJ, Dong J, Identity of an estrogen membrane receptor coupled to a G-protein in human breast cancer cells. Endocrinology 2005; 146:624-632.
    Thomson J A, Itskovitz E J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145-1147.
    Thomson JA, Odorico JS. Human embryonic stem cell and embryonic germ cell line. Focus 2000; 18:53-57.
    Thoraval P, Lasserre F, Coudert F. Somatic and germline chicken chimeras obtained from Brown and White Leghorns by transfer of early blastodermal cells. Poult Sci 1994; 73:1897-1905.
    Trautmann E, Guerquin MJ, Duquenne C, Lahaye JB, Habert R, Livera G. Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell cycles 2008; 7:656-664.
    Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y. Conserved role of nanos proteins in germ cell development. Science 2003; 301:1239-1241.
    Tsunekawa N, Naito M. and Sakai Y. Isolation of chicken vasa homolog gene and racing the originte of primordial gem cells. Development 2000; 127:2741-2750.
    Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, Hanley NA. Derivation of human embryonic germ cells:an alternative source of pluripotent stem cells. Stem Cells 2003; 21:598-609.
    van de Lavoir MC, Diamond JH, Leiqhton PA, Mather-Love C, Heyer BS. Germline transmission of genetically modified primordial germ cells. Nature 2006; 441:766-769.
    Vicario I, Schimmang T. Transfer of FGF-2 via HSV-1-based amplicon vectors promotes efficient formation of neurons from embryonic stem cells. J Neurosci Methods 2003; 123:55-60.
    Vivacqua A, Bonofiglio D, Albanito L.17beta-estradiol, genistein and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the G protein-coupled receptor GPR 30. Mol Pharmacol 2006; 70:1414-1423.
    Wentworth BC, Tsaihhallett JH, Ghikamune DS, Rajcic-Spasojevic. Manipulation of avian primordial germ cells and gondal differentiation. Poultry science 1989; 69:999-1010.
    Western PS, Miles DC, van den Bergen JA, Burton M, Sinclair AH. Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells2008; 26:339-347.
    Williams R L, Hilton D J, Pease S, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988; 336:684-687.
    Wolff GS, Chiang PJ, Smith SM, Romero R, Armant DR. Epidermal growth factor-like growth factors prevent apoptosis of alcohol-exposed human placental cytotrophoblast cells. Biol Reprod 2007; 77:53-60.
    Wu L, Strasser A. "Decisions, decisions.":beta-catenin-mediated activation of TCF-1 and Lef-1 influences the fate of developing T cells. Nat Immunol 2001; 2:823-824.
    Xiaoxia Qi, Teng-Guo Li, Jing Hao, et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. PNAS 2004; 101:6027-6032.
    Yamamoto Y, Usui F, Nakamura Y, Ito Y, Tagami T, Nirasawa K, Matsubara Y, Ono T, Kagami H. A Novel Method to Isolate Primordial Germ Cells and Its Use for the Generation of Germline Chimeras in Chicken. Biol Reprod 2007; 77:115-119.
    Yang W(杨巍),Zhang C-Q(张才乔),Qiao H-L(乔惠理),et al. Effect of aromatase inhibition on sex differentiation of the chicken. J Agric Biotechnol(农业生物技术学报)2000; 8:233-236 (in Chinese with English abstract).
    Yasuda Y, Tajima A, Fujimoto T. A method to obtain avian germ line chimera using isolated primordial germ cells. J Reprod Fert 1992; 521-528.
    Yasushi O, Yasuaki S, Norio N. Autonomous regulation of proliferation and growth arrest in mouse primoridal germ cells studied by mixed and clonal cultures. Cellular and Mol biol 1999; 45:725-736.
    Ying Q L, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115: 281-292.
    Ying Y and Zhao GQ. Cooperation of endoderm-derived Bmp2 and extraembryonic ectoderm-derived Bmp4 in primordial germ cell generation in the mouse. Dev Biol 2001; 232:484-492.
    Ying Y, Qi X, Zhao GQ. Induction of primoridal germ cells from murine epiblast by synergistic action of Bmp4 and Bmp8 signalling pathways. Proc Natl Acad Sci USA,2001; 98:7858-7862.
    Ying, Y, liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of Bmp8 for the generation of primordial germ cells in the mouse. Molecular Endocrinol 2000; 14:1053-1063.
    Yoon HS, Rho SH, Jeong JH, Yoon S, Yoo KS, Yoo YH. Genistein produces reduction in growth and induces apoptosis of rat RPE-J cells. Curr Eye Res 2000; 20:215-224.
    Zhang DL, Zhang CQ, Liu JX, Hu SH. Ginsenosides promote meiotic maturation of mouse oocytes in cumulus oocyte complexes involving increased expression of nitric oxide synthase. Nutr Res 2006; 26:585-590
    Zhou Q, Li Y, Nie R, Friel P, Mitchell D, Evanoff RM, Pouchnik D, Banasik B, McCarry JR, Small C, Griswold MD. Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol Reprod 2008; 78:537-545.
    Zhou Q, Nie R, Li Y, Friel P, Mitchell D, Hess RA, Small C, Griswold MD. Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid:an in vivo study in vitamin A-sufficient postnatal murine testes. Biol Reprod 2008; 79:35-42.
    陈虹,涂刚.新型雌激素受体GPR30的研究进展.内分泌外科杂志2008;2:131-134.
    李碧春,秦洁,肖小珺,陈国宏,吴信生,吴圣龙.鸡胚不同发育时期PGC的分离方法.动物学报2003;49;835-842.
    裴雪涛主编.干细胞生物学.科学出版社.北京,2003年,第一版.p 219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700