用户名: 密码: 验证码:
发动机电磁驱动配气机构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用电磁驱动配气机构取代常规发动机中的凸轮驱动配气机构,实现发动机进、排气门开启和关闭时刻、升程及其运动规律随发动机工况独立地、连续地实时优化调节,能够显著提升发动机的节能环保性能以及动力性能,是提高汽车发动机节能环保性能的重要技术发展方向。作为一种新型的全可变配气机构,电磁驱动配气机构具有结构简单、响应速度快、落座特性好和调节灵活等优点。本文提出了一类基于动圈式电磁直线执行器的发动机电磁驱动配气机构,运用理论分析、仿真计算与试验研究相结合的方法对其设计、分析及控制技术进行了深入、系统地研究,为电磁驱动配气机构的进一步深入研究和工程化应用奠定了基础。
     论文的主要工作和研究成果包括以下几个方面:
     (1)分析了发动机对电磁驱动配气机构的要求,对不同形式的电磁直线执行器进行了系统地评估,并提出了基于动圈式电磁直线执行器的电磁驱动配气机构系统方案。分别以在内燃—直线发电集成动力系统中的应用和满足汽车发动机高转速及有限安装空间为目标,完成了两轮电磁驱动配气机构的样机设计和研制,归纳了电磁驱动配气机构的一般设计方法。
     (2)建立了电磁驱动配气机构的多物理场耦合系统模型。通过电磁场的有限元分析,对电磁驱动配气机构进行了结构参数设计,并得到了其电磁力特性。通过系统仿真分析了系统参数对电磁驱动配气机构性能的影响,并对其动态性能进行了仿真研究。通过Matlab/Simulink和Maxwell&Simplorer的仿真结果对比,论证了多物理场耦合仿真的优越性,为控制策略的研究提供了良好的平台。
     (3)研究了基于逆系统方法的电磁驱动配气机构气门运动控制策略。提出了气门运动分段控制的总体方案,通过逆系统控制方法对电磁驱动配气机构进行反馈线性化,得到其伪线性系统,进而利用状态反馈控制方法对电磁驱动配气机构的气门位移进行精确控制,设计了状态反馈控制器和状态观测器,并与PID控制方法进行了仿真对比分析。提出了气门落座特性的评价指标,研究了气门落座速度和落座保持的控制方法。理论分析和试验验证了逆系统控制方法在电磁驱动配气机构气门位移精确控制中应用的可行性和效果。
     (4)对电磁驱动配气机构的能耗进行了深入地分析和研究。从理论上分析了电磁驱动配气机构能耗的构成及产生机理,进而对不同发动机转速和气门运行模式下的电磁驱动配气机构能耗进行了试验研究,建立了发动机性能仿真模型,分析比较了电磁驱动配气机构在不同气门运行模式下的能耗与泵气损失的关系,为进一步气门运行模式的最优选择奠定了基础。
     (5)构建了基于DSP的电磁驱动配气机构控制系统,并分别设计了电磁驱动配气机构静态性能和动态性能试验装置,完成了系统试验研究。通过试验对仿真得到的系统静态和动态特性进行验证,论证了仿真模型的正确性。综合评估了电磁驱动配气机构对气门运行参数的调节能力和在内燃一直线发电集成动力系统中的运行稳定性,为电磁驱动配气机构进一步的工程化应用提供了基础。
In engines equipped with electromagnetic valvetrain, the motion of the valves can be flexibly controlled as the engine working condition varies. Thus the engine's fuel economy, emissions and torque output performance will be significantly improved. The electromagnetic valvetrain is known as a novel fully flexibly variable valvetrain with simple structure, quick system response, and excellent valve seating performance. In this thesis, an electromagnetic valvetrain based on moving coil linear actuator was presented and researched by theoretical analysis, simulation and experiment. This thesis lays a foundation for further research and development of the electromagnetic valvetrain.
     The main works and fruits of the thesis are as follows:
     (1) Some types of electromagnetic linear actuator were evaluated based on the require-ment of electromagnetic valvetrain. The system scheme of the electromagnetic valvetrain was presented based on the moving coil electromagnetic linear actuator, and the system working principle was analyzed. Two electromagnetic valve actuator prototypes were developed aims at using in internal combustion-linear generator, and meeting the high engine speeds and limited mounting space, respectively. The design details of electromagnetic valvetrain were presented.
     (2) The multi-field coupled system model of electromagnetic valvetrain were established. The configuration of electromagnetic valvetrain was designed by finite element analysis, and the electromagnetic force was obtained. The influence of system parameters on system char-acteristics was obtained by system simulation, the dynamic performance of electromagnetic valvetrain was also obtained. The system simulation models were established based on Mat-lab/Simulink and Maxwell&Simplorer respectively. The superiority of multi-field coupled sim-ulation has been demonstrated. The simulation model provides a powerful platform for control methodology.
     (3) The thesis presents an sectional valve motion control strategy for electromagnetic valvetrain based on inverse system method. By linearization of the nonlinear electromagnetic valvetrain system, a pseudo linear system can be obtained. The state feedback control is used to control the valve motion. A state variable observer was designed to estimate the unmeasurable state variables. The proposed control method was also compared to the PID control method in simulation. The seating performance evaluating indicators were proposed. The control of valve seating velocity and holding force was investigated. Both the theoretical analysis and experiment show that the inverse system method is effective.
     (4) The power consumption of electromagnetic valvetrain was analyzed in the thesis. The detailed power losses derivation of electromagnetic valvetrain was discussed. Then the power consumption at various engine speeds and valve operating modes were obtained by experi-ments. An engine performance simulation model was established, and the power consumption and pumping losses at various valve operating modes were shown and compared, which lays a foundation for valve operating modes selection.
     (5) The control system of electromagnetic valvetrain was built based on DSP. The static and dynamic experiment setup were also developed, and the system experiments were carried out. The simulation results were compared with the experiment results, and the simulation models prove validity. The freedom and stability of the electromagnetic valvetrain were eval-uated, which lay a foundation for the further research and application of the electromagnetic valvetrain.
引文
[1]国家发展和改革委员会能源研究所课题组.中国2050年低碳发展之路:能源需求暨碳排放情景分析[M].北京:科学出版社,2009.
    [2]中国科学院能源领域战略研究组.中国至2050年能源科技发展路线图[M].北京:科学出版社,2009.
    [3]A. F. Ghoniem. Needs, Resources and Climate Change:Clean and Efficient Conversion Technologies[J]. Progress in Energy and Combustion Science,2011,37(1):15-51.
    [4]M. Yao, H. Liu, X. Feng. The Development of Low-carbon Vehicles in China[J]. Energy Policy,2011,39(9):5457-5464.
    [5]J. G. Smyth, R. Douglas. Meeting Tomorrow's Challenges:The Role of the IC En-gine[A]. SAE 2004 World Congress[C]. Warrendale PA:SAE,2004:2004-21-0080.
    [6]T. V. Johnson. Review of CO2 Emissions and Technologies in the Road Transportation Sector[A]. SAE 2010 World Congress[C]. Warrendale PA:SAE,2010:2010-01-1276.
    [7]H. Xie, R. Stobart, P. Tunestal, et al. Future Engine Control Enabling Environment Friendly Vehicle[A]. SAE 2011 World Congress[C]. Warrendale PA:SAE,2011:2011-01-0697.
    [8]杨沿平,唐杰,胡纾寒,陈轶嵩.中国汽车节能思考[M].北京:机械工业出版社,2010.
    [9]Mehrdad Ehsani, Yiming Gao, Ali Emadi. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles:Fundamentals, Theory, and Design[M]. Boca Raton:CRC Press,2005.
    [10]工震坡,贾永轩.电动汽车蓝图[M].北京:机械工业出版社,2010.
    [11]A. M. K. P. Taylor. Science Review of Internal Combustion Engines[J]. Energy Policy, 2008,36(12):4657-4667.
    [12]J. B. Hey wood. Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines[A]. SAE 2009 World Congress[C]. Warrendale PA:SAE,2009:2009-01-1892.
    [13]E. P. Kasseris, J. B. Heywood. Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years[A]. SAE 2007 World Congress[C]. Warrendale PA:SAE,2007: 2007-01-1605.
    [14]陈礼璠,杜爱民,陈明.汽车节能技术[M].北京:人民交通出版社,2005.
    [15]钱伯章.新能源汽车与新型蓄能电池、热电转换技术[M].北京:科学出版社,2010.
    [16]常思勤,徐照平.内燃—直线发电集成动力系统概念设计[J].南京理工大学学报(自然科学版),2008,32(04):449-452.
    [17]K.-P. Ha, D. Han, W. T. Kim. Development of Continuously Variable Valve Lift En-gine[A]. SAE 2010 World Congress[C]. Warrendale PA:SAE,2010:2010-01-1187.
    [18]苏万华,赵华,王建听.均质压燃低温燃烧发动机理论与技术[M].北京:科学出版社,2010.
    [19]V. Picron, Y. Postel, E. Nicot, et al. Electro-magnetic Valve Actuation System:First Steps Toward Mass Production[A]. SAE 2008 World Congress [C]. Warrendale PA: SAE,2008:2008-01-1360.
    [20]常思勤.汽车动力装置[M].北京:机械工业出版社,2006.
    [21]V. Balasubramanian. Technology for Cylinder Deactivation [A]. SAE 2005 World Congress[C]. Warrendale PA:SAE,2005:2005-01-0077.
    [22]A. Boretti, J. Scalco. Piston and Valve Deactivation for Improved Part Load Perfor-mances of Internal Combustion Engines[A]. SAE 2011 World Congress[C]. Warrendale PA:SAE,2011:2011-01-0368.
    [23]W. Moore, M. Foster, M.-C. Lai, et al. Charge Motion Benefits of Valve Deactivation to Reduce Fuel Consumption and Emissions in a GDI, VVA Engine[A]. SAE 2011 World Congress[C]. Warrendale PA:SAE,2011:2011-01-1221.
    [24]N. R. Trask, M. Hammoud, M. Haghgooie, et al. Optimization Techniques and Re-sults for the Operating Modes of a Camless Engine[A]. SAE 2003 World Congress[C]. Warrendale PA:SAE,2003:2003-01-0033.
    [25]Y. Urata, M. Awasaka, J. Takanashi, et al. A Study of Gasoline-fuelled HCCI Engine Equipped with an Electromagnetic Valve Train[A]. SAE 2004 World Congress[C]. War-rendale PA:SAE,2004:2004-01-1898.
    [26]M. Pischinger, W. Salber, F. v. d. Staay, et al. Benefits of the Electromechanical Valve Train in Vehicle Operation[A]. SAE 2000 World Congress[C]. Warrendale PA:SAE, 2000:2000-01-1223.
    [27]T. Seidel, T. Huth. How the Electro-mechanical Valve Train Accelerates Logistics and Reduces Costs[M]. Build To Order:The Road to the 5-Day Car. Springer,2008:311-322.
    [28]J. W. Heffel. Improving the Power Curve of an ICE Using Electromagnetic Valve Actu-ation[A]. SAE 2003 World Congress[C]. Warrendale PA:SAE,2003:2003-01-2276.
    [29]M. A. Theobald, B. Lequesne, R. Henry. Control of Engine Load via Electromag-netic Valve Actuators[A]. SAE 1994 World Congress[C]. Warrendale PA:SAE,1994: 940816.
    [30]P. Wolters, W. Salber, J. Geiger, et al. Controlled Auto Ignition Combustion Process with an Electromechanical Valve Train[A]. SAE 2003 World Congress[C]. Warrendale PA:SAE,2003:2003-01-0032.
    [31]A. Frederic, V. Picron, J. Hobraiche, et al. Electromagnetic Valve Actuation System e-Valve:Convergence Point between Requirements of Fuel Economy and Cost Reduc-tion[A]. SAE 2010 World Congress[C]. Warrendale PA:SAE,2010:2010-01-1197.
    [32]T. Chun. Modeling and Control of Camless Engine Valvetrain Systems[D]. Los Angeles: University of California,2002.
    [33]C. Tai, T.-C. Tsao, N. A. Schorn, et al. Increasing Torque Output from a Turbodiesel with Camless Valvetrain [A]. SAE 2002 World Congress[C]. Warrendale PA:SAE,2002: 2002-01-1108.
    [34]K. S. Peterson. Control Methodologies for Fast and Low Impact Electromagnetic Actu-ators for Engine Valves[D]. Ann Arbor:University of Michigan,2005.
    [35]K. S. Peterson, J. W. Grizzle, A. G. Stefanopoulou. Nonlinear Control for Magnetic Levitation of Automotive Engine Vales [J]. IEEE Transactions on Control Systems Tech-nology,2006,14(2):346-354.
    [36]李红艳,赵雨东.发动机无凸轮轴气门驱动的研究与进展[J].车用发动机,2001,(02):1-5.
    [37]赵雨东,李红艳,陆际清.电磁气门驱动设计及其电磁铁静吸力特性试验[J].内燃机学报,2002,20(04):339-344.
    [38]黄荣纬,赵雨东.发动机电磁气门驱动的LQR法软着陆控制[J].清华大学学报(自然科学版),2007,47(08):1338-1342.
    [39]严兆大,王希珍,李莉,等.电磁控制全可变气门系统及其仿真[J].内燃机工程,2002,23(04):10-12.
    [40]李莉,王希珍,严兆大,等.电磁驱动气门机构控制策略初探[J].汽车工程,2004,26(04):426-429.
    [41]李莉.电磁驱动气门机构的设计开发和试验研究[D].杭州:浙江大学,2004.
    [42]V. Giglio, B. Iorio, G. Police, et al. Analysis of Advantages and of Problems of Elec-tromechanical Valve Actuators[A]. SAE 2002 World Congress[C]. Warrendale PA: SAE,2002:2002-01-1105.
    [43]D. Cope, A. Wright. Electromagnetic Fully Flexible Valve Actuator[A]. SAE 2006 World Congress[C]. Warrendale PA:SAE,2006:2006-01-0044.
    [44]D. Cope, A. Wright, C. J. Corcoran, et al. Fully Flexible Electromagnetic Valve Actua-tor:Design, Modeling, and Measurements [A]. SAE 2008 World Congress[C]. Warren-dale PA:SAE,2008:2008-01-1350.
    [45]S. Braune, S. Liu, P. Mercorelli. Design and Control of an Electromagnetic Valve Actu-ator[A]. IEEE International Conference on Control Applications[C]. Munich Germany, 2006:1657-1662.
    [46]B. HOFFMANN. Fully Variable Valve Actuation with Electromagnetic Linear Mo-tor[A]. SIA Conference on Variable Valve Actuation[C]. IFP Rueil:SIA,2006:1-8.
    [47]R. R. Henry, B. Lequesne. A Novel, Fully Flexible, Electro-mechanical Engine Valve Actuation System[A]. SAE 1997 World Congress[C]. Warrendale PA:SAE,1997: 970249.
    [48]Y. Qiu. Advanced Modeling, Control, and Design of an Electromechanical Engine Valve Drive System with a Limited-angle Actuator[D]. Cambridge:Massachusetts Institute of Technology,2009.
    [49]Y. Qiu, D. J. Perreault, T. A. Keim, et al. Optimal Cam Design and System Control for an Electromechanical Engine Valve DrivefA].2010 IEEE International Conference on Industrial Technology[C]. Vi a del Mar,2010:565-572.
    [50]J. Zhao. A Fully Flexible Valve Actuation System for Internal Combustion Engines[D]. Okanagan:University of British Columbia,2009.
    [51]J. Zhao, R. J. Seethaler. A Fully Flexible Valve Actuation System for Internal Combus-tion Engines[J]. LEEE/ASME Transactions on Mechatronics,2011,16(2):361-370.
    [52]M. M. Schechter, M. B. Levin. Camless Engine[A]. SAE 1996 World Congress[C]. Warrendale PA:SAE,1996:960581.
    [53]J. Allen, D. Law. Production Electro-hydraulic Variable Valve-train for a New Gener-ation of I.e. Engines[A]. SAE 2002 World Congress[C]. Warrendale PA:SAE,2002: 2002-01-1109.
    [54]M. Battistoni, F. Mariani, L. Foschini, et al. A Parametric Optimization Study of a Hydraulic Valve Actuation System[A]. SAE 2008 World Congress[C]. Warrendale PA: SAE,2008:2008-01-1356.
    [55]L. Postrioti, M. Battistoni, L. Foschini, et al. Application of a Fully Flexible Electro-hydraulic Camless System to a Research Si Engine[A]. SAE 2009 World Congress[C]. Warrendale PA:SAE,2009:2009-24-0076.
    [56]Z. Sun, T.-W. Kuo. Transient Control of Electro-hydraulic Fully Flexible Engine Valve Actuation System[J]. IEEE Transactions on Control Systems Technology,2010,18(3): 613-621.
    [57]Z. Sun, X. He. Development and Control of Electro-hydraulic Fully Flexible Valve Actuation System for Diesel Combustion Research[A]. SAE 2007 World Congress[C]. Warrendale PA:SAE,2007:2007-01-4021.
    [58]李平伟.无凸轮电液气门执行机构研究[D].北京:北京理工大学,2008.
    [59]赵振峰,黄英,张付军,等.一种新型电液驱动无凸轮配气机构特性研究[J].内燃机工程,2008,29(06):24-27.
    [60]王云开,于秀敏,郭英男,等.无凸轮轴电液配气机构性能试验[J].汽车技术,2008,(05):45-47.
    [61]高锋军,刘发发,郭英男,等.电控液压全可变气门冲击回弹试验研究[J].车用发动机,2009,(05):49-52.
    [62]舒歌群,桑海浪,韩睿,等.无凸轮电液驱动气门系统的建模与控制研究[J].小型内燃机与摩托车,2007,36(06):10-15.
    [63]J.-S. Chen. Electro-hydraulic Fully Flexible Valve Actuation System for Engine Test Cell[A]. SAE 2010 World Congress[C]. Warrendaie PA:SAE,2010:2010-01-1200.
    [64]J. Ma, G. G. Zhu, H. Schock. A Dynamic Model of an Electropneumatic Valve Actuator for Internal Combustion Engines[J]. Journal of Dynamic Systems, Measurement, and Control,2010,132(2):021007.
    [65]陈似竹,赵雨东,付雨民.发动机电磁气门驱动中的电磁铁结构方案分析[J].车用发动机,2003,(03):25-28.
    [66]C. Gunselmann, J. Melbert. Improved Motion Control and Energy Consumption for Sen-sorless Electromagnetical Actuators[A].2003 IEEE 58th Vehicular Technology Confer-ence[C]. Orlando, USA,2003:3289-3293.
    [67]S. Butzmann, J. Melbert, A. Koch. Sensorless Control of Electromagnetic Actuators for Variable Valve Train[A]. SAE 2000 World Congress[C]. Warrendale PA:SAE,2000: 2000-01-1225.
    [68]I. Haskara, V. V. Kokotovic, L. A. Mianze. Control of an Electro-mechanical Valve Ac-tuator for a Camless Engine[J]. International Journal of Robust and Nonlinear Control, 2004,14(6):561-579.
    [69]P. Eyabi, G. Washington. Modeling and Sensorless Control of an Electromagnetic Valve Actuator[J]. Mechatronics,2006,16(3-4):159-175.
    [70]R. R. Chladny, C. R. Koch. Flatness-based Tracking of an Electromechanical Variable Valve Timing Actuator with Disturbance Observer Feedforward Compensation[J]. IEEE Transactions on Control Systems Technology,2008,16(4):652-663.
    [71]W. Hoffmann, K. Peterson, A. Stefanopoulou. Iterative Learning Control for Soft Land-ing of Electromechanical Valve Actuator in Camless Engines[J]. IEEE Transactions on Control Systems Technology,2003,11(2):174-184.
    [72]K. S. Peterson, A. G. Stefanopoulou. Extremum Seeking Control for Soft Landing of an Electromechanical Valve Actuator[J]. Automatica,2004,40(6):1063-1069.
    [73]K. C. Soon, K. Charles Robert, F. L. Alan. Flatness-based Feedback Control of an Automotive Solenoid Valve[J]. Control Systems Technology, IEEE Transactions on, 2007,15(2):394-401.
    [74]叶云岳.直线电机技术手册[M].北京:机械工业出版社,2003.
    [75]I. Boldea, Syed A. Nasar. Linear Electric Actuators and Generators[M]. New York: Cambridge University Press,1997.
    [76]Amitava Basak. Permanent-magnet DC Linear Motors[M]. Oxford:Oxford University Press,1996.
    [77]N. Jalili, J. Wagner, M. Dadfarnia. A Piezoelectric Driven Ratchet Actuator Mechanism with Application to Automotive Engine Valves[J]. Mechatronics,2003,13(8-9):933-956.
    [78]BEI Technologies, Inc. Voice Coil Actuators-an Application Guide. http://www.beikimco.com.
    [79]常思勤,刘梁.高功率密度的动圈式永磁直线电机[P].中国:CN101127474B,2010-07-14.
    [80]M. G. Lee, S. Q. Lee, D.-G. Gweon. Analysis of Halbach Magnet Array and its Appli-cation to Linear Motor[J]. Mechatronics,2004,14(1):115-128.
    [81]T. A. Parlikar, W. S. Chang, Y. H. Qiu, et al. Design and Experimental Implementation of an Electromagnetic Engine Valve Drive[J]. IEEE/ASME Transactions on Mechatronics, 2005,10(5):482-494.
    [82]P. Stewart, D. Gladwin, P. J. Fleming. Multiobjective Analysis for the Design and Con-trol of an Electromagnetic Valve Actuator[J]. Proceedings of the Institution of Mechan-ical Engineers, Part D:Journal of Automobile Engineering,2007,221(5):567-577.
    [83]R. R. Chladny, C. R. Koch, A. F. Lynch. Modeling Automotive Gas-exchange Solenoid Valve Actuators[J]. Magnetics, IEEE Transactions on,2005,41(3):1155-1162.
    [84]C. Sugimoto, H. Sakai, A. Umemoto, et al. Study on Variable Valve Timing System Using Electromagnetic MechanismfA]. SAE 2004 World Congress[C]. Warrendale PA: SAE,2004:2004-01-1869.
    [85]A. d. Gaeta, V. Giglio, G. Police. Model-based Decoupling Control of a Double Magnet Engine Valve Actuator[A]. SAE 2009 World Congress[C]. Warrendale PA:SAE,2009: 2009-01-2751.
    [86]颜威利,杨庆新,汪友华.电气工程电磁场数值分析[M].北京:机械工业出版社,2005.
    [87]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [88]阮毅,陈维钧.运动控制系统[M].北京:清华大学出版社,2006.
    [89]Ansoft. Simulation Software for High-performance Electronic Design. http://www.ansoft.com.
    [90]赵克中.磁力驱动技术与设备[M].北京:化学工业出版社,2004.
    [91]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手册[M].北京:机械工业出版社,2003.
    [92]杜志强.高响应短行程直线直流电机的建模、控制与实验研究[D].武汉:华中科技大学,2006.
    [93]苏奎峰,吕强,常天庆,张永秀.TMS320X281x Dsp原理及c程序开发[M].北京:北京航空航天大学出版社,2008.
    [94]刘梁,常思勤.一种动圈式电磁驱动气门的可行性研究[J].中国机械工程,2009,20(19):2283-2287.
    [95]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社,2005.
    [96]L. Silverman. Properties and Application of Inverse Systems[J]. IEEE Transactions on Automatic Control,1968,13(4):436-437.
    [97]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [98]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [99]李晓辉,徐本洲,聂伯勋.逆系统在电液伺服系统中的应用[J].液压与气动,2005,(11):40-43.
    [100]李春文,苗原,冯元琨,等.非线性系统控制的逆系统方法(Ⅰ)—单变量控制理论[J].控制与决策,1997,12(05):529-535.
    [101]G. K. F. Lee. Output Feedback System Design via Inverse System [J]. International Journal of Control,1981,34(6):1125-41.
    [102]刘豹.现代控制理论[M].北京:机械工业出版社,2005.
    [103]R. C. Dorf, R. H. Bishop. Modern Control Systems[M].11th ed. New York:Pearson Prentice Hall,2008.
    [104]胡寿松.自动控制原理[M].第4版.北京:科学出版社,2001.
    [105]陶永华.新型PID控制及其应用[M].第2版.北京:机械工业出版社,2002.
    [106]J. Zhao, R. J. Seethaler. Compensating Combustion Forces for Automotive Electromag-netic Valves[J]. Mechatronics,2010,20(4):433-441.
    [107]Y.Wang. Introduction to Engine Valvetrains[M]. Warrendale, Pa:SAE International, 2006.
    [108]徐兀.汽车发动机现代设计[M].北京:人民交通出版社,1995.
    [109]L. Liu, S. Chang. Improvement of Valve Seating Performance of Engine's Electromag-netic Valvetrain[J]. Mechatronics,2011,21(7):1234-1238.
    [110]AVL. AVL Boost Product Description. https://www.avl.com/boostl.
    [111]李子非,常思勤,刘梁.装用电磁驱动气门的发动机配气相位优化[J].汽车工程,2011,(01):19-22.
    [112]T. Y. Wang, Z. J. Peng, G. D. Wang. In-cylinder Air Motion Characteristics with Vari-able Valve Lift in a Spark Ignition Engine. Part 1:Swirl Flow[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2011, 225(D4):479-497.
    [113]S. M. Begg, M. P. Hindle, T. Cowell, et al. Low Intake Valve Lift in a Port Fuel-injected Engine[J]. Energy,2009,34(12):2042-2050.
    [114]T. G. Leone, M. Pozar. Fuel Economy Benefit of Cylinder Deactivation-Sensitivity to Vehicle Application and Operating Constraints [A]. SAE 2001 World Congress[C]. Warrendale PA:SAE,2001:2001-01-3591.
    [115]M. Rebbert, G. Kreusen, S. Lauer. A New Cylinder Deactivation by FEV and Mahle[A]. SAE 2008 World Congress[C]. Warrendale PA:SAE,2008:2008-01-1354.
    [116]徐照平.内燃—直线发电集成动力系统的关键技术研究及其系统实现[D].南京:南京理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700