用户名: 密码: 验证码:
利用铝灰制备Sialon材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国铝工业迅猛发展,产量持续增长,已成为世界主要的铝生产国。原铝冶炼及铝合金的生产、回收过程会产生大量的铝灰。废铝灰的堆积或填埋,不仅污染环境,也是一种资源的浪费。因此,加强对铝灰的再利用已势在必行。作为铝工业生产链中的最后一环,铝灰的处理和再利用是公认的世界性难题。
     Sialon陶瓷是20世纪70年代后迅速发展起来的一类高温结构材料,以其优越的力学性能、热学性能和化学稳定性,被认为是最有希望的高温结构陶瓷之一。目前,合成Sialon多采用纯度较高的原料,成本较高,不能作为普通耐火材料或结构材料实现大规模工业应用。利用铝灰制备Sialon材料,不仅可以充分利用铝工业废料,还可以较低成本获得较高性能的Sialon材料,具有重要的社会意义和经济效益。
     本文利用废铝灰制备Sialon材料,系统研究了原料组成、工艺参数和添加剂等对合成Sialon的物相组成和形貌控制的影响规律。在合成工艺研究的基础上,研究了无压烧结和热压烧结对Sialon材料的结构和性能的影响。针对Sialon材料中的玻璃相和杂质,采用TEM、HREM和SEM面扫描与高温实时观测技术进行了深入剖析,研究了玻璃相和杂质的形成和分布特征,揭示了其对材料结构和性能的影响机制,为进一步探索有关玻璃相和杂质的控制技术提供了依据。
     根据不同废弃物的成分特点,本文分别设计、合成了铝灰+高炉渣+金属硅、铝灰+粉煤灰+炭黑和铝灰+金属硅三种体系。经过对比研究,确定了以铝灰+金属硅体系为重点研究对象。考察了废铝再生过程的两种废弃物吸尘灰和底灰对合成Sialon材料的影响,发现与吸尘灰相比,底灰中金属铝含量较高,因此还原反应更彻底,合成的Sialon物相较纯,而且有利于通过调节硅铝比和合成温度控制物相组成。如采用吸尘灰为原料,可以获得致密度更高的样品,但会在最终样品中残留较多的玻璃相。
     为了控制合成产物中AlN多型体的形成和发育,在铝灰+金属硅体系中加入适量的Y_2O_3(不大于3%),可以促进AlN多型体的优先析出。但Y_2O_3加入量超过3%时,会使原料中的氧化物含量过高,从而在合成样品中残留较多的玻璃相。在铝灰+金属硅体系加入17-26%的NH_4Cl可在一定程度上促进还原氮化反应的进行,但不利于AlN多型体的形成。添加NH_4Cl对合成产物的形貌影响比较明显,随着NH_4Cl添加量的增加,合成产物中的长柱状晶粒逐渐增多。采用DTA-TG和分段合成实验对铝灰+金属硅体系的合成过程进行了研究,结果表明合成过程中主要有800℃时Al的氮化阶段和1100℃时Si的氮化阶段,合成Sialon的反应在1450℃完成。
     采用铝灰+金属硅体系成功制备了致密的β-Sialon-15R陶瓷,并初步确定了材料制备参数与显微结构的相互关系,和材料显微结构与力学性能的关系。无压烧结的研究表明,在液相烧结机制作用下,β-Sialon发育成等轴状或短柱状,AlN多型体发育成纤维状或长柱状,两者交织排列形成原位自补强结构。通过制备参数的调节可以控制Sialon陶瓷中原位自补强结构的形成和变化。当原料的硅铝比为1.5时,在1650℃保温6h,可以制备显微结构较好的β-Sialon-AlN多型体陶瓷。根据无压烧结的研究结果,选择了硅铝比为1.5的最佳原料组成进行热压实验。结果表明,热压压力对颗粒的重排极为有利,而且提高热压烧结温度有助于过渡液相的生成,同时也促进了晶粒生长,从而有效地加速样品的致密化进程和原位自补强结构的形成。在热压烧结温度高于1550℃时,可以形成一种原位自补强的显微结构。长柱状AlN多型体的形成使材料的强度和韧性都有提高,并使材料在裂纹扩展中产生更多的偏转和桥联。在1750℃烧结时,β-Sialon-15R陶瓷可以获得最高的密度3.2g/cm~3,维氏硬度为12.3GPa,抗弯强度为432MPa,断裂韧性为4.31MPa·m~(1/2)。
     材料的玻璃相分析结果表明,在1750℃烧结的β-Sialon-15R复相陶瓷中玻璃相很少,少量玻璃相主要存在于多晶粒交界处。从β-Sialon和15R形成的镶嵌结构、15R固溶大量Mg以及β-Sialon-15R晶界形貌来看,15R的形成可有效地减少材料中的玻璃相残留。对不同温度条件下热压烧结的样品分析表明,在1450℃烧结时,材料中残留较多的玻璃相。随着烧结温度提高,材料中的玻璃相逐渐减少。在1650℃烧结时,β-15R晶界比较干净,但β-β晶界仍然残留有玻璃相。而在1750℃烧结时,在β-β晶界处已观察不到残余玻璃相。材料中少量残留的玻璃相主要集中在多晶粒交界处。因此,利用铝灰合成Sialon材料,通过合理的复相陶瓷组份设计和合适的工艺参数控制,可有效减少Sialon材料中的玻璃相含量。
     材料的杂质分析结果表明,铝灰原料中所含KCl和NaCl等盐类杂质,在高于1450℃烧结时得以挥发。在1750℃烧结的样品中,杂质主要是Fe_5Si_3相,少量Cr和Mn元素富集其中。Fe_5Si_3相对材料的结构和性能有较为显著的不利影响。因此,获得优质的合成材料必须有效控制铝灰原料中的Fe杂质,其它微量的金属杂质及盐类杂质不会对合成材料的结构和性能产生明显的作用。
Recently, China has become one of the biggest electrolytic aluminum productioncountries. Aluminum dross is one of the main secondary wastes during aluminumrecycling procedure. It is necessary to utilize aluminum dross not only decreases thewaste of resources, but also reduces environment pollution. The reuse of aluminumdross is the last step of aluminum industrial production, and is thought as a worldwidedifficult problem.
     Sialon ceramics are considered as an attractive material for engineeringapplications because of their excellent mechanical, chemical, and thermal properties.The applications of Sialon ceramics have always been limited by their high cost forthe use of high-purity raw materials. Using aluminum dross to synthesize Sialon notonly protect environment but also decrease the cost of Sialon production. It is veryimportant in the theory and practice to achieve the high value utilization of aluminumdross.
     In this paper, aluminum dross was used as raw materials to synthesize Sialon. Theeffect of initial compositions, technology paramters and additives on phasecomposition and microstructure was systematically studied. Based on the study ofsynthesis, the effect of pressureless sintering and hot pressing sintering on themicrostructure and mechanical properties of aluminum dross-based Sialon wasstudied. To solve two main obstacles of glass and impurity in industry wastesutilization, the formation and distribution of glass phase and impurity in aluminumdross-based Sialon was also studied by TEM, HREM and SEM.
     In this paper, three systems (aluminum dross+slag+Si, aluminum dross+flyash+Si and aluminum dross+Si) were designed according to the compositions ofdifferent wastes. The aluminum dross and Si system was identified as the preferredsystem to synthesize Sialon materials. The high quality Sialon can be synthesized byusing the aluminum dross (high aluminum). The phase compositions can be controlledby changing the ratios of Si to Al and synthesizing temperatures. Using the aluminumdross (low aluminum), the densification of Sialon can be easily obtained, but a lot ofglass phases were formed in the Sialon.
     The addition of Y_2O_3(<3%) is helpful to the formation of AlN polytypoid.However, a lot of glass phases were formed with the excess addition of Y_2O_3. The addition of NH_4Cl (17-26%) is helpful to the nitridation reaction, but decrease theformation of AlN polytypoid. The content of elongated grains increased withincreasing the addition of NH_4Cl. The synthesis mechanism of aluminum dross andsilicon system was studied by DTA-TG and synthesis experiment in section. The mainreactions are the nitridation of Al at800℃and the nitridation of Si at1100℃. Thesynthesis of Sialon has been completed at1450℃.
     Using aluminum dross and Si system, dense β-Sialon-15R ceramics weresuccessfully fabricated. The relations of technology parameters, microstructure andproperties were studied. The study of pressureless sintering indicated β-Sialon formedequiaxed or short column grain, and AlN polytypoid showed fibre or long columngrain in liquid phase sintering mechanism. The in-situ reinforced microstructure canbe controlled by the synthesis parameters. When the ratio of Si/Al is1.5, the optimalmicrostructure is formed in β-Sialon-AlN polytypoid ceramics at1650℃for6h.Thus, the composition (Si/Al is1.5) is designed as the initial composition in the studyof hot pressing sintering. The results indicated that hot pressing pressure wasbeneficial to grains rearrangement. Increasing hot pressing temperature, more liquidphase was formed and the grain growth was promoted. The densification wasaccelerated and the in-situ reinforced microstructure was formed. A in-situ reinforcedmicrostructure was formed above1550℃. The in-situ toughening effect of fibre-likeAlN polytypoid was found, and was identified by crack deflection and crack bridging.The β-Sialon-15R ceramics obtained the highest density of3.2g/cm~3at1750℃, theVickers hardness (Hv10), bending strength and fracture toughness of the materialcould reach with value of12.3GPa,432MPa and4.31MPa m~(1/2), respectively.
     The situation of glass phase was analyzed in detail. The results indicated theinterface between β-Sialon grains and/or15R grains is clean in the samplesynthesized at1750℃, and the glassy phase only exist in triple junctions and pockets.These evidences of the mosaic interface structure between β-Sialon and15R, the mostof Mg cations from aluminum dross incorporated into the AlN polytypoid and theclean interface in β-Sialon-15R indicate15R AlN polytypoids in Sialon multiphaseceramics offer an effective path to reduce the glass phase formed from the oxideimpurity in aluminum dross. The analysis results of samples sintered at differenttemperatures indicated the amount of glass phase became less with increasingsintering temperature. At1650℃, the β-15R grain boundary is clean, and the liquidphase penetrated into the β-β grain boundary. The β-β grain boundary became clean at1750℃. The glassy phase only exists in the triple junctions and pockets. The glass phase in aluminum dross-based Sialon ceramics can be effectively decreased bychoosing the right material compositional design and proper sintering parameters.
     The situation of impurity was also analyzed in detail. The results indicated theimpurities such as NaCl and KCl were evaporated from the samples above1450℃.The main impurity phase is Fe_5Si_3at1750℃, some minor elements impurity such asCr and Mn are contained in Fe_5Si_3phase. Fe_5Si_3has a negative effect on themicrostructure and mechanical properties. Therefore, the impurity Fe should bepriority thought to remove from aluminum dross, and small amount metal impuritiesand salts impurities were no obvious effect on the microstructure and properties ofSialon.
引文
[1]师昌绪.材料与可持续发展.自然杂志,1998,20(2),63-68.
    [2]中国统计年鉴2006.中国统计出版社.
    [3]山本良一著.王天民译.环境材料.中国化工出版社,北京,1997.
    [4]周尧和,孙宝德,李天晓,许振明.生态材料学-材料科学发展新趋势.上海交通大学学报,2001,35(3),331-334.
    [5]左铁镛,聂祚仁编著.环境材料基础.科学出版社,北京,2003.
    [6]王海风,张春霞,齐渊洪,戴晓天,严定鎏.高炉渣处理技术的现状和新的发展趋势.钢铁,2007,42,83-87.
    [7]金霞,李辽沙,董元篪.国内外高炉渣资源化技术发展现状和展望.中国资源综合利用,2005,9,4-7.
    [8]成海芳,文书明,殷志勇.高炉渣综合利用的研究进展.矿业快报,2006,448,21-23.
    [9] Das B, Prakash S, Reddy PSR, Misra VN. An overview of utilization of slag and sludge fromsteel industries. Resour. Conserv. Recy.,2007,50,40-57.
    [10] Peter J. Koros. Dusts, scale, slags, sludges... not wastes, but sources of profits. Metall. Mater.Trans. B,2003,34B,769-779.
    [11] Annelie Hedstrom, Lea Rastas. Methodological aspects of using blast furnace slag forwastewater phosphorus removal. J. Environ. Eng.,2006,11,1431-1438.
    [12]宗润宽,王慧,苏艳霞,等.粉煤灰综合利用开发研究进展.环境保护,2003,10,54-56.
    [13]欧阳培.粉煤灰的综合利用研究.再生资源研究,2004,5,34-37.
    [14]韩桂泉,李京伟,杜博,黄娟,王瑞娟.粉煤灰的综合利用现状与展望.中国资源综合利用,2006,7,12-14.
    [15]李进平,甘金华,侯浩波,郑颖.用粉煤灰处理废水的研究现状及潜力.粉煤灰综合利用.2007,4,54-56.
    [16] Erol M, Kucukbayrak S, Ersoy-Mericboyu A, Ulubas T. Removal of Cu2+and Pb2+inaqueous solutions by fly ash. Energ. Convers. Manage.,2005,46,1319-1331.
    [17] Papandreou A, Stournaras CJ, Panias D. Copper and cadmium adsorption on pellets madefrom fired coal fly ash. J. Hazard. Mater.,2007,148,538-547.
    [18] Ting Chu Hsu, Chung Chin Yu, Chin Ming Yeh. Adsorption of Cu2+from water using raw andmodified coal fly ashes. Fuel,2008,87,1355-1359.
    [19]Ahmaruzzaman M. A review on the utilization of fly ash. Progress in Energy and CombustionSci.,2010,36,327-363.
    [20] Shinzato MC, Hypolito R. Solid waste from aluminum recycling process: characterizationand reuse of its economically valuable constituents. Waste Manage.,2005,25,37-46.
    [21]李远兵,孙莉,赵雷,常娜,周胜,李亚伟.铝灰的综合利用.中国有色冶金,2008,6,63-67.
    [22]刘海涛.铝灰综合利用技术现状.云南冶金,2003,32(2),40-42.
    [23] Kevorkijan VM. The quality of aluminum dross particles and cost-effective reinforcement forstructural aluminum-based composites. Composites Sci. and Tech.,1999,59,1745-1751.
    [24] Akiyama T, Hirai Y, Ishikawa N. Combustion synthesis of aluminum nitride from dross,Mater. Trans.,2001,42,460-463.
    [25] Miyamoto Y. Ecomaterials synthesis and recycling by nitriding combustion, Curr. Opin. SolidState Mat. Sci.,2003,7,241-245.
    [26] Das BR, Dash B, Tripathy BC. Production of η-alumina from waste aluminum dross. Miner.Eng.,2007,20,252–258.
    [27] Dash B, Das BR, Tripathy BC,Bhattacharya IN, Das SC. Acid dissolution of alumina fromwaste aluminium dross. Hydrometallurgy,2008,92,48–53.
    [28] El-Katatny EA, Halawy SA, Mohamed MA, Zaki MI. Surface composition, charge andtexture of active alumina powders recovered from aluminum dross tailings chemical waste.Powder Tech.,2003,132,137-144.
    [29] Yoshimura HN, Abreu AP, Molisani AL, de Camargo AC, Portela JCS, Narita NE. Evaluationof aluminum dross waste as raw material for refractories, Ceram. Int.,2008,34,581-591.
    [30]李晓娜.铝灰制备镁铝尖晶石及其在Al2O3-MgAl2O4耐火材料中的应用.硕士论文.上海交通大学.2008.
    [31] Hashishin T, Kodera Y, Yamamoto T, Ohyanagy M, Munir ZA. Synthesis of (Mg, Si) Al2O4spinel from aluminum dross. J. Am. Ceram. Soc.,2004,87,496-499.
    [32] Ibarra Castro MN, Almanza Robles JM, Cortes Hernandez DA, Escobedo Bocardo JC, TorresTorres J. Development of mullite/zirconia composites from a mixture of aluminum dross andzircon. Ceram. Int.,2009,35,921-924.
    [33] Murayama N, Okajima N, Yamaoka S,Yamamoto H, Shibata J. Hydrothermal synthesis ofAlPO4-5type zeolitic materials by using aluminum dross as a raw material. J. Eur. Ceram. Soc.,2006,26,459-462.
    [34] Murayama N, Arimura K, Okajima N, Shibata J. Effect of structure-directing agent onAlPO4-n synthesis from aluminum dross. Int. J. Miner. Process.,2009,93,110-114.
    [35] Kim J, Biswas K, Jhon KW, Jeong SY, Ahna WS. Synthesis of AlPO4-5and CrAPO-5usingaluminum dross. J. Hazard. Mater.,2009,169,919-925.
    [36] Liu KM, Wang FM, Li WC, et al. Synthesis of Ca-α-Sialon-SiC powders from blast furnaceslag and optimization of its synthesis. J. Univer. Sci. Technol. Beijing,2001,23,404-408.
    [37] Chen WW, Steel J, Zhang Y, Jiang JX, Cheng YB, Wang PL, Yan DS. Mechanical anderosion-resistance properties of slag α-Sialon ceramics. J. Eur. Ceram. Soc.,2004,24,2847-2851.
    [38]李金洪,马鸿文,吴秀文.利用高铝粉煤灰合成β-Sialon粉体的实验研究.岩石矿物学杂志,2005,24(6),643-647.
    [39] Oyama Y, Kamigaito O. Solid solubility of some oxides in Si3N4. Jpn. J. Appl. Phys,1971,10,1637-1642.
    [40] Jack KH. Solid solubility of alumina in silicon nitride. Trans. J. Br. Ceram. Soc.,1973,72,376-378.
    [41] Jack KH, Wilson WI. Ceramics based on the Si-Al-O-N and related systems. Nature(London), Phys. Sci.,1977,238,28-29.
    [42] Ekstroem T, Nygren M. Sialon ceramics. J. Am. Ceram. Soc.,1992,75,259-276.
    [43] Jack KH. Sialons and related nitrogen ceramics-review. J. Mater. Sci.,1976,11,1135-58.
    [44] Lee JG, Cutler IB. Sinterable Sialon powder by reaction of clay with carbon and nitrogen. Am.Ceram. Soc. Bull.,1979,58,869-871.
    [45] Zhang C, Komeya K, Tatami J, Meguro T, Cheng YB. Synthesis of Mg-α Sialon powdersfrom talc and halloysite clay minerals. J. Eur. Ceram. Soc.,2000,20,1809-1814.
    [46] Qiu JY, Tatami J, Zhang C, Komeya K, Meguro T, Cheng YB. Influence of starting materialcomposition and carbon content on the preparation of Mg-α Sialon powders by carbothermalreduction-nitridation. J. Eur. Ceram. Soc.,2002,22,2989-2996.
    [47] Liu XJ, Sun XW, Zhang JJ, Pu XP, Ge QM, Huang LP. Fabrication of β-Sialon powder fromkaolin. Mater. Res. Bull.,2003,38,1939-1948.
    [48] Zhang HJ. Preparation and pattern recognition of O-Sialon by reduction-nitridation from coalgangue, Mat. Sci. Eng. A,2004,385,325-331.
    [49] Chen WW, Wang PL, Chen DY, Zhang BL, Jiang JX, Cheng YB, Yan DS. Synthesis of(Ca,Mg)-α-Sialon from slag by self-propagating high-temperature synthesis. J. Mater. Chem.,2002,12,1199-202.
    [50] Jiang JX, Wang PL, Chen WW, Zhuang HR, Cheng YB, Yan DS. Phase assemblages of (Ca,Mg)-α-Sialon ceramics derived from an α-Sialon powder prepared by SHS, J. Eur. Ceram. Soc,2003,23,2343-2349.
    [51]蒋久信.自蔓延合成低成本炉渣Sialon和Eu, Pr, Ce-Sialon材料研究.博士论文.中国科学院上海硅酸盐研究所.2004.
    [52]姜涛,薛向欣.配料组成对含钛高炉渣合成TiN/(Ca,Mg)-α-sialon粉的影响.硅酸盐学报,2005,4,416-421.
    [53]姜涛,薛向欣,段培宁,刘然,董学文,茹红强.工艺参数对含钛高炉渣合成(Ca, Mg)-α-Sialon-AlN-TiN粉的影响.中国有色金属学报,2005,4,608-613.
    [54] Jiang T, Xue XX, Duan PN, Liu X, Zhang SH, Liu R. Carbothermal reduction-nitridation oftitania-bearing blast furnace slag. Ceram. Int.,2008,34,1643-51.
    [55] Qiu Q, Hlavacek V, Prochazka S. Carbonitridation of fly ash. I. Synthesis of Sialon-basedmaterials. Ind. Eng. Chem. Res.,2005,44,2469-2476.
    [56] Qiu Q, Hlavacek V. Carbonitridation of fly ash. II. Effect of decomposable additives andwhisker formation. Ind. Eng. Chem. Res.,2005,44,2477-2483.
    [57] Qiu Q, Hlavacek V. Carbonitridation of fly ash.3. Effect of indecomposable additives. Ind.Eng. Chem. Res.,2005,44,7352-7358.
    [58] Qiu Q, Hlavacek V. Carbonitridation of fly ash.4. Hydrolysis of nitrided fly ash. Ind. Eng.Chem. Res.,2005,44,7359-7365.
    [59] Kudyba-Jansen AA, Hintzen HT, Metselaar R. Ca-α/β-Sialon ceramics synthesised from flyash-preparation, characterization and properties, Mater. Res. Bull.2001,36,1215-1230.
    [60]曹瑛,李卫东,李金洪.硅热还原氮化法粉煤灰制备Sialon粉体的研究.矿物岩石地球化学通报,2006,25(4),357-361.
    [61]江东亮,李龙土,欧阳世翕,施剑林.无机非金属材料手册.化学工业出版社.2009.
    [62]都兴红,张广荣,隋智通. Sialon陶瓷的结构.中国陶瓷,1997,33(2),34-37.
    [63]都兴红,张广荣,隋智通. Sialon陶瓷的性质.中国陶瓷,1998,34(2),42-45.
    [64] Riley FL. Silicon nitride and related materials. J. Am. Ceram. Soc,2000,83,245-265.
    [65] Izhevskiy VA, Genova LA, Bressiani JC, Aldinger F. Progress in Sialon ceramics. J. Eur.Ceram. Soc.,2000,20,1327-1331.
    [66] Rosenflanz A. Silicon nitride and Sialon ceramics. Curr. Opin. Solid State Mat. Sci.,1999,4,453-459.
    [67] Hampshire S, Park HK, Thompson DP et al. Alpha'-Sialon ceramics. Nature,1978,274,880-882.
    [68] Cao GZ, Metselaar R. α'-Sialon ceramics: A Review. Chem. Mater.,1991,3,242-252.
    [69] Mandal H, New developments in α-Sialon ceramics, J. Eur. Ceram. Soc,1999,19,2349-2357.
    [70]周国红,李亚伟,李楠. AlN多型体研究进展.材料导报,2004,18,280-283.
    [71] Li HX, Sun WY, Yan DS. Mechanical properties of hot pressed12H ceramics. J. Eur. Ceram.Soc.,1995,15,697.
    [72] Wang PL, Jia YX, Sun WY. Fabrication of15R AlN-polytypoid ceramics. Mater. Lett.,1999,41,78.
    [73] Wang PL, Sun WY, Yan DS. Formation and densification of21R AlN-polytypoid. J. Eur.Ceram. Soc.,2000,20,23.
    [74] Wang PL, Sun WY, Yan DS. Mechanical properties of AlN polytypoids-15R,12H and21R.Mater. Sci. Eng.,1999, A272,351.
    [75]王佩玲,张炯,贾迎新,等. AIN多型体陶瓷的研究I. AlN多型体的形成及致密化.无机材料学报,1999,14(6),881.
    [76]王佩玲,张炯,贾迎新,等. AlN多型体陶瓷的研究Ⅱ. AlN-多型体的力学性能和微观结构.无机材料学报,2000,15(4),756.
    [77]孙维莹.复杂氮陶瓷的相平衡及组份设计.中国科学院院刊,1998,2,129-131.
    [78]杨建,薛向新,王文忠. Sialon基陶瓷的结构特征及物理和化学性质.陶瓷工程,1999,33(5),1-8.
    [79]董良金,邬凤英,符锡仁. Sialon复相陶瓷的研制.上海硅酸盐,1994,2,91-93.
    [80] Bandyopadhyay S. The in situ formation of Sialon composite phases. J. Eur. Ceram. Soc,1997,17,929-934.
    [81] Ekstrom T, Kall PO and Nygren M, Mixed α-and β-Sialon materials with yttria andneodymia additions. Mater. Sci. Eng.,1988, A105/106,161-165.
    [82] Ekstrom T, Shen Z J, Duplex α, β-Sialon ceramics stabilized by Dy and Sm, J. Am. Ceram.Soc.,1997,80,301-312.
    [83] Klemm H, Herrmann M, Reich T, Schubert C, Frassek L, Wotting G, Gugel E, Nietfeld G.High-temperature properties of mixed α-β-Sialon materials. J. Am. Ceram. Soc.,1998,81,1141-1148.
    [84] Wang H, Sun WY, Zhuang HR, Yen TS. Preparation of R-α-β-Sialons (R=Sm, Gd, Dy, Y andYb) by pressureless sintering, J. Eur. Ceram. Soc.,1994,13,461-465.
    [85] Zhang C, Sun WY, Yan DS, Optimizing mechanical properties and thermal stability ofLn-α-β-Sialon by using duplex Ln elements (Dy and Sm), J. Eur. Ceram. Soc.,1999,19,33-39.
    [86] Ukyo Y, Wada S. High strength Si3N4ceramics, J. Ceram. Soc. Jpn.,1989,97,872-874.
    [87] Wang H, Sun WY, Zhuang HR, Yen TS. Study on phase composition of rare earth multiphaseSialon ceramics, Chinese Sci. Bull.,1994,39,918-920.
    [88]李红霞.自增强Sialon-AlN多型体复相陶瓷的设计及研究.博士论文.中国科学院上海硅酸盐研究所.1994.
    [89]陈卫武,孙维莹,严东生. α-Sialon-AlN多型体复相陶瓷的微观结构特性.无机材料学报,1999,14(6),887-892.
    [90]陈卫武,孙维莹,严东生.不同稀土元素对α-Sialon-AlN多型体复相陶瓷生成动力学的影响.无机材料学报,2000,15(2),264.
    [91] Chen WW, Li YW, Sun WY, et al. Phase formation and microstructural evolution ofR-α-AlN-polytypoid ceramics (R=Y,Y+Sm and Sm). J. Eur. Ceram. Soc.,2000,20,1327.
    [92]王浩,庄汉锐,孙维莹,冯景伟,严东生.添加Sm2O3的β-12H复相Sialon.硅酸盐学报,1994,22(1),1-7.
    [93] Wang H, Sun WY, Zhuang HR, Feng JW, Yen TS. Microstructural observation ofβ′-Sialon-12H multiphase ceramics by HREM, Mater. Lett.,1993,17,131-136.
    [94]邬凤英,庄汉锐,李文兰,罗新宇,马利泰. β-Sialon-AlN多型体陶瓷研究.无机材料学报,1996,11(4),708-710.
    [95]都兴红,张广荣,隋智通. Sialon陶瓷的合成与应用.中国陶瓷,1997,33(4),39-42.
    [96] Mitomo M, Kuramoto N, Tsutsumi M et al. The formation of single phase Si-Al-O-Nceramics. J. Ceram. Soc. Jpn.,1978,86,526-531.
    [97] Zhang HJ, Han B, Liu ZJ. Preparation and oxidation of bauxite-based β-Sialon-bonded SiCcomposite. Mater. Res. Bull.,2006,41,1681-1689.
    [98] Tath Z, Demir A, Yilmaz R, Caliskan F, Ali O. Kurt. Effects of processing parameters on theproduction of Sialon powder from kaolinite. J. Eur. Ceram. Soc.,2007,27,743-747.
    [99]侯新梅.铝-硅-碳还原剂对合成矾土基Sialon的作用及机理探讨.硕士论文.郑州大学.2004.
    [100]郭艳芹.复合还原剂还原氮化合成矾土基β-Sialon的研究.硕士论文.郑州大学.2006.
    [101]黄莉萍,徐友仁,唐铮,符锡仁.以高岭土制备β-Sialon粉料.硅酸盐学报,1991,19(1),11-18.
    [102]张宏泉,杨忠民.用不同粘土矿物合成Sialon粉末的研究.中国陶瓷,1998,34(1),16-19.
    [103] Qiu JY, Tatamia J, Zhang C, Komeya K, Meguroa T, Cheng YB. Influence of startingmaterial composition and carbon content on the preparation of Mg-α SiAlON powders bycarbothermal reduction-nitridation. J. Eur. Ceram. Soc.,2002,22,2989-2996.
    [104] Vlasova M, Vinokurov VB, Grigorev ON, Panasyuk AD, Bega ND, Kakazey M,Gonzalez-Rodriguez JG, Dominguez-Patino G, Dominguez-Patino M. Features of SiAlONsynthesis from kaolin. Mater. Sci. and Eng. A,2004,366,325-331.
    [105] Li FJ, Wakihara T, Tatami J, Komeya K, Meguro T. Synthesis of β-SiAlON powder bycarbothermal reduction-nitridation of zeolites with different compositions. J. Eur. Ceram. Soc.,2007,27,2535-2540.
    [106] Li FJ, Wakihara T, Tatami J, Komeya K, Meguro T, Mackenzie KJD. Elucidation of theFormation Mechanism of β-SiAlON from a Zeolite. J. Am. Ceram. Soc.,2007,90,1541-1544.
    [107]都兴红,隋智通.碳热还原氮化法制备β-Sialon粉体的热力学过程.无机材料学报,1998,4,463-468.
    [108] Mazzoni AD, Aglietti EF. Phase evolution of andalusite (A12O3-SiO2)-Al system in nitrogenatmosphere. Mater. Chem. Phys.,1997,48,41-47.
    [109] Kingery WD, Brown HK, Uhlmann DR, Introduction to ceramics, Second Edition, JohnWiley&Sons Inc.,1976.
    [110] Ekstrom T, Preparation and properties of α-Sialon ceramics. J. Hard Mater.,1992,3,109-118.
    [111] Hewett CL, Cheng YB, Muddle BC et al, Preparation of fine-grained calcium α-Sialon. J.Mater. Sci. Lett.,1994,13,1612-1615.
    [112] Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentationtechniques for measuring fracture toughness: I Direct crack measurements, J. Am. Ceram. Soc.,1981,64,533-538.
    [113]张清纯,陶瓷材料力学性能,科学出版社,1987.
    [114] El-Katatny EA, Halawy SA, Mohamed MA et al., Surface composition, charge and textureof active alumina powders recovered from aluminum dross tailings chemical waste, PowderTechnol.,2003,132,137-144.
    [115] Norihiro Murayama, Nobuaki Okajima, Shoichi Yamaoka, et al. Hydrothermal synthesis ofAlPO4-5type zeolitic materials by using aluminum dross as a raw material. J. Eur. Ceram. Soc.,2006,26,459-462.
    [116]童晓民,赵宏风,黄春燕,赵一波. X射线荧光光谱法测定炉渣中13种组分.冶金分析,2005,25,12-16.
    [117]张香荣.炉渣和原材料的X射线荧光光谱快速分析.冶金分析,2002,22,11-13.
    [118]刘新斌,申琴芳,尚青龙,陈晓霞. X射线荧光光谱法测定炉渣中的主要成分.光谱实验室,2005,1,58-61.
    [119] Hewett CL, Cheng YB, Muddle BC, Trigg MB. Phase relationships and relatedmicrostructural observations in the Ca-Si-Al-O-N system. J. Am. Ceram. Soc.,1998,81,1781-1788.
    [120]张海军,金乾,贾全利.粉煤灰空心微珠氮化反应合成O-Sialon粉的研究.稀有金属材料与工程,2008,A01,682-685.
    [121] Boyer SM, Moulson AJ. A mechanism for the nitridation of Fe-contaminated silicon, J.Mater. Sci.,1978,13,1637-1646.
    [122] Mukerji J, Biswas SK. Effect of Iron, Titanium, and Hafnium on Second-Stage Nitriding ofSilicon, J. Am. Ceram. Soc.,1981,64,549-552.
    [123] Hwang SL, Chen IW. Reaction hot-pressing of α-and β-Sialon Ceramics. J. Am. Ceram.Soc.,1994,77,165-171.
    [124] Menon M, Chen IW. Reaction densification of α-Sialon: I, Wetting behavior and acid-basereactions, J. Am. Ceram. Soc.,1995,78,545-554.
    [125] Menon M, Chen IW. Reaction densification of α-Sialon: Ⅱ, Densification behavior, J.Am. Ceram. Soc.,1995,78,54-59.
    [126] Zheng J, Forslund B. Carbothermal preparation of β-Sialon powder at elevated nitrogenpressures. J. Eur. Ceram. Soc.,1999,19,175-185.
    [127] Sun WY, Wang PL, Yan DS. Phase transformation in Ln-(α+β)-Sialon ceramics by heattreatment. Mater. Lett.,1996,26,9-16.
    [128] Mitomo M, Petzow G. Recent progress in silicon nitride and silicon carbide ceramics. MRSBull.,1995,2,19-41.
    [129] Kudyba-Jansen AA, Hintzen HT, Metselaar R. Ca-α/β-Sialon ceramics synthesised from flyash-preparation, characterization and properties. Mater. Res. Bull.,2001,36,1215-30.
    [130] Wood CA, Zhao H, Cheng YB. Microstructural development of calcium alpha-Sialonceramics with elongated grains. J. Am. Ceram. Soc.,1999,82,421-428.
    [131]王佩玲,张骋,贾迎新,孙维莹.(Ca, Mg)-α-Sialon的致密化,形成特性和显微结构.无机材料学报,1999,14,563-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700