用户名: 密码: 验证码:
车用节气门角度传感器的检测台架研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术的发展,汽车电子化程度不断提高,通常的机械系统已经难以解决某些与汽车功能要求有关的问题,而被电子控制系统代替。传感器作为汽车电控系统的关键部件,它直接影响汽车的技术性能发挥。角度传感器在汽车上应用广泛,主要用于检测曲轴转角、发动机转速、车速等,其精度和可靠性对汽车控制起着至关重要的作用。因此,对角度传感器性能要求也越来越高,故而对角度传感器性能检测的手段要求提高,需要其操作简单易行,并且能够准确反应传感器真实特性,最后需要能够满足工业生产条件,而现有的检测手段往往很难满足现有工业生产的需求,这是本课题研发的出发点。
     本文所设计的检测台架主要是针对于汽车节气门角度传感器性能的检测。节气门角度传感器是安装在节气门轴上的用来检测节气门开度门传感器,节气门角度感器的作用是把节气门的位置或开度转换成电压的信号,传输给电控单元,作为电控单元判定发动机运行工况的依据,实现不同节气门开度下的喷油量控制、电控单元通过节气门角度传感器可获得表示节气门由全闭到全开的所有开启角度的连续变化的模拟信号,以及节气门开度的变化速率,从而更精确地判定发动机的运行工况,提高控制精度和效果。本课题研制的台架是针对于一种非接触式的霍尔效应的节气门角度传感器的检测,其设计的检测系统主要包括三部分内容:检测系统中机械结构的设计、PLC程序的设计开发和VB开发的上位机测试软件以及二者通讯控制的实现。本文首先介绍我们需要检测的节气门角度传感器的特点及其工作原理以及现有传感器的检测手段,再根据该传感器的外形特点和客户需求进行相关台架设计,包括整套的机械机构设计和控制系统设计;其次进行了相关硬件的选型和连接,编制了PLC程序及程序调试;最后应用VB编写了上位机测试操作软件,实现了对PLC通信和控制以及对数据的采集和处理工作
     本设计系统最终实物加工组装完成完成,并已经投入生产,其检测效果可以满是工业需求,其操作简单易行,画面显小清晰,可以实时采集教据并对图像进行绘制,并且其有判别传感器是否合格等特点,因此对传感器检测手段提供了新设计方法,其有很大的现实意义。
With the rapid development of electronic technology, automotive electronics degree of continuous improvement,the usual mechanical system has been difficult to resolve certain issues related to vehicle functions requires,replaced by the electronic control system. Sensors as a key component of automotive electronic control system,which directly affect the technical performance of the car to work.The angle sensor is widely used in the car,mainly for the detection of crank angle,engine speed,vehicle seed,accuracy and reliability of the vehicle control plays a vital role. Therefore, the angle sensor performance requirements have become more sophisticated, hence the detection means of the angle sensor performance requirements have been increased too. It must operate simple, can accurately reflectthe true characteristics of the sensor, and meet the industrial production conditions. But now, means of detection is often difficult to reach the needs of existing industrial production, which is the purpose for the development of the subject.
     Designed test rig in passage is aim at detection of automotive throttle angle sensor performance.Throttle angle sensor is installed in the throttle shaft to checking the sensors'throttle opening degree sensor, the role of the throttle angle sensor is turn the position of the throttle opening into the voltage signal transmitted to the electronic control unit, as the basis of the engine operating conditions which the electronic control unit to determine to achieve different throttle fuel injection quantity control. All of the opening angle of the analog signal of the continuous changes, as well as the throttle opening rate of change are available by electronic control units through the throttle angle sensor to said throttle from fully closed to fully open.So electronic control units can determine the engine operating conditions more accurately,improve the control accuracy and effect. The project is for a non-contact Hall-effect throttle angle sensor detection, which consists of three parts:the mechanical structure design of the detection system, the PLC program design and developmentand VB host computer test software, as well as both communication and control.This paper first introduces the characteristics of the throttle angle sensor and its working principle and the existing sensor detection means which we need to detect. Then according to the shape of the sensor and customer needs relates to bench designs, including the entire mechanical system design and control system design. Second, it have a selection of relevant hardware and connections, the preparation of the PLC program and debugging. The last,it completes a application written in VB to test the operating software of the host computer, makes PLC communications and control and data acquisition and processing come tue.
     The system has been completed successfully and put into production. At the same time,it can meet the industrial demand.For its simple operation, clear display screen, image of real-time data acquisition and the discrimination of sensor' eligibility, the new design method to characteristics sensor detection is in great practical significance.
引文
[1]边绿良.磁敏传感器及其应用.电子材料与电子技术.2004.
    [2]杜开明.汽车电子节气门控制仿真与实验研究[硕士学位论文].重庆大学2004.
    [3]徐振华.车用节气门位置传感器的研究[硕士学位论文].武汉理工大学.2011.
    [4]雷晶莹.基于霍尔效应的摩托车用气门位置传感器的研究[硕士学位论丈].天津大学.2008.
    [5]李柱,徐振高,蒋向前,互换性检测和测量技术.北京:清华大学出版社,2008.
    [6]寇宝全,程树康.交流伺服电机及其控制.北京:机械工业版社,2008(9).
    [7]龚顺镒.工业控制自动化实用技术手册.北京:机械工业出版社,2009.
    [8]胡佑德,马东升,张莉松.伺服系统原理与设计.北京:北京理工大学版社,1999:2-6.
    [9]舒志兵.交流伺服运动控制系统(第二版)[M].清华大学出版社,2006.
    [10]谭第娃,金如麟.永磁同步电动机系统的应用和研究[J].交流永磁同步伺服系统,2005,(3).
    [11]舒志兵.现代伺服运动控制系统(第一版)[M].黑龙江人民出版社,2004.
    [12]松下电机交流伺服马达一驱动器MINAS A5系列使用说明书
    [13]常晓玲.电气控制系统与可编程控制器[M].北京:电子工业出版社,2007.
    [14]机械设计手册编委会.气压传动与控制(第四版)[M].北京:机械工业出版社,2007.
    [15]Moore P, Pu Junsheng. Pneumatic servo actuator technology|A]. Actuator Technology: Current Practice and New Developments.IEE Colloquium[C]. Washington:Institute of Electrical and Electronics Engineers Inc,1996.311-316.
    [16]王祖温,杨庆俊.气压位置控制系统研究现现状与展望[J].机械工程学报,2003,39(12):1016.
    [17]陈奎生,易建钢,黄浩等.气动位置系服系统的NNIMC控制研究[J].中国机械工程,2004,15(23):2138-2142.
    [18]Shu Ning, Bone G M. Hish steady-state accuracy pneumatic servo positioning system with PVA/PV control and friction compensation[A]. Proceedings of the 2002 IEEE International Conference on Robotics&Automationb[C]. Washinton: Institute of Electricaland Electronics Engineers Inc,2002.2824-2829.
    [19]陶玉静,范才智,田章福,王振国.两位五通电动气阀动态特性研究.推进技术2006,12(6)
    [20]SMC′气缸选型手册.
    [21]Ordonneau G. Low frequency oscillation phenomena duringVULCAIN shutdown transient[R]. AIAA 2001-3543.
    [22]LIU Kun. ZHANG Yulin. A study on versatile simulation of liquid propellant rocket engine systems transients[R]. AIAA 2000-3771.
    [23]Tarafder A, Sarangi S. CRESP · LP:A dynamic simulator for liquid—propellant rocket engines[R]. AIAA 2000-3768.
    [24]方德寿,方交,杨永达.实用电子技术手册[M].北京:国防工业出版社,1999.
    [25]廖常初,PLC编程及应用[M].北京:机械工业出版社,2005.7.
    [26]王永华等.现代电气控制及PLC应用技术[M].北京:北京航空航天大学版社,2005.3.
    [27]松下可编程控制器FP-X用户手册,2008,12.
    [28]松下可编程控制器FP系列可编程手册,2004,9.
    [29]松下可编程控制器FP-C38AT系列补充手册,2009,8.
    [30]陈忠华.可编程控制器与工业自动化.北京:机械工业出版社,2006.
    [31]李斌,董慧颖.PLC的应用技术.河北工业大学报,2000,19(4):23-27.
    [32]白鹏,Visual. Basic 6.0高级编程技巧—多媒体通信篇[M].西安:西安交通大学出版社,1999.
    [33]松下电工FP系列可编程控制器通信协议.
    [34]王卫兵.PLC系统通信扩展与网络互联技术.北京:机械工业出版社,2004.
    [35]张传伟.VB下PLC与PC串口通信的实现.组合机床与自动化加工技术.2005.
    [36]王萍,聂伟强.Visual Basic程序设计教程.北京:邮电出版社,2006.
    [37]刘炳文.Visual Basic程序设计教程.北京:清华大学出版社,2006.
    [38]吴军,张凤和等.可编程控制器的通讯设置.西安电子科技大学学报(机电工程版),2000,21(1):4245.
    [39]李双科,吴记群.VB下利用MSComm实现计算机与PLC的串行通信.电气传动技术与自动化,2006,28(3)1:43-45.
    [40]甄任贺.用VB6.0实现PC机与PLC的串口通信.机电工程,2004,21(5):17-19.
    [41]张天.可编程控制器在网络通信研究[硕士学位论文].沈阳:东北大学,2002.
    [42]敬伟,涂劲.用VB6.0实现西门子PLC与PC机的串口通信.微机发展,2003,25(2):28-29.
    [43]SIEMENS CO.SIMATIC S7-200 Programmable Logical Controllers System Manual.2002:4.
    [44]G L Batten Programmable Logical Controllers:harware,sofrware and applications.Mc Graw-Hill.1994.
    [45]王晓勇,盛志冲.上位计算机与PLC串行通信在生产线监控中的应用.机电工程,2006,32(3):32-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700