用户名: 密码: 验证码:
北方寒地大规模水稻秧苗配送系统优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国水稻生产综合机械化水平提高较快,但是水稻秧苗配送系统的机械化成为发展瓶颈,其中,水稻大规模生产过程中,育插秧系统机械化配套技术和服务成为农业系统工程中的前沿问题。本论文以北方寒地大规模水稻育插秧系统为背景,根据水稻工厂化育秧、机插等技术向组织化、集约化、标准化发展趋势,采用系统分析和建模优化方法,对大规模工厂化育秧条件下,从农机配套的角度对育秧到插秧的配送过程进行优化研究。具体研究如下:
     (1)寒地大规模水稻秧苗配送系统及农机配套研究对象的描述。融合黑龙江垦区规模水稻种植中高端农艺农机技术,利用因素分析表明,实现既满足运输方便,又保证秧苗质量的农机农艺高度融合作为水稻秧苗配送系统发展方向。界定研究对象为寒地大规模水稻秧苗配送系统,是指寒地大规模水稻种植过程中从大棚育秧空间布局开始,到插秧完成之间的物流配送过程中各环节构成的系统。归纳得出该系统关键流程为“棚地全程机械化模式”。具体设计了水稻工厂化育秧大棚到多本田的秧苗配送关键流程,系统地提取了农机配套指标。据此,展开后续研究。
     (2)工厂育秧大棚到多本田的大规模水稻秧苗配送系统优化及农机配套研究。①水稻工厂化育秧大棚的生产物流优化及农机配套研究。基于工厂化规模育秧大棚内秧盘布局的研究成果,结合黑龙江垦区调研的秧盘布局现状,对秧盘采用仓库储位管理,并进行出棚研究,以水稻工厂化育秧大棚秧苗起秧路径和出棚总成本最低为目标,构建目标规划模型,运用遗传算法求解,获得大棚内起秧、出棚的路线和方式等流程综合优化方案,经算例检验,得出工厂化育秧大棚内秧盘出棚的生产物流优化流程:起秧路径从秧棚中间顺次向两侧,再从两侧向中间,将秧苗从秧盘中全部起出装秧架,依据运秧车每次的容量,将秧架等间隔集中到秧棚的通道附近,接着利用运秧车将秧架沿秧棚的中间通道,顺次运送到秧棚外,直接提升装车。同时,优化方案的成本节约了19%和时间降低了21%。归纳出该生产物流农机合理配套的满足条件,得出棚内水稻秧苗生产物流的农机配套规律:在运秧车容量一定时,生产物流成本随配套农机运行速度的增加而逐渐减少,最后趋于稳定。生产物流成本与配套农机容量的关系类似。②水稻工厂化育秧大棚到一本田配送系统及农机配套优化研究。以该秧苗配送系统总成本最低为目标,建立了目标规划模型,获得育秧大棚到一本田配送的优化流程和综合优化方案,经算例检验,得出工厂化育秧大棚到一本田直配的优化流程:根据插秧机插秧速度和本田的宽度、每次最大插秧宽度,设计出本田一侧的供秧计划和插秧机插秧路线,秧苗集散地的供秧量至少是本田内运秧车容纳秧苗量的2倍,秧苗集散地的供秧间隔时间至少为运秧车容纳插秧机载秧量的倍数乘以插秧机完成载秧量插秧任务时间的2倍。优化方案的成本节约18%、时间降低14%和工人数节约40%。优化分析出农机配套关键指标为各阶段运秧容量、速度和插秧机插秧速度。归纳出农机合理配套满足的条件,将部分秧苗生产和配送相关指标选用通用值,得出本田内供秧速度应大于等于2.65倍的插秧速度,公路运秧车在不同插秧速度下需要小于的运输时间,以及针对插秧机插秧速度和运输时间确定出育秧棚内需配套的人工数2-3人,插秧0.4m/s以上都需配套运秧车,插秧0.8m/s以上需要提前起秧。③水稻工厂化育秧大棚到多本田配送系统及农机配套优化研究。综合应用定位-运输车辆路线安排问题(LRP)和准时制(JIT)物流原理,以总成本最低为目标建立了北方寒地规模水稻秧苗定位-运输和准时配送的LAPTW模型,针对模型求解的“NP”难问题,构建三阶段启发式算法,其中第一阶段采用最小包络判别方法和聚类选址的启发式算法,确定本田秧苗集散地及配给服务的水稻本田,第二阶段采用遗传启发算法解决运输秧苗到各秧苗集散地的路径优化问题,第三阶段采用循环取货模式基于农机配套考虑准时供秧。最后,经算例检验,采用启发式算法优化分析,得出农机配套的规模水稻秧苗配送的优化方案成本节约28%和时间节约40%。归纳出工厂化育秧大棚到多本田循环配送操作优化流程与工厂育秧大棚到一本田直配的优化流程类似,只是增加了设计工厂育秧大棚到多个本田的秧苗集散地的路径优化。规模水稻秧苗配送系统中工厂化育秧大棚到多本田农机配套的规律与到一本田的秧苗配送规律类似,区别在于从插秧机速度为0.3m/s-0.4m/s,按照标准棚尺寸计算,棚内起秧人数比秧棚到一标准本田的多1-2人,需配套棚内运秧车方可满足插秧需求,而在插秧机速度为0.5m/s以上时就需要提前起秧,棚内起秧人数随配套机械和时间要求增加起秧人数。
     (3)黑龙江垦区农机配套服务的应用研究。界定寒地农机配套服务范围、研究服务主体的特征、驱动模式。通对农艺农机配套发展过程、农机配套方法应用和农机服务组织结构的分析,首先,依据北方寒地规模水稻秧苗配送系统农机配套规律,给出了黑龙江垦区在机械选购和制造中的应用。其次,挖掘出农机配套服务主客体特征,确定黑龙江垦区发展农机配套服务的动因,提出以农机服务中心为主体的北方寒地规模水稻秧苗配送“棚地全程机械化模式”的全程服务模式,为实施水稻秧苗从大棚到本田秧苗集散地,再到插秧机供秧位置的配送优化奠定基础。
Despite the improvement of China’s rice production mechanization, the level of mechanization of ricecultivation develops slowly, especially, the seeding and planting becomes the weakness of mechanizationtechnology of rice production. However, in the process of large-scale rice cultivation, the technique and serviceof seeding and planting mechanical sets has become the hot topic. Therefore, in large-scale rice plantingsystem in North Cold, on the tendency of the organized, integrated and standardized raising and inserting riceseedlings and the method of systematic analysis&mode optimization, the research focuses on the study ofseedling and planting logistics machinery supporting in large-scale.
     (1) Description of the agricultural machinery supporting of large-scale rice planting logistics system inNorth Cold. Combined with the mid-and high-end agronomic agricultural technology in scale rice cultivationin the Heilongjiang Reclamation, the study analyzes the trend of raising and inserting rice seedlings in anorganized, intensive, and standardized way. To define large-scale rice cultivation logistics system in Cold andstudy the logistics processes, determine the critical processes and key indicators of a large scale rice cultivationlogistics system in North Cold. Its key processes develop with technology as follows.
     (2) Study on optimization of large-scale rice seedlings multi-distribution system from factory greenhousesto fields and machinery supporting.①Study on optimizing production logistics of rice seedlings based onmachinery supporting in greenhouse. Based on results from seedling tray layout in large-scale greenhouse,combined with the Heilongjiang Reclamation research seedling tray layout, the paper looks into seedlingcarried out by warehouse storage management. Taking the path of rice seedlings from greenhouse and totalcost as the goal, the target programming model is built, using the genetic algorithm so as to get theoptimization program from the seedling greenhouse about shed routes and modalities of such processes. Withtested numerical examples, the production logistics optimization process is drawn: the seedling shed path fromthe middle sequentially to both sides, from both sides to the middle, all of the seedlings from the seedling trayto the cage, according to the capacity of each vehicle transporting seedlings, seedling stand will equally spacednear the channel. Vehicles will send seedling shed shelf along the middle channel, sequentially transported tothe outside for direct loading. The cost of optimization program saved19%with time reduced by21%. Thissupporting system meets the conditions, which comes to law of shed rice seedlings supporting agriculturalproduction: if the transport capacity of seedling car is fixed, supporting agricultural production and logisticscosts gradually decreases with an increase in running speed and finally tends stability. The relation of logisticscosts is similar to the capacity of supporting machinery.②S tudy on optimization of large-scale rice seedlingsmulti-distribution system from to the first field and machinery supporting. Taking the lowest total cost of theseedling distribution system as the goal, the target programming model is built, with tested numericalexamples, the direct distribution optimization process from factory greenhouses to the first field is drawn:according to transplanting speed, the width of each field, and maximum width of seedling, seed-supplying planand the route of transplanting of one side are designed. The amount shipped within seedling accommodate is atleast two times of the amount of seedlings in cars. Seeding interval in seedling distribution center is the timesof the capacity of transplanters multiply two times of the time that the machines finish seedling. The cost ofoptimization program saves18%,14%decrease in time and40%down in the number of workers. The keyindicators of agricultural support are transport seedlings capacity for all stages, speed and transplanting speed.The conditions for agricultural machinery are summed up. Part of seedling production and distribution related indicators are used as generic values. Seeding rate in field should be greater than or equal to2.65times ofplanting speed, road transport vehicles in different transplanting speeds requires less than transportation time.Based on transplanting speed and transporting time, it requires2-3workers in greenhouse. Seedling at thespeed of0.4m/sec or more is required to supply cars shipping seedlings. Those at the speed of0.8m/sec ormore need seedlings ahead of time.③Study on large-scale rice planting logistics system from rice factorygreenhouses to fields and optimization of agricultural machinery supporting service. Comprehensivelyconsidering the LRP and JIT, aiming at the lowest cost, the fix location dispatching model and punctualsupplying LAPTW model are given. To solve the difficult question “NP”, the heuristic algorithm of the fixlocation dispatching model and punctual supplying is introduced. In the first process, the heuristic algorithm ofminimum wet method and integrated chosen method, the rice field is chosen. During the second process, theroute optimize is taken by the way of heritage heuristic algorithm. In the third stage, the circular fetchingmethod is adopted, that is milk fetching way, which completely considers the evenly circular seeding. Finally,through example tests, after the heuristic algorithm optimization analysis, I concluded that the large-scale riceseedling distribution optimization scheme supported by agricultural machinery makes cost saving28%andtime saving40%. I summarize that circulation distribution operation optimization process from rice factorygreenhouses to many-standard field is similar with direct distribution optimization process from rice factorygreenhouses to fields. The former just adds path optimization from rice factory greenhouses to fields. In thedistribution system of large-scale rice seedlings from factory greenhouses to many-standard field, regularity ofagricultural machinery supporting service is similar with regularity of field seedlings distribution. Thedifference is as follows, that due to the transplanter speed of0.3m/s to0.4m/s, according to the standard sizecalculation, the seedling people number in seedling greenhouse is more1-2people than standard field. Andthey need vehicle to meet the demand of planting. When the transplanter speed is more than0.5m/s, they willneed early seedling, and the seedling people number changes along with the supporting machinery andrequired time.
     (3) The applied research on agricultural machinery supporting service in Heilongjiang agriculturalreclamation system. It is to define the range of services in agricultural machinery supporting in North Cold, themain characteristics and the drive mode. Analyze the development of agronomic farm machinery, theapplication of agricultural supporting methods and the structure of agricultural machinery service. First of all,according to the regularity of agricultural machinery supporting service in North Cold large-scale riceseedlings distribution system, the applications in choosing machinery and production are provided. Second,find out the main characteristics of agricultural support services and the motivation in the development ofagricultural support services in Heilongjiang reclamation area. North Cold logistics system of center as themain the greenhouse-to-field distribution mode of complete machinery process, centered on agriculturalmachinery service of large-scale rice cultivation farm machinery service is selected. It lays a solid foundationto form a distribution center for seedling from greenhouse to field and to optimize transplanter distributionpositions.
引文
[1]范铁丰.浅谈黑龙江水稻生产可持续发展[J].北方水稻,2012,42(2):76-80.
    [2]张文毅,袁钊和,吴崇友,金梅.水稻种植机械化进程分析研究[J].中国农机化,2011,20(1):19-22.
    [3]于晓秋,冷志杰.黑龙江垦区农机配套服务的内涵和动因分析[J].农机化研究.2012,34(12):1-5.
    [4] Sakaue O. Development of seedling production robot and automated transplanter system[J].Agricultural Research Quarterly.1996,30(4):221-226.
    [5] choe kwang-Jae Development of Paddy Mechanization in Korea[J].The mechanization of Chinesepaddy production.2000,(4):25-26.
    [6]张波.基于供应链思想的东北稻m物流模式研究[D].大连:大连交通大学,2007.
    [7]夏孝朗.湖南省宁乡县水稻生产机械化育插秧系统配套优化研究[D].长沙:湖南农业大学,2006.
    [8]刘长江,高崇升,金剑,刘居东,李兆林.黑龙江水稻高产栽培技术与模式研究[J].中国稻m.2011,17(5):49-52.
    [9]申承均,韩休海,于磊.国内外水稻种植机械化技术的现状与发展趋势[J].农机化研究.201,32(12):240-243.
    [10]潘晓芳,罗炬.日本水稻生产现况及其启示[J].中国稻米.2008,14(4):19-21.
    [11]潘晓芳.韩国水稻生产及政策[J].北方水稻.2008,38(4):78-80.
    [12]吴文革,陈烨,钱银飞等.水稻直播栽培的发展概况与研究进展[J].中国农业科技导报,2006,8(4):32-36.
    [13] Yoh Nishimura, Kazunobu Hayashi, Takashi Goto, et al. Precision drilling method for the directsowing of rice on flooded paddy field[C]. Japan:WRRC,2004.
    [14] Kitagawa H, Ogura A, Tasaka K, et al. One-man rice transplanting technology of long-matseedling culture system[Z]. Japan:WRRC,2004.
    [15]鲍秉启,安龙哲,胡文英.中国和日本等国水田机械发展概况[J].农机化研究.2002,24(8):23-25.
    [16]李耀明,徐立章,向忠平,邓玲黎.日本水稻种植机械化技术的最新研究进展[J].农业工程学报,2005,21(11):182-185.
    [17] Han S, Zhang Q, Noh H. Kalman filtering of DGPS position for aparallel tracking application [J].Transaction of ASAE.2002,45(3):553-559.
    [18] Reid J F, Zhang Q, Noguchi N, et al. Agricultural automatic guidance research in NorthAmerica[J]. Comput Electron Agric.2000,25(1/2):155-167.
    [19]于海林,马成林,陈晓光.日本水稻栽培管理技术研究的现状[J].农业机械学报,1996,40(S1):178-182
    [20]佐佐木,泰弘,河野元信.日本水稻机械化的现状及展望[J].北方水稻,2012,42(6):1-6.
    [21]张缔庆.农业机器运用管理学[M].西安:西安交通大学出版社.1996.
    [22] Davider Singh. Field Machinery System Modeling&Requrrements for Selected Michigan CashCrop Production systems [D]. East Lansing:Michigan state University.1978.
    [23] F.J.Wolak. Development of a Field Machinery Selection Model [D]. East Lansing:Michigan StateUniversity.1981.
    [24] D. R. Hunt. Farm Power and Machinery Management [D]. Ames:lowa State University.1968.
    [25] Donnel Hunt. Farm power and machinery management [M].Ames: The Iowa State UniversityPress.1983:255-273.
    [26] D.A.Link. A System Approach to Farm Machinery Selection [J]. Transaetionsof the ASAE.1982,4(1):65-70.
    [27] Kish, M Butan, Gajendra singh. Decision support system for the selection of agriculturalmachinery with a case study in India [J]. Computers and Electronics in Agriculture,1994,(10):91-104.
    [28]丁红卫,张绪增.重配套是大拖发展的关键[J].农业机械,2004,(3):37.
    [29] Eynan A., Rosenblatt M.J. Establishing zones in single command class-based rectangularAS/RS[J]. IIETransaetions,1994,26(1):38-46.
    [30] Hausman W.H., Schwarz L.B., GravesS.C. Optimal storage assignment in automaticwarehouseing systems[J]. Management Seience,1976,22(6):629-638.
    [31] Manzini R.Gamberi A.et al, Design of a class based storage Picker to Product order Pickingsystem[J]. The international Journal of Advanced ManutacturingTechnology,2007,32(7-8):811-821
    [32] Parikhap.J.,Mellerb. D.A travel-time model for a person-onboard order Picking system[J].EuroPean Journal of Operational Researeh,2010,200(2):385-394.
    [33] MuPPani V R., Adil G. K. A branch and bound algorithm for class based storage locationassignment[J]. European Journal of Operational Research,2008,189(2):492-507.
    [34] Sugimori Y et al. Toyota Produetion system and kanban system-materialiZation of just in time andrespect for human system[J]. Int J product Reserch1977,15(6):553一564.
    [35] Brown KA,Mitehell TR. A comparison of just in time and batch manufacturing一the role ofPerformance obstacles [J].Aead Manage,1991,34(4):906-917,.
    [36]蒋丽.以工位为中心的生产物流配送优化研究[D].合肥市:中国科学技术大学.2011.
    [37] Paolo Toth,Daniele Vigo. The vehicle routing Problem [M]. American: Society for Industrial andApplied Mathematics,2002,29-31.
    [38] Renaud, J., Laporte, G., Boctor, F.F. A tabu search heuristic for the multi-depot vehicle routingproblem [J]. Computers and Operations Research,1996,23(3):229-235.
    [39] M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser. Network Routing——Handbooksin Operations Research&Management Science (Volume8)[M].1995,1-33.(http://www.sciencedirect.com/science/handbooks/09270507/8)
    [40] M. W. P. savelsbergh. The General Pickup and Delivery Problem [J].Transportation Science,1995,(29):17-25.
    [41] CHOIW, LEEY. A dynamic Part-feeding System for Anauto-motive Assembly Line [J].ComPuter&Industrial Engineering,2002,(43):123-134.
    [42] Mahabub Hossain, Aldas Janaiah, Muazzam Husain and Firdousi Naher.The Rice Seed DeliverySystem in Bangladesh: Institutional and Policy Issues[J].The Bangladesh DevelopmentStudies,2001,27(4):1-40.
    [43] Omar Ahumada, J. Rene Villalobos. Application of planning models in the agri-food supply chain:A review [J]. European Journal of Operational Research,2009,196(1):1–20.
    [44] Amit Sachan, etc. Developing Indian grain supply chain cost model: a system dynamics approach[J]. International Journal of Productivity and Performance Management,2005,54(3):187-205.
    [45] K.R. Apaiah–Designing food supply chains-a structured methodology: A case on novel proteinfoods [D]. France: S.l.: s.n.2006
    [46] Gigler, J.K., E.M.T. Hendrix, R.A. Heesen, V.G.W. Van den Hazelkamp, G. Meerdink. Onoptimisation of agri chains by dynamic programming [J]. European Journal of OperationalResearch.2002,139(3):613-625.
    [47] Christoph Haehling von Lanzenauer. Coordinating supply chain decisions, an optimization model[J].OR Spectrum.2002,(24):59-78.
    [48] ElMaraghy, H.A., Majety, R. Integrated Supply Chain Design Using Multi-Criteria Optimization[J]. International Journal of Manufacturing Technology (IJAMT).2007,37(3-4):371-399.
    [49]臧英,罗锡文,周志艳.南方水稻种植和收获机械化的发展策略[J].农业机械学报,2008,52(1):60-63
    [50]荆玉兵.水稻工厂化育秧的生产过程及成本分析调查[J].新农民,2011,(2):207.
    [51]金梅.水稻育秧工厂的设计[J].中国农机化.2011,237(5):67-71.
    [52]汪春.黑龙江农垦农机化发展战略研究[A].新世纪新机遇新挑战——知识创新和高新技术产业发展(下册)[C].吉林:中国科协2001年学术年会,2001.
    [53]郑桂萍,李金峰,钱永德等.土壤水分对水稻产量与品质的影响[J].作物学报,2006,32(8):1261-1264
    [54]郑桂萍,李红宇,刘丽华等.土壤水势对寒地水稻穗部性状及产量的影响[J].中国水稻科学,2006,20(4):417-423.
    [55]余友泰.农业机械化工程[M].北京:中国展望出版社.1987.
    [56]晏国生,毕文平.农作物高产农机农艺综合实用配套技术[M].北京:中国计量出版社,1995.
    [57]韩宽襟,万鹤群等.中国农业机器配备的特点及典型模型研究[J].北京农业工程大学学报,1990,10(4):1-6.
    [58]吴子岳,王耀华.农机经济完好率的理论模型及其应用[J].农业工程学报,1999,15(1):119-123.
    [59]朱振宇.大庆农场农业机器系统优化设计研究[D].哈尔滨:东北农业大学,2001.
    [60]左淑珍,刘银栓,赵永启,叶德华,郝琳琳,迟仁立.基础理论指导下农机农艺相配套的研究[J].农机化研究.2003,(1):66-67.
    [61]王金武.三江平原水稻田间生产机械化系统分析与综合优化设计研究[D].哈尔滨:东北农业大学,2001.
    [62]肖调范,周定球等.工厂化育秋工艺、成套设备研制开发及改进探讨[J].湖北农机化.2005,(1):18-19.
    [63]汪秀志,刘崇文,许谊强,吕艳东,钱永德,郑桂萍.行株距配置对寒地水稻产量与品质的影响[J].湖北农业科学.2013,52(4):758-762.
    [64]潘跃,吴子文.水稻机械化插秧技术分析与种植机械发展趋势[J].中国稻米,2008,14(3):21-22.
    [65]舒坤良.农机服务组织形成与发展问题研究[D].长春:吉林大学,2009.
    [66]舒坤良,杨印生,郭鸿鹏.农机服务组织形成的动因与机理分析[J].中国农机化,2011,27(1):40-43.
    [67]张艳红,张武斌,董艳华,禹振军,宋爱敏,唐朝.京郊农机配套问题初见[J].北京农业,2010,(3):25-27.
    [68]吴丽娜,周支立,郑家新.某公司仓库储区和货位的分析与改进[J].工业工程与管理,2006,(4):106-111.
    [69]贾煜亮,缪立新.自动化立体仓库中货位实时分配优化问题研究[J].北京交通大学学报(社会科学版),2007,6(4):18-24.
    [70]马永杰,蒋兆远,杨志民.基于遗传算法的自动化仓库的动态货位分配[J].西南交通大学学报,2008,43(3):415-42.
    [71]陈夺.自动化立体仓库货位优化和堆垛机路径[D].沈阳:沈阳农业大学硕士论文.2012.
    [72]朱培军,刘飞等. MRPⅡ、JIT与TOC集成生产管理模式研究及应用现代[J].现代制造工程.2008,(9):35-38.
    [73]李军,郭耀煌.物流配送车辆优化调度理论与方法[M],北京:中国物资出版社.2001
    [74]胡大伟,陈诚,王来军.带硬时间窗车辆路线问题的混合遗传启发式算法[J].交通运输工程学报,2007,7(5):112-118.
    [75]王素欣,高利等.多集散点车辆路径优化的混合算法[J].北京理工大学学报,2007,27(2):130-134.
    [76] Zhu Chongjun Liu Min WuCheng.模糊需求的可能性分布和置信度对VRP解的影响[A].第一届国际机械工程学术会议论文集[C].上海:国际机械工程学会联合会,2000.
    [77]张潜,高立群,刘雪梅,胡祥培.定位-运输路线安排问题的两阶段启发式算法[J].控制与决策.2004,19(7):773-777.
    [78]张潜,李钟慎,胡祥培.基于模糊优化的物流配送路径(MLRP)问题研究[J].控制与决策.2006,21(6):689-692.
    [79]李鲁群,赵红波受时间、空间约束VRP问题蚁群优化模型及算法的研究[J].山东科技大学.2008,2(4):43-47.
    [80]郑克俊.受时间窗约束的随机定位-运输路线优化[J].物流技术.2010,(4):85-88.
    [81]丁秋雷,胡祥培,李永先.求解有时间窗的车辆路径问题的混合蚁群算法[J].系统工程理论与实践,2007,(10):98-104.
    [82]黄小原,李宝家.供应链集成化动态模型与控制[J],系统工程学报,2001,16(4):254-260.
    [83]包鼫.供应链集成网络优化方法研究与系统实现[D].哈尔滨:哈尔滨工业大学,2007.
    [84]宋庭新,黄必清等.语义Web服务在业务协同与供应链集成中的应用[J].中国机械工程,2008,19(4):410-413.
    [85]王金英,陈晓慧.基于动态Agent支持下的供应链信息集成系统研究[J].科技广场,2008,(1):19-20.
    [86]宗锦耀.农业机械化是实现中国特色农业现代化的必由之路[EB/OL]. http://china. toocle.com.2009-11-01/2012-10-12.
    [87]中国统计局编.中国统计年鉴[M].北京:中国统计出版社,2012.15-16.
    [88]丁琳琳,刘馨.黑龙江垦区居民收入与全省全国对比情况(2000~2011年)[J].农场经济管理.2012,(4):54-55.
    [89]王林辉.中国经济增长主要因素的理论研究与实证分析[D].长春市:吉林大学,2007.
    [90]刘余清,马建军.对江苏农垦水稻生产全程机械化的探讨[J].中国农机化,2005,(5):19-20.
    [91]陈月婷,何芳.基于改进粒子群算法的立体仓库货位分配优化[J].计算机工程与应用,2008,44(11):229-232.
    [92]刘俐.现代仓储运作与管理[M].北京:北京大学出版社,2004.
    [93]梁艳春,吴春国,时小虎,葛宏伟著.群智能优化算法理论与应用[M].北京:科学出版社,2009.
    [94]肖圣苓.现代物流装备[M].北京:科学出版社,2009.
    [95]李志伟,邵耀坚,郑丁科等.水稻育秧工厂的设计计算方法[J].农机化研究,1999,22(3):29-33.
    [96]孙宏岭,周行.粮食工业企业物流发展的风险控制与策略[J].农业机械,2011,(1):85-88.
    [97]张潜,高立群,胡祥培.集成化物流中的定位-配给问题的启发式算法[J].东北大学学报,2004,25(7):637-640.
    [98] Campos V, Mota E. Heuristic procedures for the capacitated vehicle routingproblem[J].Computational Optimization and Applications,2000,16(2):265-277.
    [99] William P N, Wesley J B. Solving the pickup and delivery problem with time windows usingreactive tabu search[J]. Transportation Research Part B,2000,34(1):107-121.
    [100]刘静明.国外农机服务组织发展研究[J].中国农机监理.2010,(11):41-42.
    [101]汪懋华,姚福生,高元恩,张百良.中国农机化发展战略研究农业机械化保障体系卷(农机装备工业发展传略与农业机械化保障体系研究)[M],北京:中国农业出版社,2008.
    [102]沈国舫,汪棥华.中国农业机械化发展战略研究综合卷(综合报告及课题、分课题报告提要汇编)[M],北京:中国农业出版社,2008.1-41.
    [103]郭鸿鹏.农机作业委托体制创新理论及实证研究[D].长春市:吉林大学.2004.
    [104]杨印生,舒坤良,郭鸿鹏.农机服务组织作业效率影响因素实证分析[J].数理统计与管理,2008,27(1):62-69.
    [105]赵桂龙.农机社会化服务体系的基本框架和运行机制研究[D].南京:南京农业大学,2006.
    [106]D E Kline, D A Bender, etc. Machinery selection using expert systems and linear programm ing
    [J]. Computers and Electronics in Agriculture,1988,(3):45-61.
    [107]王福林.黑龙江省国营农场麦豆收获的机械化系统分析[D].哈尔滨:东北农业大学,1988.
    [108]马力,王福林,张浩.农机系统优化配备研究面临的新问题[J].农机化研究.2009.31(8):231-234.
    [109]Henning T. Sogaard, Claus G. Sorensen. A Model for Optimal Selection of Machinery Sizeswithin the Farm Machinery System [J]. Biosystems Engineering,2004,89(1),13–28.
    [110]Datt, P. A successful model for introducing agricultural machinery [J]. AgriculturalMechanization in Asia, Africa and Latin America AMA,1988,19(2):72-76.
    [111]D. K. Vatsa, D. C. Saraswat. Selection of Power tiller and Matching Equipment using ComputerProgram for Mechanizing Hill Agricultur [J]. Agricultural Engineering International: the CIGR EJournal.2008,(2):1-11.
    [112]Jack M. Payne. Farm Machinery Selection [J]. Iowa State University of Science andTechnology.2009,(10):1-8.
    [113]李宝筏,张东兴.农业装备系统优化[M].北京:中国农业大学出版社,2005.
    [114]高连兴,王和平,李德沫.农业机械概论[M].北京:中国农业出版社,2000.
    [115]黑龙江省农垦总局统计局编.黑龙江垦区统计年鉴2010年[M].北京:中国统计出版社,2010.
    [116]于晓秋,冷志杰.基于分散决策的生猪供应链上发展沼气项目的激励机制优化[J].农业系统科学与综合研究,2011.27(1):49-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700